
 

 
Abstract—In this work we present a framework that 

addresses two major issues about a surveillance system: event 
recognition and face detection.  Different machine learning 
methods are used to construct classifiers. Meanwhile, we 
develop an adaptive mechanism to automatically adjust the 
visual angles of some neighborhood cameras to monitor the 
area when the faulty cameras cannot function properly. To 
reduce the large amount of computational resources required, 
we adopt a cloud computing platform to enhance the video 
processing performance. Strategies are developed to exploit the 
distributed computing provided by the cloud platform. 
Experiments are conducted to evaluate our approach. The 
results are promising and they show that our system can 
efficiently perform event recognition and face detection. 
 

Index Terms—video surveillance system, camera network, 
face detection, machine learning, event recognition 
 

I. INTRODUCTION 

sing cameras to guard the security of our society has 
become a popular method for public area surveillance. 

With the aid of video streams recorded by the surveillance 
equipment, security staffs can detect unusual events and 
respond promptly to the emergent situations to reduce risks. 
To reduce the load of security staffs and cost, many advanced 
vision-based techniques for automatic video content analysis 
have been developed. At present, the surveillance systems 
have turned from the analysis of individual images to the 
continuous human behaviors [1][2]. Moreover, in many cases, 
a single view is not sufficient enough to cover a target region, 
and a network of cameras is thus required to cope with an 
open area in which many people move arbitrarily.  

Different video sensing techniques for video-based 
recognition have been used to implement surveillance 
systems. These approaches differ mainly in the underlying 
image sensing and processing techniques (such as motion 
detection and feature extraction), and in the machine learning 
methods (such as naive Bayes classifiers, hidden Markov 
models) adopted to build the recognition models [1][3].  

Two major issues considered in a video surveillance 
system are event and face recognition. A video event can 
only be understood through a sequence of images. To 
successfully recognize a target event in a video, the system 
has to combine temporal activities, spatial locations, and 
context information. Usually, studies in event detection and 
recognition tended to infer events from the single person’s 
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behavior, but rarely extracted and analyzed behavior data of a 
group of people. To overcome this problem, our previous 
work has proposed an efficient approach to extract 
representative features for a group of people, and then to 
combine these features together as a simplified feature vector 
to train a classifier [4]. However, it is known that analyzing 
video data for event recognition is an inherently time 
consuming task, due to the streaming nature of the data. In 
this work, we extend our study to a cloud computing platform 
to further speed up the operations of a surveillance system.  

The other important issue in a video surveillance system is 
face recognition. It is a process of identification/verification 
by an artificial system through the comparison of facial 
features of various images of a facial database. Principles of 
face recognition systems have been described in the literature 
with typical application examples [5][6]. Basic structure of 
an automated face recognition system consists of four 
fundamental blocks: face detector, feature extractor, database 
and classifier [5]. Face detection aims to determine if the 
presented image contains faces and what are their locations 
and sizes [7]. As a visual frontend processor, a face detection 
system should also be able to achieve the task regardless of 
illumination, orientation, and camera distance. Extracted face 
images are processed in order to extract distinctive individual 
characteristics of a person (i.e., coding information of a face 
image by a small number of coefficients). Conventional 
feature extraction processes use Fourier Transform, Discrete 
Wavelet Transform and Principal Component Analysis. The 
effectiveness of feature extraction is best determined by its 
ability to discriminate facial features. These features are then 
compared to those stored in the database in the classifier. 
Finally, the result of identification is formulated. More 
details about different techniques for face recognition are 
referred to [5][6]. 

Recently, cloud computing has become a highly demanded 
service, due to its advantages of high computing power, 
scalability, and availability. In this work, we present a 
video-based surveillance system to work on such a 
distributed computational platform to achieve event and face 
recognition. Our system includes stationary and mobile 
sensing nodes. The stationary nodes are smart cameras 
responsible for collecting video stream, and the mobile nodes 
mean the camera(s) mounted on a mobile robot, also for 
video data collection. The image frames gathered are sent to 
the cloud in which strategies are developed to distribute the 
relevant computation. To evaluate the performance of our 
approach, a series of experiments have been conducted. By 
exploiting the computational power provided by the cloud 
computing platform, our work can produce promising results 
for event recognition and face detection. 
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II. A SURVEILLANCE SYSTEM BASED ON CLOUD COMPUTING 

A. System Framework 

Our major goal is to develop a video-based surveillance 
system for event and face recognition. As the analysis of 
video streams requires a large amount of computational effort, 
we integrate the surveillance system with a cloud computing 
platform to exploit the computational resources on the cloud. 
Figure 1 illustrates the system architecture and the core units 
of the system. As presented in the figure, our system includes 
two major parts for performing event and face recognition, 
respectively. The video data can be collected from the 
stationary camera nodes or the vision system mounted on the 
mobile robots. With the wireless connection, the collected 
video streams are sent to a master computer (PC) and then 
dispatched to the cloud. For the event recognition part, the 
raw image data are captured from the video sensor, and the 
pre-defined features are extracted from the marked regions. 
Then the features are reduced and feature data from different 
persons in the same region are combined to be a single data 
vector. Finally, classifiers are built from the training data and 
used for event detection and recognition. Similarly, for the 
face recognition part, a specific feature extraction procedure 
is performed and a machine learning approach is used (with 
some positive and negative image examples) to train a 
classifier for recognition. At present, only the face detection 
process is implemented; the face matching procedure has not 
yet included. The details are described in the sections below. 

As indicated above, our system includes mobile camera 
nodes (on the robots). Considering the compatibility of 
various software services provided by different parties, we 
configure a ROS (robot operating system, an open source 
robot middleware [8]) framework to convey the services 
between the requesters and the cloud host. Here, the cloud 
means the google cloud platform that can be rented 
conveniently with different system configurations on request. 
ROS focuses on providing a communication infrastructure 
and services for processes (and programs) based on a host 
operating system. It provides libraries and tools to support 
different programming languages, and this is helpful for 
software developers in creating robot applications. This 
operating system re-uses code from numerous other 
open-source projects. It exposes various configuration 
options and routes data into (out of) the respective software. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The core units of our recognition system. 

B. Feature Extraction and Event Detection 

In the presented surveillance system, the part of event 
recognition is revised from our previous study using a smart 

camera network for abnormal event recognition [4]. This 
section briefly describes the revised version working on the 
cloud. The first phase in event recognition is to extract 
specific target features from the video stream and then the 
system can infer what event is happening accordingly. Our 
system does not deal with all image frames in real time, but 
instead sample some frames within a specific time interval. In 
this work, we adopt the OpenCV (an open source computer 
vision library) that supports pedestrian detection by 
analyzing Histogram of Oriented Gradients (HOG). The 
HOG descriptor has several advantages: it captures local 
shape characteristics (i.e., edge or gradient structure) and 
upholds invariance to geometric and photometric 
transformations [9]. The system marks a region of interest 
(ROI) for each person detected (as shown in Figure 2 (a)), 
and we take the height of ROI as the feature data to represent 
a person. With the limited cost, it is essential to select a 
proper feature to achieve a reasonable system performance in 
real time. Here, we develop an approach to use the changes of 
ROI to constitute a feature vector. In the real world situations, 
the image frames included in a behavior sequence are not 
always reliable, due to the unexpected environmental effects 
(such as the clutter and occlusion problems). In this work, we 
use OpenCV to acquire ROI and choose not to deal with these 
problems particularly at the image processing level. Instead, 
we develop a collective decision method at the strategic level 
to enhance the robustness of event detection. Once a person’s 
behavior sequence is identified, a feature vector for a single 
pedestrian can be built. Figure 2 (b) illustrates an example of 
a behavior sequence recorded by the camera within a specific 
time interval (i.e., ten time steps) and the corresponding 
feature vector. In this example, the feature value below each 
time step represents the height of ROI measured.  

The system needs to observe the behaviors of a group of 
people in the same region and then infers what event is 
happening. Here, an indirect encoding scheme is developed 
to derive a concise and compact representation from the 
feature vectors described above to represent the behavior 
sequences of a set of people. In this representation, the vector 
for each person is reduced to include three new features (i.e., 
f1, f2, and f3): the maximal change of the ROI height, the 
number of image frames within which the maximal change 
happens, and the frequency of the considerable ROI change. 
The first feature f1 is to measure the maximal behavior 
variation (i.e., the difference of the maximal and minimal 
ROI heights; the value could be positive or negative) of a 
person within a pre-defined time interval (i.e., ten time steps 
in our experiment). This value is normalized, subject to the 
maximal height. The second feature f2 means to describe the 
changing rate from the maximal to minimal (or from minimal 
to maximal) heights in terms of the number of image frames. 
The third feature f3 indicates how often a person changes his 
behaviors, and this is obtained by measuring the variation 
between two consecutive ROI heights (i.e., the slope value 
changes from positive to negative or from negative to 
positive) and checking if the variation exceeds a pre-defined 
threshold (20% of the first ROI height, determined by a 
preliminary test). For example, the behavior sequence shown 
in Figure 2 (b) is represented as <0.67, 9, 0>, in which 0.67 is 
the normalized change rate (from 170 to 56), 9 is the number 
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of frames corresponding to the interval of the above change, 
and 0 means no slope change in this interval.. In this way, the 
dimension of the combined feature vector can be largely 
reduced and the system performance can thus be improved. 
Here, each data vector means a group of ten people and 
includes thirty features in total, and it can be represented as 
<f1

1, f2
1, f3

1, f1
2, f2

2, f3
2, …, f1 

10, f2
10, f3

10>, in which the 
superscripts are the identifiers of the people detected. 

 
 
 
 
 
 
 
 
 
 

 

 
Fig. 2. (a) Extracting ROI from the original image; and (b) an 
example of the feature vector corresponds to a behavior sequence. 

 
After encoding the behavior sequences of a group of 

people as feature data, we employ a machine learning method 
(i.e., SVM classifiers, due to its good performance in dealing 
with multi-class and high-dimensional data) to classify the 
target events occurring in a surveillance area. In this work, 
the classifiers are used for both single event recognition (with 
two classes of target and non-target events) and multiple 
event recognition (with four classes of events: earthquake, 
gun shooting, fighting, and normal). For the multi-event 
recognition, the output of the classifier needs to indicate 
which event is happening. 

To train a SVM classifier, the system includes the offline 
training and online operating phases, as illustrated in Figure 3. 
The training phase involves collecting historical video files 
and analyzing of video streams for features data extraction. 
The data are sent to a cloud computing platform to speed up 
the processing time. In this work, we use the online available 
software LISVM and chose the SVM type C-SVC 
(regularized support vector classification) with a kernel type 
of linear to construct the SVM classifiers. This configuration 
is selected as it achieves a good balance of the processing 
speed and the recognition accuracy. Once the classifier is 
constructed, it is then used for event recognition and 
detection in an online manner. The recognition phase 
operates on each single camera node. When a camera is 
monitoring the environment, it adopts sliding window in the 
way of “first in first out” to process the video frames. It 
accumulates a certain number of time-series data, and then 
inputs the feature data to the classifier to perform real-time 
event recognition.  

 
Fig. 3. The flow of building a classifier for event detection. 

 
C. Cloud-Based Multi-Camera Collaboration 

As mentioned, a camera node has limited computational 
power and storage (compared to the traditional personal 
computer). Therefore it only functions for feature extraction 
and encoding. In many cases a single view is not sufficient 
enough to cover a targeted region, and a network of cameras 
is thus required to cope with an open area in which many 
people move arbitrarily. Individual cameras are often not 
able to capture complete behavior sequences perfectly, due to 
some environmental factors in the real world, such as the 
blind angles of the camera network, the light reflection and 
the obstruction between objects (e.g., Figure 4 (a)). Figure 4 
(b) shows an example of gathering a complete behavior 
sequence by two cameras, in which each of the camera only 
captures part of the behavior. Therefore, each camera 
transmits the HOG data it has identified to the cloud to ensure 
the completeness of each feature vector (i.e., to mend any 
incomplete data) to achieve a correct recognition.  
 
 
 
 
 
 
 
 

(a) 

 
 
 
 
 
 
 
 
 
 
 

 (b) 

Fig. 4. (a) The case of obstruction happens between objects; (b) an 
example of behavior changes within two areas of coverage. 
 

Though the high level computer vision algorithms can be 
divided so that intermediate results can be exchanged with 
other cameras, we do not perform such partition because our 
goal here is to use relative small amount of shared 
information to achieve event recognition through the strategy 
of making collective decision. Therefore, during the 
monitoring process, a camera node just transmits the 
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processed information (i.e., the HOG data) for mending 
incomplete data. The cloud can mend an incomplete behavior 
sequence by comparing the features of the HOG data the 
cameras collected to perform person-matching, and then 
combining the features of the matched persons [10][11]. 
Figure 5 illustrates the example shown in Figure 4 (b). The 
upper part of Figure 5 is the pedestrian data collected from 
two cameras, and the lower part, the merged features. The 
data transmission interval can be determined in advance, 
depending on the system planning. In this way, the 
transmission load of the system can be largely reduced and 
the system can thus be scaled up to include more sensor 
nodes to monitor a huge surveillance area. 

 

 

 
Fig. 5. A simulated example of the pedestrian data collected from 
two cameras (up), and the merged features (down). 
 
D. System Adaption 

Because our goal is to detect abnormal event from the 
human behavior sequence, it is thus important to keep 
monitoring a complete space (to avoid the case shown in 
Figure 4). To achieve this goal, when a camera is damaged, 
the surveillance system needs to adjust (rotate) other cameras 
(for example, the neighboring nodes) to bridge the gap left to 
continuously monitor the original area. Here, we consider the 
surveillance case of a channel region, in which an alternate 
camera arrangement is deployed (as shown in Figure 6). This 
arrangement is popular as it can achieve a maximal 
monitoring coverage by a minimal number of cameras [12].  
 

 
Fig. 6. The camera arrangement for a zone. 

     Figure 7(a) illustrates the general case with a damaged 
camera (the middle one), in which the two (left and right) 
cameras next to it need to be rotated to cover the vision gap. 
In this application case, the rotating angle can be calculated 
as the following. If the sensing angle of a camera is 2θ and 
the sensing radius is R, we can obtain the rotating angle α by 
maximizing the discrepancy (regarding as the gain) between 
the area of the bridged gap (A1 in Figure 7(a)) and the area 
that becomes invisible after a neighboring camera is rotated 
(A2 in Figure 7(a)). From Figure 7(a), we can calculate A1 and 
A2 as: 
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Then, we can assign f’ to be zero to derive the maximum of 
α as the following:  
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From equation (5), we can observe that if θ = α = π/4, the 
gap area can be fully covered (Figure 7(b)); otherwise if θ < 
π/4, there is still a gap (Figure 7(c)). Also, if both cameras 
rotate (π/2-θ) (or more) the gain turns to be negative. Based 
on the above analyses, the system can consider the 
application situation (such as the importance of different 
surveillance areas) to decide how to rotate the corresponding 
cameras,  

 
 
 
 
 
 
 

(a) 

   
 
 
 
 
 
 
 
(b)                                                         (c) 

Fig. 7. Collaborative adaption by camera rotation 

E. Face Detection 

In this work, the task of face detection is achieved by a 
machine learning approach in which a set of positive images 
(images of faces) and negative images (images without faces) 
are used to train a classifier and then features are extracted. 
The simple features used are reminiscent of Haar basis 
functions, which have been widely used in image recognition 
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[13]. Each feature is a single value obtained by subtracting 
the sum of pixels under white rectangle from the sum of 
pixels under black rectangle. In this method, all possible sizes 
and locations of each kernel are used to calculate plenty of 
features. Adaboost is then adopted to perform best feature 
selection. The details of this popular and efficient face 
detection approach are referred to the original work [13]. 

Our system adopts OpenCV to achieve the above goal, 
in which a variant of AdaBoost is used to select a small set of 
features and to train the classifier. This weak (simple) 
learning algorithm is designed to select the single rectangle 
feature which best separates the positive and negative 
examples. For each feature, the weak learner determines the 
optimal threshold classification function, such that the 
minimum number of examples is misclassified. As 
mentioned in Section III.A, to perform the above calculation 
on the cloud, we configure a ROS cloud framework in which 
different types of computing nodes are pre-defined to handle 
the specified tasks. Figure 8 illustrates the operational flow 
for face recognition. The sensing node captures the face 
images and sends (called “published” in ROS) the data to the 
topic (the data transmission way defined in ROS) registered 
to the master node and other computing nodes can get (called 
“subscribe”) data from the topic. To achieve the distributed 
computing in the cloud platform, we insert a tag on each data 
header for identification purpose and the data are dispatched 
to specific computing nodes on the cloud accordingly. In this 
way, the time for face detection can be largely reduced and 
the faces can be detected in real time.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. The operational flow of the presented face recognition. 

III. EXPERIMENTS AND RESULTS 

A. Implementation 

To develop a cloud-based video surveillance system, we 
configured a ROS framework on top of Linux OS to connect 
the sensing camera nodes. As indicted above, ROS focuses 
on providing a communication infrastructure and services for 
processes (programs) based on a host operating system. 
Often, a system built with ROS consists of a number of 
processes on a number of different hosts, which are 
connected at runtime in a peer-to-peer topology. Our current 
focus is on the development of using shared cloud resources; 
therefore, a simplified network architecture was used. In this 
environment, the ROS master was a PC running roscore and 
serving as the resource center for all the other ROS nodes 
connected to the network. The current ROS configuration 

may result in traffic flowing across the wireless link, while it 
can be extended with a more efficient connectivity to avoid 
this issue for a large number of nodes. 

B. Results of Recognition 

A series of experiments has been conducted to evaluate the 
proposed approach for event recognition. The target events 
include earthquake, gun shooting, and fighting. For practical 
reason, a simulation-based strategy was adopted for data 
collection. In the experiments, the SVM classifiers were built 
for single event recognition, in which a 10-fold cross 
validation method was used to train and test the classifiers. 
After that, we employed the same approach to train classifiers 
for multiple events recognition. In the experiments involved 
multiple events, the output of the classifier needed to indicate 
which event (among the four) was happening. As mentioned, 
this work was extended from our previous study. Therefore, 
those sets of experiments conducted to verify the feasibility 
and reliability of our approach in event recognition (for 
single event and multiple events recognition) are thus not 
reported here (details are referred to [4]).  

To investigate the effect of considering different numbers 
of people in the group for event recognition, we adopted the 
encoding scheme described previously and conducted a set of 
experiments to evaluate the corresponding performance of 
including different numbers of persons in each data record. 
The numbers ranged from three to twelve, and for each 
number three different ratios of impurity (0.0, 0.2 and 0.4) 
were arranged. Figure 9 (a) illustrates the results. As shown 
in this figure, though taking into account more persons’ 
behaviors (i.e., ten to twelve in our experiments) for event 
recognition can give better performance, it required higher 
computational cost. Accounting for both recognition 
accuracy and computational cost, ten people for each data 
record is a suitable choice for our work here. 

 

 
(a) 

 
(b) 

Fig. 9. Results of (a) considering different numbers of persons for 
event recognition; (b) using the averaged feature values to substitute 
the missing values. 
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In a surveillances task, the number of people within the 
region monitored by a camera may be more or less than the 
expected number in practice. The system needs an efficient 
strategy to re-organize the data records to obtain best 
performance. For the case of more than the expected number 
of persons being identified, the system can simply choose the 
amount it needs based on a first-detected-first-chosen 
strategy. However, for the case without enough number of 
persons is not sufficient, the system needs to supplement 
some features to make a complete data record for training. A 
simple strategy was used in this set of experiments: taking a 
value averaged from the available features in each empty 
feature in the record. In the experiments, different ratios 
(percentages) of missing frames were tested. Figure 9 (b) 
present the recognition results, in which the x-axis indicates 
the ratio of missing persons in test data, and y-axis, the 
recognition performance. It shows that for the training cases 
with less missing data (e.g., 0~20%), the performance 
declined in a more natural way. In contrast, for the cases with 
relatively more missing data in training, the classifiers were 
less accurate in general. In both situations, the classifiers 
performed better when the ratios of missing data in the 
training and testing phases came close.  

C. Performance of Cloud Computing 

To evaluate the performance of using cloud computing 
resources for event recognition and face detection, we 
conducted a set of experimental trials with different numbers 
of computing nodes (ranging from one to five nodes). The 
computing nodes (rented from the google cloud platform) 
have the specifications of 2.6GHz Intel Xeon E5 CPU and 
3.75 GB memory.  

Figures 10 (a) and (b) present the response time (starting 
from the image frames taken by the cameras to the 
recognition results sent back by the cloud) for achieving 
event recognition and face detection, respectively. As shown 
in the figure, in both cases when the number of computing 
nodes increases (from one to five), the response time can be 
largely reduced (from 3850 ms to 681 ms for event 
recognition, and from 1210 ms to 642 ms for face detection). 
We have also noticed that the network connection caused 
some delay; otherwise the computing performance can be 
further improved. The results presented in Figure 10 confirm 
the efficiency of the proposed distributed approach. 

IV. CONCLUSIONS AND FUTURE WORK 

It is popular to employ video surveillance systems to 
monitor of public areas. More and more surveillance devices 
are now required to increase sensing coverage and to capture 
images from different visual angels. To reduce the large 
amount of computational resources often required in the 
video-based applications, in this study we presented a cloud 
computing framework to enhance the corresponding 
processing performance. Strategies have been developed to 
exploit the distributed computing provided by the cloud 
platform for the two major issues, event recognition and face 
detection, in a video surveillance system. In addition, we 
developed an adaptive mechanism to automatically adjust the 
visual angles of some neighborhood cameras to monitor the 
area when the faulty cameras cannot function properly. 

Different sets of experiments have been conducted to 
evaluate the proposed approach, and the results show that our 
system has the quality of stability. We are currently 
investigating new ways to distribute the computational tasks 
and how to reduce the delay caused by the network 
connection to furthermore improve the performance.  
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Fig. 10. Response time of cases with different number of nodes for 
(a) event recognition; (b) face detection. 
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