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Abstract—Recent advances in understanding the source of
intelligent behaviour show that it is strongly supported on the
use of a large and sophisticated memory. Constant increase
of processing power and constant cost decrease of computer
memory have encouraged research in vision-based methods for
robot navigation. The present approach uses images stored into
a Sparse Distributed Memory, implemented in parallel in a
Graphics Processing Unit, as a method for robot localization
and navigation. Algorithms for following previously learnt paths
using visual and odometric information are described. A stack-
based method for avoiding random obstacles, using visual
information, is proposed. The results show the algorithms are
adequate for indoors robot localization and navigation.

Index Terms—Autonomous Navigation, View-Based Naviga-
tion, Obstacle Avoidance, View-based Localization, SDM.

I. INTRODUCTION

DEVELOPMENT of intelligent robots is an area of
intense and accelerating research. Different models

for localization and navigation have been proposed. The
present approach uses a parallel implementation of a Sparse
Distributed Memory (SDM) as the support for vision and
memory-based robot localization and navigation. The SDM
is a type of associative memory suitable to work with high-
dimensional Boolean vectors. It was proposed in the 1980s
by P. Kanerva [1] and has successfully been used before
for vision-based robot navigation [2], [3]. Simple vision-
based methods, such as implemented by Matsumoto [4],
although sufficient for many environments, in monotonous
environments such as corridors may present a large number
of errors.

The robot learns new paths during a supervised learning
stage. While learning, the robot captures views of the sur-
rounding environment and stores them in the SDM, along
with some odometric and additional information. During
autonomous navigation, the robot captures updated views and
uses the memory’s algorithms to search for the closest image,
using the retrieved image’s additional information as basis
for localization and navigation. Memory search is performed
in parallel in a Graphics Processing Unit (GPU). Still during
the autonomous navigation mode, the environment is scanned
using sonar and infra-red sensors (IR). If obstacles are
detected in the robot’s path, an obstacle-avoidance algorithm
takes control of navigation until the obstacle is overcome. In
straight paths, the algorithm creates a stack of odometric data
that is used later to return to the original heading. Afterward,
vision-based navigation is resumed.
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Section II briefly describes the SDM. Section III presents
the key features of the experimental platform used. The prin-
ciples for vision–based navigation are explained in Section
IV. Section V describes two of the navigation algorithms
implemented in the robot. It also presents the results of the
tests performed with those algorithms. In Section VI, the
obstacle avoidance algorithms are described, along with the
validation tests and results. Conclusions and future work are
presented in Section VII.

II. SPARSE DISTRIBUTED MEMORY

The properties of the SDM are inherited from the prop-
erties of high-dimensional binary spaces, as originally de-
scribed by P. Kanerva [1]. Kanerva proves that high-
dimensional binary spaces exhibit properties in many aspects
related to those of the human brain, such as naturally learning
(one-short learning, reinforcement of an idea), naturally
forgetting over time, ability to work with incomplete infor-
mation and large tolerance to noisy data.

A. Model of the original SDM

Fig. 1 shows a minimalist example of the original SDM
model. The main structures are an array of addresses and
an array of data counters. The memory is sparse, in the
sense that it contains only a fraction of the locations of the
addressable space. The locations which physically exist are
called hard locations. Each input address activates all the hard
locations which are within a predefined access radius (3 bits
in the example). The distance between the input address and
each SDM location is computed using the Hamming distance,
which is the number of bits in which two binary numbers are
different. Data are stored in the bit counters. Each location
contains one bit counter for each bit of the input datum. To
write a datum in the memory, the bit counters of the selected
locations will be decremented where the input datum is zero
and incremented where the input datum is one. Reading is
performed by sampling the active locations. The average of
the values of the bit counters is computed column-wise for
each bit, and if the value is above a given threshold, a one
is retrieved. Otherwise, a zero is retrieved. Therefore, the
retrieved vector may not be exactly equal to the stored vector,
but Kanerva proves that most of the times it is.

B. Simplified SDM model

The original SDM model, using bit counters, has some
disadvantages. One problem is that it has a low storage rate,
of about 0.1 data bits per bit of physical memory. Another
problem is that the counters slow down the system in real
time. Yet another problem is that data encoded using the
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Fig. 1. Diagram of a SDM, according to the original model, showing
an array of bit counters to store data and an array of addresses. Memory
locations within a certain radius of the reference address are selected to read
or write.

Fig. 2. Arithmetic SDM model, which operates using integer values.

natural binary code are sensitive to the positional value of
the bits and that negatively affects the performance of the
system [5]. In order to overcome some of the drawbacks
described, other SDM models have been proposed [5], [6],
[7]. Fig. 2 shows a model based on Ratitch et al.’s approach
[6], which groups data bits as integers and uses the sum
of absolute differences instead of the Hamming distance to
compute the distance between an input address and location
addresses in the memory. That has been the model used in
the present work. It was named “arithmetic SDM” and its
performance has been superior to the original model [8].

C. SDM parallel implementation in a GPU

The SDM model was implemented first in a CPU, using
linked lists as depicted in the upper part of Fig. 3. As the
volume of data available to process in real time increased,
it became clear that the system could benefit from a parallel
implementation of the search procedure. The SDM was then
implemented in parallel, in a GPU, using CUDA architecture,
as shown in the lower part of Fig. 3. During the learning
stage of the robot, the linked list is built using only the CPU
and central RAM memory. When learning is over, the list
contents are copied to an array of addresses and an array of
data in the GPU memory. Later, when necessary to retrieve
any information from the SDM, multiple GPU kernels are
launched in parallel to check all memory locations and get
a quick prediction. The parallel implementation is described
in more detail in [9].

III. EXPERIMENTAL PLATFORM

The experimental platform consists of a mobile robot
carrying a laptop running the control and interface software.

A. Hardware

The robot used was an X80Pro11, as shown in Fig. 4. It is
a differential drive vehicle equipped with two driven wheels,

1From Dr Robot Inc., www.drrobot.com.

Fig. 3. Block diagram of the SDM implemented in the CPU and in the
GPU.

(a) Front view.

(b) Rear view.

Fig. 4. Pictures of the robot used, (a) standing alone and (b) with the
control laptop, while executing a mission.

each with a DC motor, and a rear swivel caster wheel, for
stability. The robot has a built-in digital video camera, an
integrated WiFi system (802.11g), and offers the possibility
of communication by USB or serial port. For additional
support to obstacle avoidance it has six ultrasound sensors
(three facing forward and three facing back) and seven infra-
red sensors with a sensing range of respectively 2.55 m and
0.80 m.

The robot was controlled in real time from a laptop with a
2.40 GHz Intel Core i7 processor, 6 Gb RAM and a NVIDIA
GPU with 2 Gb memory and 96 CUDA cores.

B. Software

Fig. 5 shows a block diagram of the main software
modules, as well as the interactions between the different
software modules and the robot. The laptop was carried on
board and linked to the robot through the serial port. Besides
the SDM module, where the navigation information is stored,
different modules were developed to interact with the robot,
control the supervised learning process and the autonomous
run mode, which required the obstacle avoidance module.
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Fig. 5. Interactions between software modules and the robot.

Fig. 6. Example of a picture captured by the robot’s camera, converted to
PGM.

IV. VISION-BASED NAVIGATION

Robot localization and navigation are based on visual
memories, which are stored into the SDM during a learning
stage and later used in the autonomous run mode.

A. Supervised learning

During the supervised learning stage, the user drives the
robot along a path using the mouse as input device. During
this process, the robot acquires pictures in BMP format
with 176 × 144 resolution, which are converted to PGM
format. Each recorded image is saved in the disk, along
with navigation data, and later stored into the SDM. Fig.
6 shows an image as captured by the robot. Each path has
a unique sequence number and is described by a sequence
of views, where each view is also assigned a unique view
number. Hence, the images are used as addresses for the
SDM and the navigation data vectors stored into the SDM
are in the following format: < seq#, im#, vr, vl > The
sequence number is seq#. The number of the image in the
sequence is im#. The velocities of the right and left wheels
are, respectively, vr and vl.

B. Autonomous navigation and drift correction

For the autonomous run mode, the user first chooses the
destination among the set of previously learnt paths. The
robot starts by capturing an image that is converted to PGM
and filtered to improve its quality [10]. Then, it is sent to
the SDM to be compared with the images in the memory.
The SDM returns the image ranked as the most similar to the
captured image. After obtaining the image which is closest to
its current view, the information associated with that retrieved
image (left and right wheel velocities) is used to reproduce
the motion performed at the time the image was captured
and stored during the learning stage.

Since the robot is following the paths by following the
same commands executed during the learning stage, small
drifts inevitably occur and accumulate over time. In order to
prevent those drifts from accumulating a large error, a correc-
tion algorithm was also implemented, following Matsumoto
et al.’s approach [11], [4]. Once an image has been predicted,
a block-matching method is used to determine the horizontal
drift between the robot’s current view and the view retrieved
from the memory which was stored during the learning stage.
If a relevant drift is found, the robot’s heading is adjusted
by proportionally decreasing vr or vl, in order to compensate
the lateral drift.

C. Sequence disambiguation

During the autonomous run mode, the data associated with
each image that is retrieved from the memory is checked
to determine if the image belongs to the sequence (path)
that is being followed. Under normal circumstances, the
robot is not expected to skip from one sequence to another.
Nonetheless, under exceptional circumstances it may happen
that the robot is actually moved from one path to another, for
unknown reasons. Possible reasons include slippage, manual
displacement, mismatch of the original location, among many
others. Such problem is commonly known as the “kidnapped
robot,” for it is like the robot is kidnapped from one point
and abandoned at another point, which can be known or
unknown.

To deal with the “kidnapped robot” problem and similar
difficulties, the robot uses a short term memory of n entries
(50 was used in the experiments). This short term memory
is used to store up to n of the last sequence number Sj that
were retrieved from the memory. If the robot is following
sequence Sj , then Sj should always be the most popular in
the short term memory. If an image from sequence Sk is
retrieved, it is ignored, and another image is retrieved from
the SDM, narrowing the search to just entries of sequence Sj .
Nonetheless, Sk is still pushed onto the short term memory,
and if at some point Sk becomes more popular in the short
term memory than Sj , the robot’s probable location will be
updated to Sk. This disambiguation method showed to filter
out many spurious predictions while still solving kidnapped
robot-like problems.

D. Use of a sliding window

When the robot is following a path, it is also expected
to retrieve images only within a limited range. For example,
if it is at the middle of a long path, it is not expected to
get back to the beginning or right to the end of the path.
Therefore, the search space can be truncated to a moving
“sliding window,” within the sequence that is being followed.
For a sequence containing a total of z images, using a sliding
window of width w, the search space for the SDM at image
imk is limited to images with image number in the interval
{max(0, k − w

2 ),min(k + w
2 , z)}. The sliding window in

the SDM is implemented by truncating the search space, a
method similar to Jaeckel’s selected coordinate design [12].
In Jaeckel’s method, coordinates which are deemed irrelevant
to the final result are disregarded in the process of calculating
the distance between the input address and each memory
item, so computation can be many times faster. In the present
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implementation, however, the selected coordinates are used
just to select a subset of the whole space. The subset is then
used for computing the distance using all the coordinates.

The sliding window may prevent the robot from solving
the kidnapped robot problem. To overcome the limitation,
an all-memory search is performed first and the short-term
memory retains whether the last n images were predicted
within the sliding window or not, as described in Section
IV-C. This means that the sliding window actually does not
decrease the total search time, since an all-memory search is
still required in order to solve the kidnapped robot problem.
The sliding window, however, greatly reduces the number
of Momentary Localisation Errors (MLE). A momentary
localisation error is counted when the robot retrieves from
the memory a wrong image, such as an image from a wrong
sequence or from the wrong place in the same sequence.
When a limited number of MLE occur the robot does not get
lost, due to the use of the sliding window and the sequence
disambiguation procedures, as described in [10].

V. COMPARISON OF NAVIGATION ALGORITHMS

Different navigation algorithms were implemented and
tested. The two most relevant of them are described in the
following subsections: the simplest and the most robust.

A. Basic algorithm

The first navigation algorithm is called “basic,” for it
performs just the simplest search and navigation tasks, as
described in Sections IV-B and IV-C above, and a very basic
filtering technique to filter out possibly wrong predictions,
described next.

Image search, for robot localisation, is performed in all the
memory. Its performance is evaluated counting the number of
MLEs. Detection of possible MLEs is based on the number
of the image, balanced by the total size of the sequence. If
the distance between image imt, predicted at time t, and
image imt±1, predicted at time t± 1, is more than 1

3z, for a
path described by z images, imt±1 is ignored and the robot
continues performing the same motion it was doing before
the prediction. The fraction 1

3z was empirically found for the
basic algorithm.

The performance of this basic algorithm was tested indoors
in the corridors of the Institute of Systems and Robotics of
the University of Coimbra, Portugal. The robot was taught
a path about 22 meters long, from a laboratory to an office,
and then instructed to follow that path 5 times. Fig. 7 shows
the sequence numbers of the images that were taught and
retrieved each time. The robot never got lost and always
reached a point very close to the goal point.

In a second test, the robot was taught a path about 47
meters long. The results are shown in Fig. 8. As the figure
shows, the robot was not able to reach the goal, it got lost at
about the 810th prediction in the first run and at the 520th

in the second run.
The results obtained in the second test show that the basic

algorithm is not robust enough, at least for navigating in
long and monotonous environments such as corridors in the
interior of large buildings.

Fig. 7. Image sequence numbers of the images predicted by the SDM
following the path from a laboratory to an office (approx. 22 m). The graph
shows the number of the images that are retrieved from the memory as the
robot progresses towards the goal.

Fig. 8. Images predicted by the SDM following the second test path
(approx. 47 m) using the basic algorithm.

B. Improved autonomous navigation with sliding window

Many of the prediction errors happen where the images are
poor in patterns and there are many similar views in the same
path or other paths also stored in the memory. Corridors, for
example, are very monotonous and thus prone to prediction
errors, because a large number of images taken in different
places actually have a large degree of similarity. The use
of a sliding window to narrow the acceptable predictions
improves the results. The improved sliding window algorithm
with the other principles described in Section IV-D worked
in all situations that it was tested.

Fig. 9 shows the result obtained with this navigation
algorithm when the robot was made to follow the same
path used for Fig. 8 (second test path), with a sliding
window 40 images wide. As the graph shows, the sliding
window filters out all the spurious predictions which could
otherwise compromise the ability of the robot to reach the
goal. Close to iterations number 200 and 1300, some of the
most similar images retrieved from the memory are out of the
sliding window, but those images were not used for retrieving
control information because they were out of the sliding
window. This shows the use of the sliding window correctly
filtered wrong predictions out and conferred stability to the
navigation process.

VI. OBSTACLE AVOIDANCE

In order for the robot to navigate in real environments, it is
necessary that the navigation process in autonomous mode is
robust enough to detect and avoid possible obstacles in the
way. Two algorithms were implemented, one for obstacles

Proceedings of the World Congress on Engineering 2017 Vol I 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017



Fig. 9. Images predicted by the SDM following the second test path using
the sliding window algorithm.

which appear in straight line paths and another for obstacles
that appear in curves.

A. Obstacles in straight paths

In the autonomous navigation mode, the front sonar sen-
sors are activated. All objects that are detected at less than
1 m from the robot are considered obstacles and trigger
the obstacle avoidance algorithm. A median of 3 filter was
implemented to filter out possible outliers in the sonar
readings. When an obstacle is detected, the robot suspends
memory-based navigation and changes direction to the side
of the obstacle that seems more free. The robot chooses
the side by reading the two lateral front sonar sensors. The
side of the sensor that gives the higher distance to an object
is considered the best side to go. If both sensors read less
than 50 cm the robot stops to guarantee its safety. Providing
the robot senses enough space, it starts circumventing the
obstacle by the safest side. While circumventing, it logs the
wheel movements in a stack. When the obstacle is no longer
detected by the sensors, the wheel movements logged are
then performed in reverse order emptying the stack. This
process returns the robot to its original heading. When the
stack is emptied, the robot tries to localize itself again based
on visual memories and resume memory-based navigation. If
the robot cannot localise itself after the stack is empty, then
it assumes it is lost and navigation is stopped. In the future
this behaviour may be improved to an active search method.

Fig. 10 shows an example of a straight path previously
taught and later followed with two obstacles placed in that
path. After avoiding collision with the first obstacle, the robot
resumes memory-based navigation maintaining its original
heading, performing lateral drift correction for a while. It
then detects and avoids the second obstacle and later resumes
memory-based navigation maintaining its original heading.
Note that in the figure, because the lines were drawn using
a pen attached to the rear of the robot, when the robot turns
to the left it draws an arc of a line to the right.

B. Obstacles in curves

The stack method described in the previous subsection
works correctly if the obstacle is detected when the robot is
navigating in a straight line. If the obstacle is detected while
the robot is performing a curve, that method may not work,
because the expected robot’s heading after circumventing the
obstacle cannot be determined in advance with a high degree
of certainty. If an obstacle is detected when the robot is

Fig. 10. Examples of obstacle avoidance in a straight path (the lines were
drawn using a pen attached to the rear of the robot, so they actually mark
the motion of its rear, not its centre of mass). A) Path followed without
obstacles. B) Path followed with obstacles. C) Obstacles.

Fig. 11. Examples of obstacle avoidance in a curve. A) Path taught. B)
Path followed by the robot avoiding the obstacle D and the left wall corner.
C) Path followed by the robot when the obstacle was positioned at D’.

changing its heading, then the stack method is not used. The
robot still circumvents the obstacle choosing the clearer side
of the obstacle. But in that case it only keeps record of which
side was chosen to circumvent the obstacle and what was
the previous heading. Then, when the obstacle is no longer
detected, the robot uses vision to localise itself and fine tune
the drift using the algorithm described in Section IV-B. In
curves, the probability of confusion of images is not very
high, even if the images are captured at different distances.
The heading of the camera often has a more important impact
on the image than the distance to the objects. Therefore, after
the robot has circumvented the obstacle it will have a very
high probability of being close to the correct path and still at
a point where it will be able to localise itself and determine
the right direction to follow.

Fig. 11 shows examples where the robot avoided obstacles
placed in a curve. In path B (blue) the wall corner at the
left is also detected as an obstacle, hence there is actually a
second heading adjustment. The image shows the robot was
still able to localise itself after the obstacle and proceed in
the right direction, effectively getting back to the right path.

VII. CONCLUSION

A method of circumventing obstacles during vision-based
robot navigation was proposed. The visual navigation mem-
ories are stored into an SDM with the retrieving process
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implemented in parallel in a GPU for better performance.
The use of a stack to store the robot motions when circum-

venting obstacles showed good performance in straight paths.
For curves, after circumventing the obstacle the robot adjusts
its heading faster using only memory-based navigation for
localization and the drift-correction algorithm for heading
adjustment.

Experimental results show the method was effective for
navigation in corridors, even with corners.

Future work will include development of higher level mod-
ules to implement behaviours such as wandering, advanced
surveillance and cicerone behaviors in the robot.
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based on view sequences stored in a sparse distributed memory,”
Robotica, July 2011.

[3] R. P. N. Rao and D. H. Ballard, “Object indexing using an iconic sparse
distributed memory,” The University of Rochester, Computer Science
Department, Rochester, New York, Tech. Rep. 559, July 1995.

[4] Y. Matsumoto, K. Ikeda, M. Inaba, and H. Inoue, “Exploration and
map acquisition for view-based navigation in corridor environment,”
in Proceedings of the International Conference on Field and Service
Robotics, 1999, pp. 341–346.
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