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Abstract— The program spherical motions global 

stabilization problem around the center of mass of a gyrostat is 
investigated. A single-rotor dynamically symmetrical gyrostat 
with a spherical cavity, entirely filled with highly viscous fluid, 
is considered. The active stabilizing controls attached to the 
gyrostat are constructed by the principle of feedback. They 
solve global stabilizing program motions problem of a gyrostat 
with fluid. Conditions under which the desirable program 
motions property of asymptotic stability in large is possible are 
received. The task is solved on the base of a method of 
Lyapunov functions and a method of the limit equations and 
the limit systems.  
 

Index Terms— gyrostat, cavity with fluid, Lyapunov 
function, feedback, stabilization in large 
 

I. INTRODUCTION 

PAtial orientation of satellites and aircraft problems 
about an orbit have important applied value and are 
widely considered by authors in many notes. Spatial 

motions of aircraft concerning the center of masses are 
modeled by spherical motions of solid bodies or bodies 
systems, in particular, gyrostats. Artificial satellites can 
contain one or more spinning rotors to provide gyroscopic 
stability of a desired orientation of the vehicle. Dual-spin 
satellites use the spin of a rotor to maintain pointing 
accuracy of an antenna platform or a solar sail. Some types 
of satellites use small but rapidly spinning momentum 
wheels to control the attitude of a large platform. Gyrostats 
and gyrostat satellite motions are investigated in a large 
number of papers [1-12]. The basic methods and principles 
of control of rotational motions of bodies and systems were 
studied, for example, in notes [1-3]. Paper [4] introduced the 
equations of a multibody gyrostat and presented analytical 
solutions for the free gyrostat. In note [5] authors found 
analytical solution for a asymmetric gyrostat in dynamical 
variables and solutions for Euler angles in quadratures. 
Modern domestic and foreign scientists actively study tasks 
of resonance modes and bifurcations of stationary motions 
of satellites [6, 7], of chaotic motions and methods of their 
elimination [8, 9], about stabilization of the set program 
motions of gyrostats of various structure [10, 11]. In note 
[12] authors found exact analytical solutions for the problem 
of the attitude dynamics of a free gyrostat. 

From the middle of the previous century, various 
problems of dynamic motions of rigid bodies with cavities 
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filled with fluid were widely researched. There are two main 
ways of research. The first results of the theory of rigid 
bodies with cavities filled with liquid are represented in 
papers [13, 14]. The author of note [13] suggested a model, 
describing the motions of rigid body with a cavity entirely 
filled with highly viscous fluid. In the model the influence 
of fluid on the motion of the body is described using the 
kinematic characteristics of the body. This approach is 
widely used in papers of modern scientists [15-17]. 

The aim of this paper is to present new results in research 
studies into problem of motion’s global stabilization of 
gyrostat with cavity filled with viscous fluid. This note 
included, firstly, mathematical model of academician 
Chernous’ko of gyrostat with fluid. Secondly, it develops 
the motion equations of gyrostat in the Lagrange equations 
form. Thirdly, in this paper is the task formulation about the 
program motions global stabilization of gyrostat. And 
finally, this note presents the active program control and 
development of stability in large control constructing by the 
feedback principle. 
 

II. PROBLEM DEFINITION AND MOTION EQUATIONS 

We research spherical motion of a gyrostat with viscous 
fluid. It is modeled by a system of two dynamically 
symmetric connected bodies with common axis of rotation. 
The first body is the carrier. Oxyz  is related to a carrier 

coordinate system. Carrier has a spherical cavity filled with 
highly viscous fluid. The second body is the rotor. 1 1A B  

and 1C  are main inertia moments of a carrier with fluid, 

2 2A B  and 2C  are main inertia moments of a rotor. Here 

OXYZ  is fixed coordinate system. The fixed point O  of a 
gyrostat coincides with the system’s center of mass and is 
located on an axis of dynamic symmetry of both bodies 
(Fig. 1). 

The rotation of a rotor around the carrier is described 
with the rotation angle   counted around Oz  axis. Motion 
equations of a single-rotor gyrostat with a cavity filled with 
fluid are projected on axis in the related coordinate system, 
and they are following [17] in the form: 
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Here  , ,p q r
ω  is the vector of absolute angular 

velocity of the carrier in the coordinate system Oxyz . 

1 2A A A  , 1 2B B B   and 1 2C C C   are main inertia 

moments of a gyrostat calculated in the coordinate system 

Oxyz . Symbol    means transposition. The angular 

velocity ( )t   of rotor rotation is a determined 

continuous function of time. 

Right parts  , ,x y zm m m


m  of equations (1) are 

projections on axes of the frame Oxyz of the force torques 

acting on the carrier from the cavity with fluid. According 
to model suggested in note [13] they are calculated in form: 
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Here  , ,p q r
  ω    is the vector of angular acceleration 

of the carrier body, 78 / 525P a   is coefficient, that is 
considering the form (sphere with radius a) of the cavity,   

is density and   is kinematic viscosity of fluid. We assume 

that the cavity is filled with highly viscous fluid: 1 1 � . 
Following the papers [13, 17] according the mathematical 

model of academician Chernous’ko of gyrostat with fluid 
we have vector components of angular acceleration and 
time-derivative of the angular accelerations in the form: 
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After replacing right parts (2) of (3) the force torques 

acting on the carrier from the cavity with fluid are 
calculated according to the equals: 
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We constructed the gyrostat motion equations in the 

Lagrange equations form: 
 

d T T

dt
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Q
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Here  , ,   q  is the general coordinates vector, 

and  , ,  


q     is the general velocities vector. Values 

, ,     are Euler variables. The kinetic energy of the 

system is 
 

2 2 2 2
2 22 2T Ap Bq Cr C r C      . (6) 

 
We designate the general forces e p s  Q Q Q Q . Here 
eQ  is the force torque acting on the carrier from the cavity 

with fluid. It has coordinates 
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Torque pQ  is the program control, torque sQ  is the 

stabilizing control. 
Equations (5) are dynamic gyrostat motion equations. 

They are closed, for example, with Euler kinematic 
equations 
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Let the gyrostat moves according to the law 

 Τ* * *( ) ( ), ( ), ( )t t t t  r . Here * * *( ), ( ), ( )t t t    are 

the determined continuous functions of time. We call the 
function ( )tr the program motion of the gyrostat. 

We now state the task about global stabilization of 
program motion of gyrostat. Namely, we have to find the 
attached to the carrier control torques pQ  and sQ  making 

the program motion ( )tr  asymptotically stable in large. 

We solve this task on the base Lyapunov method of 
stability theory. We construct active control using principle 

 
Fig. 1.  Gyrostat. 
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of feedback. 
The kinetic energy (6) may be presented as the following 

sum of the components 2 1 0T T T T   . Here 
2

0 0 2( , ) ( )T T t C t q  is a scalar function. The component 

1 ( , )T t B q q  is a linear form of the general velocities q . 

Vector ( , )tB q  has the coordinates in the form 

1 22 ( ) cos ,b C t   2 0,b  3 22 ( )b C t . Finally, the last 

component 2 0.5 ( )T  q A q q   is a quadratic form of the 

velocities. The matrix ( )A q  is bounded and positive 

definite. It has the elements 
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As a result we obtain the motion equation (5) in the form  
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Here ( , )Λ Λ q q is the vector with coordinates  
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III. BASIC RESULTS 

We calculate the program control torque according direct 
substitution of function ( )tr in the motion equations (9): 
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The program control torque (11) realizes the program 

motion ( )tr  of the gyrostat. We mean, that the function 

( )tr  is the solution of the equation (9). But in the presence 

of initial deviations or actions of small perturbations we 
construct the additional stabilizing torque sQ  making the 

program motion ( )tr  asymptotically stable in large. 

Now we solve the global stabilization problem of 
gyrostat program motion on the base of second method of 
Lyapunov functions and a method of the limit equations and 
the limit systems. Let us introduce the new generalized 
coordinates (deflections) x  according to equality 
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1 2 3( ( ), ( ), ( )) , ,t t t x x x         x  or 

( )t x q r . 

Then we rewrite the equation (9) as 
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Here program control pQ  has the form (11), and 

, ,Λ Λ  Λ  analogously (10) are the vectors with 

components 
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We choose the Lyapunov function 
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The function (13) is positive definite. We calculate the total 
time-derivative of the function (13) in the form  
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And we construct the stabilization control in the form 
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Here matrices C  and D  are bounded and positive definite. 
We calculate the total derivative of the function (13) with 
respect to time according the equation (12) with controls 
(11) and (14): 
 

T 2
0 00 (0 const)

dV
d d

dt
      x Dx x    (15) 

 
The derivative (15) of Lyapunov function (13) is negative 
definite determined by speeds. The set on which the 
derivative is equal to zero, is a set { 0}x . The system limit 

to system (12), with (11), (14) on a set { 0}x  has no other 

decisions, except 0x . Therefore on the basis of the 
theorem from paper [18] we receive, that program motion 

 Τ* * *( ) ( ), ( ), ( )t t t t  r  of the gyrostat with fluid is 

asymptotically stable in large. 
The task of global stabilization of program motions of the 

gyrostat with cavity filled with viscous fluid is solved. 
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IV. NUMERICAL SOLUTION 

To illustrate the analytical results we integrate 
numerically the equations of control motion of the gyrostat. 
We use “Wolfram Mathematica 7.0”. We model the carrier 
and rotor by a rigid bodies with inertia moments 

220, 30, 10A B C C     kg/ 2m . Let the angular 

velocity of rotor rotation about the carrier is 1   1s . The 

program motion is * ( ) 6cos(2 ),t t   * ( ) / 2 sin(2 ),t t    
* ( ) sin(10 )t t   rad. 

We assume that the initial deviations at 0t   are 

 (0) 2, 2, 2x
  rad and  (0) 1, 1, 1x

  rad/s. The 

integration was performed over the time interval  0,30  s. 

Let the coefficients of the matrices С  and D  are 
10ii iiс d  , 0, , , 1,2,3ij ijс d i j i j    . 

Figures 2-4 present graphs of the behavior of the 
components of the vector ( )x t . They are the deviations of 

the general coordinates , ,    of the gyrostat for its 

program motion  Τ* * *( ) ( ), ( ), ( )t t t t  r . This motion 

occurs under the action of programmed torque (11) and 
stabilizing torque (14). The graphs illustrate the 
asymptotical stable of the obtained solutions.  

Figures 5-7 present graphs of the behavior of the 
velocities ( )ix t . 

 

V. CONCLUSION 

This paper presents mathematic model of movement 
around the center of mass of single-rotor dynamically 
symmetrical gyrostat with a spherical cavity filled with 
viscous fluid. The problem about realization and global 
stabilization of gyrostat program motions is solved. The 

Fig. 2.  Value 1( )x t  

  

 
Fig. 3.  Value 2 ( )x t  

 

 

Fig. 4.  Value 3( )x t  

 

 

Fig. 5. Value 1( )x t

 

 

Fig 6 Value 2 ( )x t

 

 

Fig. 7.  Value 3( )x t  
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active program and stabilizing controls acting to the gyrostat 
are constructed. The stabilizing control is obtained by the 
principle of feedback. The task is solved on the base of 
second method of Lyapunov functions and a method of the 
limit equations and the limit systems. The solution are 
asymptotical stable in large. The asymptotic convergence of 
the solutions is confirmed and illustrate by the results of 
numerical simulation of the motion of the gyrostat. 

The results of this paper further develop results from 
notes [13, 17] and can be used for projecting control 
systems for objects with cavities filled with highly viscous 
fluids. 
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