

Abstract—In this work we present a framework that

addresses two major issues about a surveillance system: event
recognition and face detection. Different machine learning
methods are used to construct classifiers. Meanwhile, we
develop an adaptive mechanism to automatically adjust the
visual angles of some neighborhood cameras to monitor the
area when the faulty cameras cannot function properly. To
reduce the large amount of computational resources required,
we adopt a cloud computing platform to enhance the video
processing performance. Strategies are developed to exploit the
distributed computing provided by the cloud platform.
Experiments are conducted to evaluate our approach. The
results are promising and they show that our system can
efficiently perform event recognition and face detection.

Index Terms—video surveillance system, camera network,
face detection, machine learning, event recognition

I. INTRODUCTION

sing cameras to guard the security of our society has
become a popular method for public area surveillance.

With the aid of video streams recorded by the surveillance
equipment, security staffs can detect unusual events and
respond promptly to the emergent situations to reduce risks.
To reduce the load of security staffs and cost, many advanced
vision-based techniques for automatic video content analysis
have been developed. At present, the surveillance systems
have turned from the analysis of individual images to the
continuous human behaviors [1][2]. Moreover, in many cases,
a single view is not sufficient enough to cover a target region,
and a network of cameras is thus required to cope with an
open area in which many people move arbitrarily.

Different video sensing techniques for video-based
recognition have been used to implement surveillance
systems. These approaches differ mainly in the underlying
image sensing and processing techniques (such as motion
detection and feature extraction), and in the machine learning
methods (such as naive Bayes classifiers, hidden Markov
models) adopted to build the recognition models [1][3].

Two major issues considered in a video surveillance
system are event and face recognition. A video event can
only be understood through a sequence of images. To
successfully recognize a target event in a video, the system
has to combine temporal activities, spatial locations, and
context information. Usually, studies in event detection and
recognition tended to infer events from the single person’s

J.-Y Huang and W.-P. Lee are with Department of Information

Management, National Sun Yat-sn University, Kaohsiung 80424, Taiwan
(e-mail: wplee@ mail.nsysu.edu.tw).

behavior, but rarely extracted and analyzed behavior data of a
group of people. To overcome this problem, our previous
work has proposed an efficient approach to extract
representative features for a group of people, and then to
combine these features together as a simplified feature vector
to train a classifier [4]. However, it is known that analyzing
video data for event recognition is an inherently time
consuming task, due to the streaming nature of the data. In
this work, we extend our study to a cloud computing platform
to further speed up the operations of a surveillance system.

The other important issue in a video surveillance system is
face recognition. It is a process of identification/verification
by an artificial system through the comparison of facial
features of various images of a facial database. Principles of
face recognition systems have been described in the literature
with typical application examples [5][6]. Basic structure of
an automated face recognition system consists of four
fundamental blocks: face detector, feature extractor, database
and classifier [5]. Face detection aims to determine if the
presented image contains faces and what are their locations
and sizes [7]. As a visual frontend processor, a face detection
system should also be able to achieve the task regardless of
illumination, orientation, and camera distance. Extracted face
images are processed in order to extract distinctive individual
characteristics of a person (i.e., coding information of a face
image by a small number of coefficients). Conventional
feature extraction processes use Fourier Transform, Discrete
Wavelet Transform and Principal Component Analysis. The
effectiveness of feature extraction is best determined by its
ability to discriminate facial features. These features are then
compared to those stored in the database in the classifier.
Finally, the result of identification is formulated. More
details about different techniques for face recognition are
referred to [5][6].

Recently, cloud computing has become a highly demanded
service, due to its advantages of high computing power,
scalability, and availability. In this work, we present a
video-based surveillance system to work on such a
distributed computational platform to achieve event and face
recognition. Our system includes stationary and mobile
sensing nodes. The stationary nodes are smart cameras
responsible for collecting video stream, and the mobile nodes
mean the camera(s) mounted on a mobile robot, also for
video data collection. The image frames gathered are sent to
the cloud in which strategies are developed to distribute the
relevant computation. To evaluate the performance of our
approach, a series of experiments have been conducted. By
exploiting the computational power provided by the cloud
computing platform, our work can produce promising results
for event recognition and face detection.

A Cloud-Based Video Surveillance System for Event
Recognition and Face Detection

Jhih-Yuan Huang Wei-Po Lee

U

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

II. A SURVEILLANCE SYSTEM BASED ON CLOUD COMPUTING

A. System Framework

Our major goal is to develop a video-based surveillance
system for event and face recognition. As the analysis of
video streams requires a large amount of computational effort,
we integrate the surveillance system with a cloud computing
platform to exploit the computational resources on the cloud.
Figure 1 illustrates the system architecture and the core units
of the system. As presented in the figure, our system includes
two major parts for performing event and face recognition,
respectively. The video data can be collected from the
stationary camera nodes or the vision system mounted on the
mobile robots. With the wireless connection, the collected
video streams are sent to a master computer (PC) and then
dispatched to the cloud. For the event recognition part, the
raw image data are captured from the video sensor, and the
pre-defined features are extracted from the marked regions.
Then the features are reduced and feature data from different
persons in the same region are combined to be a single data
vector. Finally, classifiers are built from the training data and
used for event detection and recognition. Similarly, for the
face recognition part, a specific feature extraction procedure
is performed and a machine learning approach is used (with
some positive and negative image examples) to train a
classifier for recognition. At present, only the face detection
process is implemented; the face matching procedure has not
yet included. The details are described in the sections below.

As indicated above, our system includes mobile camera
nodes (on the robots). Considering the compatibility of
various software services provided by different parties, we
configure a ROS (robot operating system, an open source
robot middleware [8]) framework to convey the services
between the requesters and the cloud host. Here, the cloud
means the google cloud platform that can be rented
conveniently with different system configurations on request.
ROS focuses on providing a communication infrastructure
and services for processes (and programs) based on a host
operating system. It provides libraries and tools to support
different programming languages, and this is helpful for
software developers in creating robot applications. This
operating system re-uses code from numerous other
open-source projects. It exposes various configuration
options and routes data into (out of) the respective software.

Fig. 1. The core units of our recognition system.

B. Feature Extraction and Event Detection

In the presented surveillance system, the part of event
recognition is revised from our previous study using a smart

camera network for abnormal event recognition [4]. This
section briefly describes the revised version working on the
cloud. The first phase in event recognition is to extract
specific target features from the video stream and then the
system can infer what event is happening accordingly. Our
system does not deal with all image frames in real time, but
instead sample some frames within a specific time interval. In
this work, we adopt the OpenCV (an open source computer
vision library) that supports pedestrian detection by
analyzing Histogram of Oriented Gradients (HOG). The
HOG descriptor has several advantages: it captures local
shape characteristics (i.e., edge or gradient structure) and
upholds invariance to geometric and photometric
transformations [9]. The system marks a region of interest
(ROI) for each person detected (as shown in Figure 2 (a)),
and we take the height of ROI as the feature data to represent
a person. With the limited cost, it is essential to select a
proper feature to achieve a reasonable system performance in
real time. Here, we develop an approach to use the changes of
ROI to constitute a feature vector. In the real world situations,
the image frames included in a behavior sequence are not
always reliable, due to the unexpected environmental effects
(such as the clutter and occlusion problems). In this work, we
use OpenCV to acquire ROI and choose not to deal with these
problems particularly at the image processing level. Instead,
we develop a collective decision method at the strategic level
to enhance the robustness of event detection. Once a person’s
behavior sequence is identified, a feature vector for a single
pedestrian can be built. Figure 2 (b) illustrates an example of
a behavior sequence recorded by the camera within a specific
time interval (i.e., ten time steps) and the corresponding
feature vector. In this example, the feature value below each
time step represents the height of ROI measured.

The system needs to observe the behaviors of a group of
people in the same region and then infers what event is
happening. Here, an indirect encoding scheme is developed
to derive a concise and compact representation from the
feature vectors described above to represent the behavior
sequences of a set of people. In this representation, the vector
for each person is reduced to include three new features (i.e.,
f1, f2, and f3): the maximal change of the ROI height, the
number of image frames within which the maximal change
happens, and the frequency of the considerable ROI change.
The first feature f1 is to measure the maximal behavior
variation (i.e., the difference of the maximal and minimal
ROI heights; the value could be positive or negative) of a
person within a pre-defined time interval (i.e., ten time steps
in our experiment). This value is normalized, subject to the
maximal height. The second feature f2 means to describe the
changing rate from the maximal to minimal (or from minimal
to maximal) heights in terms of the number of image frames.
The third feature f3 indicates how often a person changes his
behaviors, and this is obtained by measuring the variation
between two consecutive ROI heights (i.e., the slope value
changes from positive to negative or from negative to
positive) and checking if the variation exceeds a pre-defined
threshold (20% of the first ROI height, determined by a
preliminary test). For example, the behavior sequence shown
in Figure 2 (b) is represented as <0.67, 9, 0>, in which 0.67 is
the normalized change rate (from 170 to 56), 9 is the number

Camera Node

Event

Recognition
Face

Recognition

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

of frames corresponding to the interval of the above change,
and 0 means no slope change in this interval.. In this way, the
dimension of the combined feature vector can be largely
reduced and the system performance can thus be improved.
Here, each data vector means a group of ten people and
includes thirty features in total, and it can be represented as
<f1

1, f2
1, f3

1, f1
2, f2

2, f3
2, …, f1

10, f2
10, f3

10>, in which the
superscripts are the identifiers of the people detected.

Fig. 2. (a) Extracting ROI from the original image; and (b) an
example of the feature vector corresponds to a behavior sequence.

After encoding the behavior sequences of a group of

people as feature data, we employ a machine learning method
(i.e., SVM classifiers, due to its good performance in dealing
with multi-class and high-dimensional data) to classify the
target events occurring in a surveillance area. In this work,
the classifiers are used for both single event recognition (with
two classes of target and non-target events) and multiple
event recognition (with four classes of events: earthquake,
gun shooting, fighting, and normal). For the multi-event
recognition, the output of the classifier needs to indicate
which event is happening.

To train a SVM classifier, the system includes the offline
training and online operating phases, as illustrated in Figure 3.
The training phase involves collecting historical video files
and analyzing of video streams for features data extraction.
The data are sent to a cloud computing platform to speed up
the processing time. In this work, we use the online available
software LISVM and chose the SVM type C-SVC
(regularized support vector classification) with a kernel type
of linear to construct the SVM classifiers. This configuration
is selected as it achieves a good balance of the processing
speed and the recognition accuracy. Once the classifier is
constructed, it is then used for event recognition and
detection in an online manner. The recognition phase
operates on each single camera node. When a camera is
monitoring the environment, it adopts sliding window in the
way of “first in first out” to process the video frames. It
accumulates a certain number of time-series data, and then
inputs the feature data to the classifier to perform real-time
event recognition.

Fig. 3. The flow of building a classifier for event detection.

C. Cloud-Based Multi-Camera Collaboration

As mentioned, a camera node has limited computational
power and storage (compared to the traditional personal
computer). Therefore it only functions for feature extraction
and encoding. In many cases a single view is not sufficient
enough to cover a targeted region, and a network of cameras
is thus required to cope with an open area in which many
people move arbitrarily. Individual cameras are often not
able to capture complete behavior sequences perfectly, due to
some environmental factors in the real world, such as the
blind angles of the camera network, the light reflection and
the obstruction between objects (e.g., Figure 4 (a)). Figure 4
(b) shows an example of gathering a complete behavior
sequence by two cameras, in which each of the camera only
captures part of the behavior. Therefore, each camera
transmits the HOG data it has identified to the cloud to ensure
the completeness of each feature vector (i.e., to mend any
incomplete data) to achieve a correct recognition.

(a)

 (b)

Fig. 4. (a) The case of obstruction happens between objects; (b) an
example of behavior changes within two areas of coverage.

Though the high level computer vision algorithms can be
divided so that intermediate results can be exchanged with
other cameras, we do not perform such partition because our
goal here is to use relative small amount of shared
information to achieve event recognition through the strategy
of making collective decision. Therefore, during the
monitoring process, a camera node just transmits the

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

processed information (i.e., the HOG data) for mending
incomplete data. The cloud can mend an incomplete behavior
sequence by comparing the features of the HOG data the
cameras collected to perform person-matching, and then
combining the features of the matched persons [10][11].
Figure 5 illustrates the example shown in Figure 4 (b). The
upper part of Figure 5 is the pedestrian data collected from
two cameras, and the lower part, the merged features. The
data transmission interval can be determined in advance,
depending on the system planning. In this way, the
transmission load of the system can be largely reduced and
the system can thus be scaled up to include more sensor
nodes to monitor a huge surveillance area.

Fig. 5. A simulated example of the pedestrian data collected from
two cameras (up), and the merged features (down).

D. System Adaption

Because our goal is to detect abnormal event from the
human behavior sequence, it is thus important to keep
monitoring a complete space (to avoid the case shown in
Figure 4). To achieve this goal, when a camera is damaged,
the surveillance system needs to adjust (rotate) other cameras
(for example, the neighboring nodes) to bridge the gap left to
continuously monitor the original area. Here, we consider the
surveillance case of a channel region, in which an alternate
camera arrangement is deployed (as shown in Figure 6). This
arrangement is popular as it can achieve a maximal
monitoring coverage by a minimal number of cameras [12].

Fig. 6. The camera arrangement for a zone.

 Figure 7(a) illustrates the general case with a damaged
camera (the middle one), in which the two (left and right)
cameras next to it need to be rotated to cover the vision gap.
In this application case, the rotating angle can be calculated
as the following. If the sensing angle of a camera is 2θ and
the sensing radius is R, we can obtain the rotating angle α by
maximizing the discrepancy (regarding as the gain) between
the area of the bridged gap (A1 in Figure 7(a)) and the area
that becomes invisible after a neighboring camera is rotated
(A2 in Figure 7(a)). From Figure 7(a), we can calculate A1 and
A2 as:

(1))(R
2

1
R

2

1

))(90(R
2

1
R

2

1

22

22
1

cotsincossin

tansincossinA

(2))(R
2

1
R

2

1 22
2 tancoscossinA

The difference between two areas can be measured as:

(3))]()tan([cosR
2

1

)(R
2

1
)(R

2

1

)](R
2

1
R

2

1
[

)](R
2

1
R

2

1
[)(

2

22

22

22
21

cotsin

tancoscotsin

tancoscossin

cotsincossinfAA

Then, we can assign f’ to be zero to derive the maximum of
α as the following:

0)]()([R
2

1

)]()1()1)(([R
2

1
)(

222

222

seccoscscsin

cscsinseccosf

That is,

 (4) 0)]()([R
2

1 222 seccoscscsin

1)-(4)()(22 seccoscscsin

2)-(4)()(22 seccsctan

(5)
2

0),
2

(0 ,)()(22 sincostan

From equation (5), we can observe that if θ = α = π/4, the
gap area can be fully covered (Figure 7(b)); otherwise if θ <
π/4, there is still a gap (Figure 7(c)). Also, if both cameras
rotate (π/2-θ) (or more) the gain turns to be negative. Based
on the above analyses, the system can consider the
application situation (such as the importance of different
surveillance areas) to decide how to rotate the corresponding
cameras,

(a)

(b) (c)

Fig. 7. Collaborative adaption by camera rotation

E. Face Detection

In this work, the task of face detection is achieved by a
machine learning approach in which a set of positive images
(images of faces) and negative images (images without faces)
are used to train a classifier and then features are extracted.
The simple features used are reminiscent of Haar basis
functions, which have been widely used in image recognition

A1

A2

α
θ

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

[13]. Each feature is a single value obtained by subtracting
the sum of pixels under white rectangle from the sum of
pixels under black rectangle. In this method, all possible sizes
and locations of each kernel are used to calculate plenty of
features. Adaboost is then adopted to perform best feature
selection. The details of this popular and efficient face
detection approach are referred to the original work [13].

Our system adopts OpenCV to achieve the above goal,
in which a variant of AdaBoost is used to select a small set of
features and to train the classifier. This weak (simple)
learning algorithm is designed to select the single rectangle
feature which best separates the positive and negative
examples. For each feature, the weak learner determines the
optimal threshold classification function, such that the
minimum number of examples is misclassified. As
mentioned in Section III.A, to perform the above calculation
on the cloud, we configure a ROS cloud framework in which
different types of computing nodes are pre-defined to handle
the specified tasks. Figure 8 illustrates the operational flow
for face recognition. The sensing node captures the face
images and sends (called “published” in ROS) the data to the
topic (the data transmission way defined in ROS) registered
to the master node and other computing nodes can get (called
“subscribe”) data from the topic. To achieve the distributed
computing in the cloud platform, we insert a tag on each data
header for identification purpose and the data are dispatched
to specific computing nodes on the cloud accordingly. In this
way, the time for face detection can be largely reduced and
the faces can be detected in real time.

Fig. 8. The operational flow of the presented face recognition.

III. EXPERIMENTS AND RESULTS

A. Implementation

To develop a cloud-based video surveillance system, we
configured a ROS framework on top of Linux OS to connect
the sensing camera nodes. As indicted above, ROS focuses
on providing a communication infrastructure and services for
processes (programs) based on a host operating system.
Often, a system built with ROS consists of a number of
processes on a number of different hosts, which are
connected at runtime in a peer-to-peer topology. Our current
focus is on the development of using shared cloud resources;
therefore, a simplified network architecture was used. In this
environment, the ROS master was a PC running roscore and
serving as the resource center for all the other ROS nodes
connected to the network. The current ROS configuration

may result in traffic flowing across the wireless link, while it
can be extended with a more efficient connectivity to avoid
this issue for a large number of nodes.

B. Results of Recognition

A series of experiments has been conducted to evaluate the
proposed approach for event recognition. The target events
include earthquake, gun shooting, and fighting. For practical
reason, a simulation-based strategy was adopted for data
collection. In the experiments, the SVM classifiers were built
for single event recognition, in which a 10-fold cross
validation method was used to train and test the classifiers.
After that, we employed the same approach to train classifiers
for multiple events recognition. In the experiments involved
multiple events, the output of the classifier needed to indicate
which event (among the four) was happening. As mentioned,
this work was extended from our previous study. Therefore,
those sets of experiments conducted to verify the feasibility
and reliability of our approach in event recognition (for
single event and multiple events recognition) are thus not
reported here (details are referred to [4]).

To investigate the effect of considering different numbers
of people in the group for event recognition, we adopted the
encoding scheme described previously and conducted a set of
experiments to evaluate the corresponding performance of
including different numbers of persons in each data record.
The numbers ranged from three to twelve, and for each
number three different ratios of impurity (0.0, 0.2 and 0.4)
were arranged. Figure 9 (a) illustrates the results. As shown
in this figure, though taking into account more persons’
behaviors (i.e., ten to twelve in our experiments) for event
recognition can give better performance, it required higher
computational cost. Accounting for both recognition
accuracy and computational cost, ten people for each data
record is a suitable choice for our work here.

(a)

(b)

Fig. 9. Results of (a) considering different numbers of persons for
event recognition; (b) using the averaged feature values to substitute
the missing values.

Monitoring
Node

Sensing
Node

topic: face
recognition

topic: sensing
data

Computing
Node

subscribe

subscribe

publish

publish

register

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

In a surveillances task, the number of people within the
region monitored by a camera may be more or less than the
expected number in practice. The system needs an efficient
strategy to re-organize the data records to obtain best
performance. For the case of more than the expected number
of persons being identified, the system can simply choose the
amount it needs based on a first-detected-first-chosen
strategy. However, for the case without enough number of
persons is not sufficient, the system needs to supplement
some features to make a complete data record for training. A
simple strategy was used in this set of experiments: taking a
value averaged from the available features in each empty
feature in the record. In the experiments, different ratios
(percentages) of missing frames were tested. Figure 9 (b)
present the recognition results, in which the x-axis indicates
the ratio of missing persons in test data, and y-axis, the
recognition performance. It shows that for the training cases
with less missing data (e.g., 0~20%), the performance
declined in a more natural way. In contrast, for the cases with
relatively more missing data in training, the classifiers were
less accurate in general. In both situations, the classifiers
performed better when the ratios of missing data in the
training and testing phases came close.

C. Performance of Cloud Computing

To evaluate the performance of using cloud computing
resources for event recognition and face detection, we
conducted a set of experimental trials with different numbers
of computing nodes (ranging from one to five nodes). The
computing nodes (rented from the google cloud platform)
have the specifications of 2.6GHz Intel Xeon E5 CPU and
3.75 GB memory.

Figures 10 (a) and (b) present the response time (starting
from the image frames taken by the cameras to the
recognition results sent back by the cloud) for achieving
event recognition and face detection, respectively. As shown
in the figure, in both cases when the number of computing
nodes increases (from one to five), the response time can be
largely reduced (from 3850 ms to 681 ms for event
recognition, and from 1210 ms to 642 ms for face detection).
We have also noticed that the network connection caused
some delay; otherwise the computing performance can be
further improved. The results presented in Figure 10 confirm
the efficiency of the proposed distributed approach.

IV. CONCLUSIONS AND FUTURE WORK

It is popular to employ video surveillance systems to
monitor of public areas. More and more surveillance devices
are now required to increase sensing coverage and to capture
images from different visual angels. To reduce the large
amount of computational resources often required in the
video-based applications, in this study we presented a cloud
computing framework to enhance the corresponding
processing performance. Strategies have been developed to
exploit the distributed computing provided by the cloud
platform for the two major issues, event recognition and face
detection, in a video surveillance system. In addition, we
developed an adaptive mechanism to automatically adjust the
visual angles of some neighborhood cameras to monitor the
area when the faulty cameras cannot function properly.

Different sets of experiments have been conducted to
evaluate the proposed approach, and the results show that our
system has the quality of stability. We are currently
investigating new ways to distribute the computational tasks
and how to reduce the delay caused by the network
connection to furthermore improve the performance.

0

1000

2000

3000

4000

5000

1 2 3 4 5

ti
m
e
(m

s)

num of nodes

(a)

0

200

400

600

800

1000

1200

1400

1 2 3 4 5

ti
m
e
(m

s)

num of nodes

 (b)
Fig. 10. Response time of cases with different number of nodes for
(a) event recognition; (b) face detection.

REFERENCES
[1] N. C. Krishnan and D. J. Cook, “Activity recognition on streaming

sensor data,” Pervasive and Mobile Computing, vol. 10, pp. 138-154,
2014.

[2] A. T. Kamal, C. Ding, A. A. Morye, J. A. Farrell, and A. K.
Roy-Chowdhury, “An overview of distributed tracking and control in
camera networks,” in V. K. Asari (Ed.), Wide Area Surveillance:
Augmented Vision and Reality, pp. 207-234, Springer, 2014.

[3] T.-K. Truong, C.-C. Lin, and S.-H. Chen, “Segmentation of specific
speech signals from multi-dialog environment using SVM and
wavelet,” Pattern Recognition Letters, vol. 28, pp. 1307-1313, 2007.

[4] J.-Y. Huang and W.-P. Lee, “A smart camera network with SVM
classifiers for crowd event recognition,” in Proceedings on World
Congress on Engineering, Vol. I, pp. 13-18, 2014.

[5] J.-F. Connolly, E. Granger, R. Sabourin, “An adaptive classification
system for video-based face recognition,” Information Sciences, vol.
192, pp. 50-70, 2012.

[6] R. Jafri and H. R. Arabnia, “A survey of face recognition techniques,”
Journal of Information Processing Systems, Vol.5, no.2, 2009.

[7] C. Zhang and Z. Zhang, “A Survey of Recent Advances in Face
Detection,” Microsoft Technical Report MSR-TR-2010-66, 2010.

[8] M. Quigley, K. Conley, B. Gerkey, et al., “ROS: An open-source robot
operating system,” in Proceedings of International Conference on
Robotics and Automation, Workshop on Open-Source Robotics, 2009.

[9] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proceedings of IEEE International Conference on
Computer Vision and Pattern Recognition, pp. 886-893, 2005.

[10] S. Fleck, F. Busch, and W. Straßer, “Adaptive probabilistic tracking
embedded in smart cameras for distributed surveillance in a 3D model,”
EURASIP Journal on Embedded Systems, vol.1, 29858, 2007.

[11] C.-H. Kuo, C. Huang, and R. Nevatia, “Inter-camera association of
multi-target tracks by on-line learned appearance affinity models,” in
Proceedings of European Conference on Computer Vision, pp.
381-396, 2010.

[12] V. P. Munishwar and N. B. Abu-Ghazaleh, “Scalable target coverage in
smart camera networks,” in Proceedings of ACM/IEEE International
Conference on Distributed Smart Cameras, pp. 206-213, 2010.

[13] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proceedings of IEEE International Conference
on Computer Vision and Pattern Recognition, 2001.

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

