
 

 

Abstract—Traditional process control models suppose 

certain input control parameters, which are not pragmatic. 

They cannot support uncertainty of an industrial process, 

which has multifactor involved. Then, the responses of 

industrial process are inconsistent. So, a method that can 

handle uncertainty should be applied to such problems. Design 

of experiment (DOE) is one of the most efficient methods for 

multifactor experiments. Another method, called fuzzy logic is 

nowadays a capable methodology in many applications with 

unpredictability. So, these approaches were proposed for a case 

study factory. 2k design of experiments (DOE) was studied and 

used to find the suitable process control parameters. Fuzzy 

Inference System (FIS) was considered and represented by 

linguistic terms. Then, the generated fuzzy rules were utilized 

to extract the fuzzy process control parameters continuously. 

The process control parameters were corrected depending on 

the FIS system. In this research, both approaches were 

compared with the existing process parameters. The results 

indicated that the proposed FIS model achieved better 

performance than DOE model for this application. 

 
Index Terms—design of experiment (DOE), fuzzy inference 

system (FIS), process control parameters 

 

I. INTRODUCTION 

ROCESS control means the methods that are applied to 

control process variables when producing a product and 

maintain the output of a particular process within a required 

range. Process control can be classified as manual or 

automatic. Normally, this classification refers to the amount 

of human effort needed to accomplish a common function. 

Manual control consists of open-loop and feed-forward 

control which involve a lot of physical adjustments by 

operators. Automatic control consists of closed-loop and 

feedback control, which use a feedback path that samples the 

output to control the process automatically [1]. Automatic 

feedback control is the most common form of control. The 

methods to deal with process control consist of classical and 

modern methods. The classical control methods such as on-

off control, proportional integral derivative (PID) control, 
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etc. are mostly concerned with mathematical and constant 

variables. Design of experiment (DOE) method is a critically 

important engineering tool for improving a manufacturing 

process [2]. Application of DOE in process control will 

produce information that can lead to process improvement. 

Reference [3] applied a design of experiment (DOE) to 

predict product and process parameters for a spray dried 

vaccine. The modern control method such as artificial 

intelligence (AI) is also developed for highly complex 

processes and random variables. Process control is widely 

used in industry such as power plants, petrochemical plants, 

cement plants, and many others. Process control empowers 

automation and AI methods such as fuzzy logic by which a 

few operators can control a complex process from a central 

control room. During the last decade a number of 

researchers have contributed their innovations in this 

category. Reference [4] presented the consistency 

stipulations and controller design for structural and 

mechanical systems expressed by fuzzy models. The 

application of support vector regression, FIS and adaptive 

neuro-fuzzy inference system (ANFIS) for cement fineness 

online monitoring has presented [5]. The application of FIS 

inventory system design has presented [6]. Reference [7] 

presented the comparison of FIS, FIS with artificial neural 

networks and FIS with adaptive neuro-fuzzy inference 

system for inventory control.   

 Many researches apply simulation for the main study, but 

there are very few publications regarding comparative 

studies, especially the comparison of DOE and FIS for the 

plaster process control. So, this research proposes the 

comparison of the methodologies of DOE and FIS models 

for predicting the target setting of process control variables 

and establishing the model of the pragmatic problem with 

the fuzzy inputs for the process control manufacturing 

system. The process control problem of a construction 

material company in Thailand was selected as a 

manufacturing system case study. The plasterboard 

production process consists of various control parameters 

and is quite complicated to control, so requires highly 

experienced operators.  

 

II.  SYSTEM DESCRIPTION AND APPLICATION 

A. System Description 

The case study company is a make-to-stock manufacturer 

that produces two types of standard size plasterboard 
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products, recessed edge and square edge. In the production 

process, the main material is plaster powder, which is 

generally produced by the calcining process. Gypsum 

(CaSO4 2H2O) is the oldest inorganic substance that has 

been extensively used in construction and buildings. Plaster 

or hemi-hydrate (CaSO4 0.5H2O) is produced by grinding 

and heating gypsum at 150 degree Celsius to remove 75% of 

its combined water from 2 molecules of water to 0.5 

molecules of water. 

 The flow diagram of the plaster manufacturing process 

is illustrated in Fig 1. In this process, the natural gypsum is 

crushed and fed into a vertical roller mill (VRM). The 

schematic diagram of VRM is shown in Fig 2. The gypsum 

is ground and dried inside the VRM to become the plaster 

powder. VRM is comprised of a grinding table and rollers 

installed on the table circumference. The grinding table 

rotates with an accurate fixed rotational speed around the 

vertical axis going through the center. A blower functions at 

the process vent to pneumatically convey plaster to the next 

process. A classifier is installed at the uppermost of the mill 

to screen the required particle size. The oversize is collected 

the base and returned back to the mill by bucket elevators. 

The plaster is segregated from the hot air in the bag house 

and transported to the storage silo for later packaging or 

producing plasterboard.  

 The quality of the plaster is tested by collecting a 

plaster sample at the silo to test the combined water (CW). 

The combined water indicates the percentage of water 

remaining in the chemical bonding of plaster. Normally, 

combined water is tested by weighing the collected plaster 

sample before and after heating at 150 °C for 15 minutes. 

The combined water value can be calculated  
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 where wo is the sample weight before heating and wi is 

the sample weight after heating. 

 
Fig 1. The flow diagram of plaster manufacturing process. 

 

 The target CW for the plaster production process, 

recommended by expert’s experience, is 5.8% and the 

variation is controlled in the range 5.6% to 6.0%. Low 

combined water indicates too much cooking of the plaster or 

less water in the plaster. High combined water indicates 

under cooking of the plaster or high water in the plaster. The 

main factors influencing the plaster quality are: the gypsum 

feed rate, air circulation rate, the classifier operating speed 

and temperature inside the mill. Lower feed rate of gypsum 

will cause more effectively grinding and is indicated by 

lower roller mill motor current and will result in increase of 

combined water. High feed rate of gypsum will produce less 

effective grinding and result in decrease of combined water. 

Likewise, low air circulation rate will cause a lower quantity 

of ground material to pass through the classifier and result in 

increase of combined water. The high air circulation rate 

will make a high quantity of ground material pass through 

the classifier and result in decrease of combined water. A 

high classifier speed will allow fine particles to pass through 

it and will result in increase of combined water. A low 

classifier speed will result in decrease of combined water. 

High temperature inside the mill caused by more heat for 

cooking of grinding gypsum will result in decrease of 

combined water. The lower temperature inside the mill 

resulting from less heat for cooking will result in increase of 

combined water. 

 
Fig 2. The schematic diagram of vertical roller mill (VRM). 

 

B. Application to Design of Experiment (DOE) Model 

Factorial design was applied to screen factors that may 

have significant effects on response(s) because it is the most 

efficient available method for conducting multifactor 

experiments. The significant factors can then be used to 

develop a model to optimize and predict the response [2], if 

needed. The most common factorial design is the two level 

(or 2k) design. Based on the analysis of variance (ANOVA), 

the significant factors are determined and used to produce 

the multiple regression prediction model. The multiple 

regression model representation of a 24 factorial experiment 

can be written as: 

 

4,...,2,1,4,...,2,1,4,...,2,1,4,...,2,1,ˆ
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 where Ŷ is the response, 
0

̂ is the mean of all treatment 

combinations,
i

̂ ,
ĵ ,

k̂ ,
l̂ ,

ij
̂ ,

ijk
̂ , and 

ijkl
̂ are half of the 

effect estimated corresponding to significant effects, Ai, Bj, 

Ck, and Dl are coded variables that represent significant 
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effects and take on values between -1 and +1, and   is a 

random error term. The random error terms are assumed to 

have a normal distribution, a constant variance, and are 

independent [8]. 

C. Application to Fuzzy Inference System (FIS) Model 

The primitive structure of fuzzy inference system model is 

shown in Fig 3. FIS consists of three different types: 

Mamdani, Sugeno and Tsukamoto [9]. The distinction 

between Mamdani and Sugeno depends on the outcome of 

fuzzy rules. While Mamdani applies fuzzy sets as rule 

outcome, Sugeno applies linear functions as rule outcome. 

For Tsukamoto, the outcome of each fuzzy rule applies a 

monotonical membership function. Mamdani is selected for 

this study. 

The significant steps to develop FIS are: converting crisp 

inputs to be fuzzified inputs, fuzzification of the fuzzy 

inputs, developing of the rule base and defuzzification by 

converting the fuzzified output to be the crisp output value. 

FIS is applied in many applications [10]-[12]. 
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Fig 3. A scheme of process control fuzzy inference system.   

 

For this study, five data sets of the plaster grinding 

process from August to December of year 2016 were 

investigated. Each month the process parameters consisted 

of 100 data. Four input parameters, roller mill current (Ri), 

blower hot air flow current (Bi), classifier speed (Ci) and 

temperature (Ti) were taken as the input parameters of the 

proposed models. The output variable was combined water 

(CWi). Fuzzy logic toolbox of MATLAB was implemented 

to the process control fuzzy inference system model to 

calculate combined water (CW). The process control FIS 

model is shown in Fig 4. 

System Process  Control: 4 inputs , 1 outputs, 81 rules

RollerMill (3)

Blower (3)

Classifier (3)

Temp (3)

CW (5)

Process  Control

(mamdani)

81 rules

 
Fig 4. The process control FIS model. 

 

 Fuzzy inputs were roller mill current (Ri), blower hot air 

flow current (Bi), classifier speed (Ci) and temperature (Ti), 

represented by membership functions, 
iii CBR  ,,  and

iT , 

respectively, and were set after checking and validation of 

existing data. Fuzzy output was combined water (CWi), 

represented by membership functions,
iCW . The universe of 

discourse, memberships functions, linguistic values of each 

variable of fuzzy inputs and fuzzy output are displayed in 

Table I. 
TABLE I 

DESCRIPTION OF FUZZY INPUTS AND FUZZY OUTPUT 

Fuzzy 

Parameters  

Variables Universe 

of 

discourse 

Membership 

functions 

Linguistic 

values* 

Inputs roller mill 

current (µR ) 

[Rmin, 

Rmax] 

Rmin, 
RR  , R , 

RR    , Rmax 

L, M, H 

blower hot 

air flow 

current (µB) 

[Bmin, 

Bmax] 

Bmin, 
BB  , B ,  

BB  , Bmax 

L, M, H 

classifier 

speed (µC) 

[Cmin, 

Cmax] 

Cmin, 
Cc  , C , 

Cc   , Cmax 

L, M, H 

temperature 

(µT) 

[Tmin, 

Tmax] 

Tmin, 
TT  , T , 

TT   , Tmax 

L, M, H 

Output combined 

water (µCW) 

[CWmin, 

CWmax] 

CWmin, CWCW  , 

CW , 
CWCW  , 

CWmax 

VL, L, M, 

H, VH 

* VL = very low, L = low, M = medium, H = high, VH = very high 

 

The fuzzy rule is interpreted by an order of IF-THEN, 

according to algorithms describing what activity or output 

should be chosen with respect to the currently noticed 

information. A set of fuzzy rules is developed by expert’s 

experience or a human being’s knowledge, based on each 

real condition. This IF-THEN rule is utilized by the FIS to 

evaluate the degree to which the input data corresponds to 

the rule restriction. Since the output, combined water is 

fuzzy sets, a FIS of Mamdani type is selected for evaluating 

and aggregating the fuzzy rules. The IF-THEN rule can be 

described by Cartesian product of the fuzzy inputs, 

x1 x2 x3 x4 [13]. The relationship between roller mill 

current x1, blower hot air flow current x2, classifier speed x3, 

temperature x4, (IFs) and combined water y (THEN) are 

described by 81 rules. The fuzzy reasoning of these rules 

creates fuzzy outputs by utilizing the max-min compositional 

operation. Fuzzy combined water ))(( y
iCW  can be 

described as   
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  (3)   

 

 where   is the minimum operation and   is the 

maximum operation. Ri, Bi, Ci, Ti and CWi are fuzzy subsets 

represented by the according membership functions, i.e., 

iiiii CWTCBR  ,,,, . Normally, the fuzzy output is a 

linguistic variable which requires to be changed to the crisp 

variable during the defuzzification process. For this 

research, the center of gravity method is selected to change 

the fuzzy inference output into crisp values of combined 

water, y*. Define rule number as n. The crisp values of 
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combined water are computed as 
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  for  i = 1, 2, ..., n     (4) 

D. Performance Parameters 

The models can be evaluated with the statistical 

parameters: the coefficient of determination (R2), the root 

mean squared error (RMSE) and the mean absolute error 

(MAE) as represented in equations (5), (6) and (7).  
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 where iy is the actual output. 


iy  is the predicted model 

output. iy  is the average of actual output. n is the total 

number of samples.  

 Actually R2 has a value between zero and one and 

represents the gap between dependent variables and 

independent variables which interprets the variability of the 

prediction. A value for R2 approaching one implies a good 

fit of predicting model and a value approaching zero implies 

a poor fit. MAE would disclose if the results suffer from a 

bias between the predicted and actual datasets. RMSE is a 

measure adapted to calculate the error between predicted 

values and the actual values. RMSE and MAE are positive 

numbers with no upper limit. 

III. RESULTS AND DISCUSSION 

 

In this study, statistically significant factors that affect the 

performance of process control were screened based on the 

DOE technique. A 2k full factorial design was applied to 

study the effects of four factors, roller mill current (R), 

blower hot air flow current (B), classifier speed (C) and 

temperature (T). In addition, combined water (CW) was also 

used as responses to evaluate process performance. For four 

factors, the design requires 16 runs with 3 replicates which 

are totally 48 runs as shown in Table II. 

The analysis of variance of experimental design shows 

that T are the main factors affecting the response (CW). 

Moreover, the results also show that the interaction RB, BC, 

BCT and RBC have a significant effect to CW and the factor 

T has contributed the highest effect on the response. 

The regression model of experiment has been formulated 

as the follow and used to predict the results for comparing 

with FIS model. 
TABLE II  

24 EXPERIMENTAL DESIGN 

Run R B C T 1 2 3

1 50 50 245 146 6.26 6.16 6.19

2 60 50 245 146 6.21 5.99 6.20

3 50 61 245 146 6.19 5.98 6.05

4 60 61 245 146 6.20 6.13 5.95

5 50 50 260 146 6.00 5.65 5.74

6 60 50 260 146 6.16 6.22 6.15

7 50 61 260 146 6.20 6.16 6.14

8 60 61 260 146 6.05 5.83 6.17

9 50 50 245 156 5.10 5.25 5.30

10 60 50 245 156 5.41 5.27 5.73

11 50 61 245 156 5.65 5.70 5.72

12 60 61 245 156 5.70 5.54 5.73

13 50 50 260 156 5.72 5.83 5.60

14 60 50 260 156 5.92 6.10 5.75

15 50 61 260 156 5.50 5.89 5.10

16 60 61 260 156 5.18 5.16 5.34

CW(Replicates)

 
 

TABLE III  

THE COMPARISON OF STATISTICAL VALUES OF 5 DATA SETS  

Data set FIS DOE

R2 1 0.8045 0.1223

2 0.6939 0.0415

3 0.5502 0.0026

4 0.9898 0.3429

5 0.5768 0.1584

Avg. 0.7230 0.1335

RMSE 1 0.1211 0.3366

2 0.1804 0.3718

3 0.2013 0.4019

4 0.0251 0.3639

5 0.1476 0.2781

Avg. 0.1351 0.3505

MAE 1 0.0698 0.3537

2 0.1083 0.2946

3 0.0950 0.4793

4 0.0253 0.5055

5 0.0825 0.2611

Avg. 0.0762 0.3788
 

 

RBCBCRB

BCTTY

05062.07479.007521.0      

12229.026646.0816042.5ˆ



         (8) 

 

The FIS process control model of the plaster 

manufacturing system has been modeled systematically as 

well as with DOE approach. The prediction of combined 

water of both models compared to actual values represented 

that the FIS model outperformed the DOE model (as shown 

in Fig 5). The comparison of statistical values of 5 data sets 

for each model is displayed in Table III. 

The results have validated with K-fold cross validation 

[14] which was utilized for further evaluation of the 

proposed models efficiency. In this study, the total 5 data 

sets were divided into 5 even groups, and then the training 

model was executed 5 times by leaving one group out at 

each time for checking the model generality. The range of 

input data and output data for each variable is shown in 

Table IV. The average accuracy of the models was described 
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by R2, RMSE and MAE as shown in Table V. The results 

showed that FIS model represented better performance than 

DOE model. 
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Fig 5. The prediction of combined water of the proposed models compared 

to actual values. 

  
TABLE IV  

THE RANGE OF INPUT DATA AND OUTPUT DATA 

Minimum Maximum Average SD

Input R 37 61.1 52 4.4

B 49.1 56.6 51.4 1

C 245 260 264.6 5.7

T 138.3 161.6 148.8 4.4

Output CW (FIS) 5.105 6.283 5.944 0.256

CW (DOE) 4.968 6.529 5.868 0.221

Note: SD = Standard deviation

Parameters

 
 

TABLE V  

THE K-FOLD CROSS VALIDATION RESULTS OF EACH MODEL 

FIS DOE

R
2

K1 0.7374 0.2436

K2 0.7025 0.2464

K3 0.7294 0.2023

K4 0.7744 0.3060

K5 0.6654 0.2067

Avg. 0.7218 0.2410

RMSE K1 0.1500 0.2604

K2 0.1557 0.2555

K3 0.1407 0.2554

K4 0.1324 0.2291

K5 0.1662 0.2628

Avg. 0.1490 0.2526

MAE K1 0.0892 0.2134

K2 0.0927 0.2097

K3 0.0834 0.2172

K4 0.0863 0.1872

K5 0.1026 0.2049

Avg. 0.0908 0.2065
 

IV. CONCLUSION 

A comparative study of DOE model and FIS model were 

done for solving the problem of process control of the 

plaster manufacturing system with uncertain conditions. 

Roller mill current (R), blower hot air flow (B), classifier 

speed (C), temperature (T) were inputs and combined water 

was the output of the system. 2k design of experiment (DOE) 

was applied to find the suitable process control parameters. 

An analysis of variance resulted that T was the main factors 

affecting the response (CW). Moreover, the interaction RB, 

BC, BCT and RBC have a significant effect to CW and the 

factor T has contributed the highest effect on the response. 

For FIS model, linguistic values were adapted for all fuzzy 

inputs and output. Fuzzy rules were designed based on the 

historical experience of the case study plant. The results 

have shown that FIS model achieved better performance 

than the DOE model. From this study, the prediction of 

combined water for plaster process control of FIS model was 

more accurate than the DOE model. However, FIS model 

required a lot of historical data and information from the 

experts. Although the DOE model performed less accurately 

predicting results, but it represented the main factors and the 

interaction those have significant effect to the response. For 

future study, the hybrid method, which combines of DOE 

model and FIS model would be recommended. This hybrid 

method can use the beneficial performance of the DOE 

model in first step for selecting main factors and interaction 

between each factor. Then, the FIS model can easily utilize 

in the second step for predicting the process control 

response.  
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