
 

  
Abstract—The paper present a way to manage and exploit 

the different capabilities of a team of mobile robots in a soccer 
scenario. To do this, each robot represents information by a set 
of data called “degrees of situation”. In our approach the 
robots have different automatic controllers to generate 
dynamical diversity inside the group. Here, dynamic means 
dynamic temporal evolution of continuous variables of the 
controlled system. Therefore, a multi-robot system can be 
considered as a team of heterogeneous robots with different 
capabilities that work together to fulfill some cooperative tasks. 
In particular, this paper is related to studies about how the 
team-work performance improves by the “degrees of situation” 
management as a coordination strategy. Result and conclusions 
are shown, emphasizing contributions of the approach in the 
improvement of the cooperative team-work. 
 

Index Terms—Diversity in dynamic, robot coordination, 
soccer testbed. 
 

I. INTRODUCTION 
CCORDING to the Distributed Artificial Intelligence 
(DAI) a Multi-agent Systems (MAS) is a team of 
entities able to solve problems by working jointly to 

find answers to problems that are beyond the capacity and 
the individual knowledge of each entity [1]. In particular, in 
this work the agent is an entity with goals, actions and 
domain knowledge, situated in an environment. Moreover, 
such agents must handle a physical body with different 
physical features (e.g. dynamics). In this sense, the MAS 
can be considered as a team of heterogeneous intelligent 
agents that must be coordinate in their actions to work 
jointly in a cooperative environment. 

Therefore, studies about how the coordination 
mechanisms improve the performance in the above systems 
are necessary. Such mechanisms allow agents the interaction 
with other agents and make sure decisions in cooperative 
tasks. These studies are mainly based on Electronic 
Institutions foundations [2]. Some e-Institutions features 
have some similarities with the human relationships due to 
the agents cooperate through roles previously defined [3]. In 
this sense, each scene has an agent-behavior within the 
multi-agent system. The proactive agent-behavior in the 
scenes allows the system knows the aims of each scene and 
facilitates the coordination between agents within a specific 
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scene. Such robot-behavior takes into account three 
parameters (proximity, introspection and trust) in its 
decision-making structure.  

Proximity: Robots take in account their position within 
the environment regarding other agents.  

Introspection: Robots are able to analyze their physical 
body and know the tasks they can perform according to their 
physical capabilities [4]. Such knowledge can be extracted 
by the robots using introspective reasoning techniques [5-6].  

Trust: Robots make their decisions based on the results 
of past interactions with other agents. 

According to the above parameters, have been 
established eight degrees of situation and some study cases 
in the robot soccer testbed. Currently, robot soccer is 
considered a good research platform for cooperative multi-
robot systems at both simulation and real environments. It 
emulates a soccer game, which the agents must interact 
among them in a dynamic, surrounding, cooperative and 
competitive environment [7]. 

This approach shows how robots can use the proposed 
degrees of situation to exploit their heterogeneous skills for 
improving the collective decisions in cooperative 
environments. 
Section 2 presents our approach to generate dynamical 
diversity from a control-oriented perspective. Section 3 
shows the main idea of our coordination mechanism. 
Section 4 explains our coordination mechanism approach on 
the robot soccer simulation platform. Section 5 shows 
experimental result. Finally, some conclusions are drawn in                 
section 6.  

II. CONTROL STRUCTURE AND DYNAMIC DIVERSITY 
 
Our tests used the robot models of the SimuroSot 

simulator available from the web page: 
http://fira.net/contents/sub03/sub03_7.asp. The simulator 
facilitates extensive training and testing of this proposal. 
The robot model is described by the equations (1) and (2) 
that represent the linear and angular velocities of each robot 
respectively. 
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We designed four different PID controllers with suitable 

control laws for our agents. Based on the PID controller 
designed, we have created four different physical agents: 
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Precise, Disturbed, Fast and Fast-Disturbed. Table 1 shows 
the dependence of each designed physical agent with four 
selected control design criteria: speed, precision, persistence 
and control effort. 

 
Table 1. Definition of the physical agents according to 

designed controllers. (↑  : great dependence; ↓  : minor 
dependence) 

 
Robots 

behavior speed precision persistence control 
effort 

precise ↓ ↑ ↑ ↓ 
disturbed ↓ ↓ ↓ ↑ 
fast ↑ ↓ ↑ ↑ 
fast-
disturbed ↑ ↓ ↓ ↑ 

 
The Precise-robot is the most precise in the team for 

achieving any desired target. However, the precise-agent is 
slow, persistent and it has a minimal control effort.  

The Disturbed-robot performs aggressive movements to 
achieve any desired target. In addiction, it is slightly 
persistent, slow, imprecise and it has a high control effort.  

The Fast-robot is rapid to reach any target in a persistent 
way but with a high control effort.  

Finally, the Fast-disturbed-robot has some features 
between the fast-agent and the disturbed-agent.  

The Fig. 1 shows the spatial evolution of the physical 
robots with their controllers. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig 1. Spatial evolution of each physical agent. 
 

III. COORDINATION 
Distributed intelligence on computer science is, currently, 

focused to generate systems of software agents, robots, 
sensors, computer systems, and even people that can work 
together with the same level of efficiency and expertise as 
human teams [8]. Agents must, for example, be able to 
reason about goals, actions, when to perceive and what to 
look for, the cognitive state of other agents, times, resources, 
collaborative task execution [9]. Agents are therefore, 
defined as computer systems capable of flexible and 
autonomous actions in dynamic, unpredictable and typically 
cooperative environments [10]. One typical implementation 
of the agent technology is the physical agent paradigm. A 
physical agent is an intelligent entity which is embodied in 
some environment (i.e., has a physical representation) and 
which must take its decisions based on the capabilities of the 
physical body its must manages. Even when a single 
physical agent can achieve any given task, the possibility of 

deploying a physical agents’ team can represent a significant 
improvement in the performance of the overall systems. A 
huge single robot, no matter how powerful it is, will be 
spatially limited while smaller robots could achieve a given 
goal more efficiently [11]. The control and coordination of 
multiple autonomous mobile agents (i.e., physical agents) is 
a challenging task; particularly in environments with 
multiple, rapidly changing conditions and agents [12]. In 
fact, the objective of the cooperation is to maintain 
maximum utilization of multi-agent resources while 
ensuring job performance at the highest productive level. 
But, a general theory of cooperation for multi-agents 
domains remains elusive [13]. In recent years, cooperation 
in multi-agent systems is an increasingly and essential 
element for managing systems with enormous amount of 
data to process and communicate, providing high 
performance, high confidence, and reconfigurable operation 
in the presence of uncertainties [14]. For example, different 
cooperative schemes of an individual agent can constrain the 
range of effective coordination regimes; different 
procedures for communication and interaction have 
implications for behavioral coherence [15]. Generally 
speaking, one the most transcendent topic in the literature is 
the coordinated task problem-solving algorithm. Agents 
can improve cooperation by planning the execution of 
complex problems. Planning for a single agent is a process 
of constructing a sequence of actions considering only goals, 
suitability rates, capabilities, and environmental constraints 
[16]. To the end, a proper alternative is that agents can 
interact aiming to achieve a successful cooperative agents’ 
performance. Indeed, such lack represents a significant 
impediment to reduce complexity and to achieve appropriate 
levels of coordination and autonomy in multi-agent systems 
[16-17]. 

The coordination among robots is a challenge to improve 
the performance of heterogeneous teams in cooperative 
environments. In this way, we have developed a method 
based on the Electronic Institution Foundations [2] where 
the robots have meetings (scenes) in specific zones of the 
environment. These scenes have a set of well-defined goals 
to perform the team-work. Thus, the system activates the 
scenes by means of target’s locations in the environment. 
The scenes aid and facilitate the execution of coordinate 
tasks by using the coordination mechanism previously 
selected.  

In this paper, we have used some coordination 
mechanisms to improve the performance of a team of 
heterogeneous robot based on three parameters: proximity, 
introspection and trust. To reach sure commitments and 
make better decisions improving the team performance, the 
robots uses such information in their decision-making 
structure. 

Thus, the proximity is related to the distance between the 
current location of each robot and the location of desired 
target. Such knowledge is regarding to the environment, and 
represents the physical situation of the every robot in this 
environment.  

The knowledge about the physical robot’ bodies 
(introspection) is obtained through the representation of 
them on a capabilities base. All this enclose information can 
be extracted by the robots using introspective reasoning 
techniques and handled using capabilities management 
techniques. These approaches get to guarantees sure 
commitments and improve of this way the team-work 
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achievements, because a robot can develop a better self-
control improving in this way its performance in coordinate 
tasks. Finally, the social relationship of a robot takes into 
account the result of past interactions of a specific robot 
with others.  

The above parameters then aid the robots to coordinate 
among them. These parameters are useful when a lot of 
robot must interact and operate effectively within an 
environment with changing circumstances and a great 
quantity of information [3]. 

 

IV. THE APPROACH 
In our approach, a scene is defined, as a momentary 

situation where a particular set of actions must be executed. 
To do that, a robot (or group of robots) should be capable of 
selecting what to do. These meetings facilitate the execution 
of tasks in certain areas of the field, because they define 
momentary roles for each robot, which allows the best robot 
to perform the activity most appropriate to their abilities. 
The robot soccer simulator has been used as experimental 
platform. In particular, the field has been segmented in three 
zones (see Fig. 2). Thus, every zone has a defined a set of 
actions which determine the behavior of each robot within 
the active scene. 
 

 
 
 
 
 
 
 
 
 

 
 
 

Fig 2. Zones in the environment. 
 
4.1 Scene Activation. 
 
The scenes’ activation is determinate by the target’s location 
in the environment (in this case, the current ball position). 
The system uses a selection of the three parameters to 
perform the goals of the scene when it is activated. These 
parameters define the decision making structure of the agent 
within the scenes.  

 
Table 2. Scenes and roles in the scenes. 

 
Scene Role 

Defense 
Central Defense 
Left Defense 
Right Defense 

Midfield 
Mid-center 
Mid-left 
Mid-right 

Attack 
Forward 
Left wing 
Right wing 

 

The active scene makes the roles allocation for the robots by 
means of the same selected parameters (proximity, 
introspection, trust). 

In this sense, the roles are the behaviors of the robots in 
every scene. In particular, the roles have been designed 
depending on the features of the active scene (e.g. robots’ 
locations, amount of robots, etc.). Table 2 shows the scenes 
and roles established in this approach. 

The system’s zones and the scenes’ activation have been 
defined by mean of the ball’s position. Likewise, the 
changes between zones are also determined by the same 
consideration. Studies about the changes between zones are 
necessary to update the agents’ roles in every zone. In this 
sense, the changes between zones are performing when the 
goals of the active scene are achieved and the system 
identifies a new target in another zone of the environment. 
This process is performing through the coordination 
between the definite zones, due to the agents must know so 
much the zone to which they will go and their physical 
situation in this new zone.  

In other hand, the entrance of the agents in the scenes 
depends on match between the task requirements of the 
active scene and the agents’ capabilities to perform the 
proposed task. In addition, the scene chooses the most 
suitable agent to execute the main task (kick the ball) by 
using the same selected parameters. This selection depends 
on the certainty index (CI) related to the three parameters. 
Equation (3) shows the CI calculation. 

 
CI(k,i) = (PC(k,i)) * (IC(k,i)) * (TC(k,i))   (3) 

where: 

CI(k,i): certainty index of the robot k in the scene i. 
PC(k,i): proximity coefficient of the robot k in the  

scene i. 
IC(k,i): introspection coefficient of the robot k in the 

scene i. 
TC(k,i): trust coefficient of the robot k in the scene i. 
 
Proximity Coefficient (PC) is related to the distance 

between the current location of each robot and the ball’s 
current location. Equation (4) shows the PC calculation.  
 
      PC(k,i) = (1 – d(k,i)/dmax(i))   PC ∈[0-1]   (4) 

 
where: 
 
d(k,i):   distance between the robot k and the ball in 

the scene i. 
dmax(i): maximal distance between robot and the ball 

in the scene i. 
If PC is great is better. 

 
Equation (5) shows the dmax(i) calculation. 

 
    dmax(i)=max(d(1,i),...,d(p,i))       (5) 

 
Introspection Coefficient (IC) represents the knowledge 

of the robot about their physical capability to perform a 
proposed task. In particular, a backpropagation neural 
network model is used to represent the introspection data of 
a robot. The input data is the robot’ locations, ball’s 
locations and tasks requirements (e.g. kick the ball towards 

Zone 1 Zone 2 Zone 3 
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the goal). The output is related to IC ∈ [0-1] so that while is 
great represents a good agent’s performance. 

 
Trust Coefficient (TC) represents the social relationship 

among robots. It takes into account the past interactions with 
other robots. The team decide how perform the proposed 
task based on the TC. Equation (6) shows the TC calculation 
if the aim is reached. Otherwise, equation (7) shows the TC 
calculation if the aim is not reached. 

 
TC(k,i) = TC(k,i) + ∆A(i,a)               (6) 

 
TC(k,i) = TC(k,i) - ∆P(i,b)                 (7) 
 

where:  
 
TC(k,i):   trust coefficient of the robot k in the scene i. 
∆A(i,a): is the award given by the scene i. 
∆P(i,b): is the punish given by the scene i. 
a = 1,…,Q(i)     Q(i) :number of awards in the scene i. 
b = 1,…,R(i)      R(i): number of punishes in the scene i. 
TC ∈ [0-1] so that if more great is better. 

 
Then, from combination among the three parameters 

have been abstracted eight robot’s behaviors (degrees of 
situations) using as coordination mechanisms. Table 3 
shows the defined Degrees of Situation (DS). 

  
Table 3. Three parameters’ classification (Degrees of 

Situations: DS) in our approach. 
(0: is not considered; 1: is considered). 

 
D.S. proximity introspection trust 
0 0 0 0 
1 0 0 1 
2 0 1 0 
3 0 1 1 
4 1 0 0 
5 1 0 1 
6 1 1 0 
7 1 1 1 
 
In this way, the proposed degrees of situations attempt to 

provide to the agents with a set of awareness to perform 
coordinate task taken into account the agent situation in the 
environment. 
 

V. EXPERIMENTS 
By using the robot soccer testbed, the model presented in 
section 3 have been used to form a team of heterogeneous 
robots. This team was tested in two different experiments. In 
the first experiment, our team competed against an opposing 
team of homogeneous robots in thirty games for every 
degree of situation shown in table 3. In addition, the initial 
values of the coordination parameters for each case in all the 
experiments were change of a random way at the beginning 
of each game.  

In the second experiment, a league of twenty-eight 
games was performed. In this league, teams with different 
degrees of situations competed among them.  

In particular, for all the games in the two experiments, 
the scenes used only one of the DS. 

Table 4 shows the obtained results of the first 
experiment. In this case, the team performance is improved 
when our team takes into account the three proposed 
parameters as coordination mechanisms. Specifically, the 
team with the degree of situation 7 (all the parameters taken 
into account) shows a better average (improvement rate: 
+81% better) than the degree of situation 0 (any parameter 
taken into account). 

 
 

Table 4. Results of the first experiment.  
                                                       

Position Degree of 
Situation 

Win 
Games 

Average 
(%) 

1 7 21 70 
2 3 16 55.3 
3 6 14 46.7 
4 4 12 40 
5 5 12 40 
6 2 10 33.3 
7 1 9 30 
8 0 4 13.3 

 
Table 5 presents the obtained results of the second 

experiment. In these results is shown how when our team 
use jointly all parameters (degree of situation 7) as 
coordination mechanism the system performance is 
increased. For this case, the degree of situation 7 (the best 
case) shows a better average (improvement rate:   + 92%) 
than the degree of situation 0 (the worst case). 

 
Table 5. Results of the second experiment.  

(WG: Win Games)                                               
 

Position Degree of 
Situation WG Average 

(%) 
1 7 25 89,3 
2 6 21 75,0 
3 3 19 67,9 
4 5 16 57,1 
5 2 13 46,4 
6 4 9 32,1 
7 1 7 25,0 
8 0 2 7,1 

 

VI. CONCLUSIONS AND FUTURE WORK 
This work shows how artificial intelligence techniques aid 
to improve the coordination of heterogeneous multi-robot 
systems. Our approach contributed with three parameters 
(proximity, introspection and trust) as coordination 
mechanisms for heterogeneous teams.  

We emphasize the robot-behavior given to the scenes 
with which it is possible to consider them like a part of the 
team. 

Besides, we have worked with combinations of the 
Degrees of Situations to show how the cooperative team 
performance is different according to this selection. In 
particular, the best performance is obtained when our team 
took into account all the parameters in its decision-making 
structure.  
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At the moment, in all the experiments the scenes used 
only one of the DS at the same time. Then, a combination 
among the DSs in the same experiment is something 
interesting to study how to take advantages when the system 
is able to selecting the best behaviour in a determine scene 
according to the current goals.  

Finally, we plan to implement the main contributions of 
this paper in a real robot soccer testbed in order to 
extrapolate and corroborate the obtained results. It is also 
interesting to compare this coordination mechanism 
approach with other techniques, in order to evaluate the 
usefulness and advantages of our proposal. However, at 
present we perform studies about how take advantage of this 
approach but its development is still opened. 
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