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Abstract—In this paper, an optimal control of transverse
vibrations of an Euler-Bernoulli beam and string complex
system is studied. The dynamic response of the system is
measured by a performance index that consists of a modified
energy functional of two coupled structures at the terminal time
and the expenditure of the control forces as a penalty term.
The minimization of the performance index over these forces
is subject to the equation of motion governing the structural
vibrations, the imposed initial condition as well as the bound-
ary conditions. The optimal control of distributed parameter
systems is transformed into the optimal control of a linear time-
invariant lumped-parameter systems by employing Galerkin
method in space. Fourier series approximation with unknown
Fourier coefficients and frequencies is used to parameterize
the control function. The applicability and effectiveness of the
proposed method is demonstrated by a numerical example.

Index Terms—Optimal Control, beam, string.

I. INTRODUCTION

S IMPLE continous elastic structures such as a string,
beam etc. are foundational pieces of real mechanical sys-

tems. These simple structures are bonded through different
elastic foundations such as Winkler, Pasternak or Vlasov,
Flonenko - Borodich for modelling complex mechanical
systems. The study of the dynamical response of the complex
mechanical systems opens wide range of theoretical and
practical applications in engineering. Controlling undesired
vibrations in the mechanical systems is one of the core sub-
jects attracting scientists and engineers. A concise briefing of
vibratory analysis for the continuous systems is provided by
[1]. The natural frequencies of different forms of the complex
continuous systems have been studied by Oniszczuk (such as
[2], [3] and [4].) Optimal control of the vibrations in complex
continuous systems is studied in ([5], [6] are among others.)

In this paper, active control of transverse vibrations of an
elastically connected beam-string complex system is studied.
The complex system consists of parallel beam and string
that are bonded through an elastic foundation. Such systems
give rise to an important vibratory mechanical structures.
Therefore, the objective is to rid of the excessive vibrations
via applied actuators. The optimal control problem is formu-
lated to minimize the performance index that is subjected to
the equation of motion described by a distributed parameter
system. The performance index of the system involves the
physical energy of the system and the expenditure of the
control forces is added as a penalty term to limit the usage of
the forces. The distributed parameter system (DPS) is trans-
formed into the lumped parameter system (LPS) in a finite
dimensional space by employing Galerkin method in space.
Optimal control forces derived via variational techniques that

Ismail Kucuk, Department of Mathematical Engineering, Yildiz Technical
University, 34220 TURKEY, e-mail: ikucuk@yildiz.edu.tr

Melih Cinar, Department of Mathematical Engineering, Yildiz Technical
University, 34220 TURKEY, e-mail: mcinar@yildiz.edu.tr

yield degenerate integral equations. A numerical example is
provided to show the results. This study is elaborated in [7].

A. Formulation of the Problem

The mathematical model of the free transverse vibrations
of an elastically connected beam-string complex system is
described as a set of two coupled homogeneous partial
differential equations [4],

m1ẅ1 +Kw
(4)
1 + k(w1 − w2) = 0, (1a)

m2ẅ2 − Sw2
′′ + k(w2 − w1) = 0, (1b)

where (x, t) ∈ [0, l] × [0, tf ]; w1(x, t) and w2(x, t) are the
displacement of Beam and String, respectively; tf is the final
time in the control process; K = E1J1 is the flexural rigidity
of the beam, E1 is Young’s modulus and J1 is the moment
of inertia of the beam cross-section; S is the string tension;
k is the thickness modulus of a Winkler elastic layer; mi is
the mass per unit length and

w
(4)
1 =

∂4w1

∂x4
,w2
′′ =

∂2w2(x, t)

∂x2
,

ẅi =
∂2wi(x, t)

∂t2
, i = 1, 2.

(2)

The boundary and initial conditions for Beam and String are
introduced, respectively, as

BC’s
w1(0, t) = w′′1 (0, t) = w1(l, t) = w′′1 (l, t) = 0,

w2(0, t) = w2(l, t) = 0,

IC’s
wi(x, 0) = w0

i (x), ẇi(x, 0) = v0i (x), i = 1, 2.

(3)

In order to avoid any unwanted resonance we put forward

w

x

k

l

f11(t)

f12(t)

Fig. 1. An elastically connected beam-string complex system including
actuators.

Proceedings of the World Congress on Engineering 2017 Vol I 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 10 April 2018) WCE 2017



a new system where actuators are included to domain of
beam and string shown Fig. 1. Then, the set of coupled non-
homogeneous partial differential equations in (1a) and (1b)
is transformed into the following form:

m1ẅ1 +Kw
(4)
1 + k(w1 − w2) = f11(t)δ(x− xB), (4)

m2ẅ2 − Sw′′2 + k(w2 − w1) = f12(t)δ(x− xS), (5)

where xB and xS are the locations of the actuators in
the domain of beam and string, respectively; f1j(t) ∈
L2([0, tf ]), j = 1, 2 are the amplitude (or influence) of
distributed actuators. In order to measure the performance of
the system where actuators are included, performance index
function is introduced as

E(f11(t), f12(t)) =
1

2

∫ l

0

(
µ1w

2
1(x, tf ) + µ2ẇ

2
1(x, tf )

+ µ3w
2
2(x, tf ) + µ4ẇ

2
2(x, tf )

)
dx.

(6)

In Eq. (6), the elements of the weighting factors µi are
greater than zero for i = 1, 2, 3, 4 such that µ1 + µ2 + µ3 +
µ4 6= 0.
Control Problem Determine an optimal f?1i(t) ∈ L2([0, tf ])
for i = 1, 2 such that
J(f?11(t), f?12(t)) ≤ J(f11(t), f12(t)),
where

J(f11(t), f12(t)) = E(f11(t), f12(t))+

1

2

∫ tf

0

(µ5f
2
11(t) + µ6f

2
12(t))dt,

(7)

in which E(f11(t), f12(t)) is given in Eq. (6), and µ5

and µ6 are the weight factors that determine the influence
of the actuators. The first term in right-hand side of Eq.
(7), E(f11(t), f12(t)), stands for the contribution of the
modified energies of the beam and string, and the other
term represent a contribution of the energy that accumulates
over the control duration where the final time tf is fixed.

II. SOLUTION OF THE VIBRATION PROBLEM

The system of coupled non-homogeneous partial differen-
tial equations in (4) and (5) with boundary conditions can
be solved by using the eigenfunction expansion technique.
Let w1(x, t) and w2(x, t) be the solutions of the equations
of (4) and (5), respectively, such that

w1(x, t) = lim
n−→∞

N∑
n=1

Γn(x)Tn1(t), (8)

w2(x, t) = lim
n−→∞

N∑
n=1

Γn(x)Tn2(t), (9)

where Tn1(t) and Tn2(t) are unknown functions of time,
and N is the number of modes used in the calculations.
In practice, it is customary to expand the displacement
functions wi(x, t), i = 1, 2 with high accuracy through the
truncated form of Eqs. (8) and (9), i.e., N is taken a finite
number.
The orthonormal eigenfunctions of operator £w = ∂2w/∂x2

has the following form:

{Γn(x)}∞n=1 =

{√
2

l
sin(anx)

}∞
n=1

, (10)

where an = l−1nπ.
Substituting the solutions in Eqs. (8) and (9) into Eqs. (4)
and (5), where number N is a finite number, we have

N∑
n=1

Γn(x){m1T̈n1(t) + (Ka4n + k)Tn1(t)− kTn2(t)}

= f11(t)δ(x− xB),
(11)

and
N∑
n=1

Γn(x){m2T̈n2(t) + (Sa2n + k)Tn2(t)− kTn1(t)}

= f12(t)δ(x− xS).

(12)

Using the orthonormal property of eigenfunctions Γn(x), last
two equations are transformed into new system of second-
order differential equations as follows:

T̈n1(t) + ϕn1Tn1(t)− ϕ01Tn2(t) = Fn1(t), (13)

T̈n2(t) + ϕn2Tn2(t)− ϕ02Tn1(t) = Fn2(t), (14)

where
ϕn1 =

K(an)4 + k

m1
, ϕn2 =

S(an)2 + k

m2
, ϕ0i = k

mi
, i =

1, 2,
Fn1(t) = m−11 f11(t)Γn(xB), (15)

Fn2(t) = m−12 f12(t)Γn(xS). (16)

Now, in order to solve the new coupled system of second-
order differential equations, we introduce new variables
yn1(t) = Tn1(t), yn2(t) = Ṫn1(t), yn3(t) = Tn2(t),
yn4(t) = Ṫn2(t). Substituting the new variables into Eqs.
(13) and (14), we immediately get the following form of the
first-order system of differential equations in time:

ẏn1(t) = yn2(t),

ẏn2(t) = −ϕn1yn1(t) + ϕ01yn3(t) + Fn1(t),

ẏn3(t) = yn4(t),

ẏn4(t) = ϕ02yn1(t)− ϕn2yn3(t) + Fn2(t).

(17)

Eq. (17) can be written as the following matrix form:

dYn(t)

dt
= AYn(t) + F(t), (18)

where

Yn(t) =


yn1
yn2
yn3
yn4

 ,A =


0 1 0 0
−ϕn1 0 ϕ01 0

0 0 0 1
ϕ02 0 −ϕn2 0

 ,

F(t) =


0

Fn1(t)
0

Fn2(t)

 .

(19)
The initial conditions of first-order system of differantial
equations in (17) are rewritten as

yn1(0) = Tn1(0) =

∫ l

0

Γn(x)w0
1(x)dx, (20)
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yn2(0) = Ṫn1(0) =

∫ l

0

Γn(x)v01(x)dx, (21)

yn3(0) = Tn2(0) =

∫ l

0

Γn(x)w0
2(x)dx, (22)

yn4(0) = Ṫn2(0) =

∫ l

0

Γn(x)v02(x)dx. (23)

To decouple differential equations in (18), we introduce a
new variable Mn(t) such that

Yn(t) = ZMn(t), (24)

in here, the matrix Z is 4× 4 modal matrix whose columns
are the eigenvectors of matrix A.
Substituting Eq. (24) into Eq. (18), we get

Ṁn(t) = (Z−1AZ)Mn(t) + Z−1F(t) = DMn(t) + G(t),
(25)

where D = Z−1AZ, G(t) = Z−1F(t) defined as

G(t) = β


1
1
−1
−1

Fn1(t) +


∆1

∆1

∆2

∆2

Fn2(t)

= G1Fn1(t) + G2Fn2(t),

(26)

where β,∆1,∆2 are some constants.
Eq. (18) is a system of four differantial equations for
Mni(t), i = 1, 2, 3, 4. In scalar form, we observe the fol-
lowing equations:

dMni(t)

dt
= λiMni(t) +Gi(t), (27)

with the proper form of the initial conditions given in the
Eqs. (20)-(23). In here, λi’s are the eigenvalues of A. The
solutions of FOSDE of Eq. (17) are of the folllowing form:

Mni(t) =

∫ t

0

eλi(t−τ)Gi(τ)dτ + cie
λit, (28)

in here, ci’s are constants to be determined by the initial con-
ditions in Eqs. (20)-(23). Finally, we can write the solutions
for Tn1(t) and Tn2(t), and their derivatives as follows:

Tn1(t) =
4∑
j=1

z1jMnj(t), (29)

Ṫn1(t) =
4∑
j=1

z2jMnj(t), (30)

Tn2(t) =

4∑
j=1

z3jMnj(t), (31)

Ṫn2(t) =
4∑
j=1

z4jMnj(t), (32)

where Z = [zij ]4×4 whose columns are the eigenvectors of
A. Thus, the deflections in beam and string are respectively
obtained as

w1(x, t) =
N∑
n=1

Γn(x)
4∑
j=1

z1jMnj(t), (33)

w2(x, t) =

N∑
n=1

Γn(x)

4∑
j=1

z3jMnj(t), (34)

where Mni(t) is defined in (28).

III. NECESSARY CONDITIONS

In this section, to determine necessary conditions of opti-
mality for the applied actuators, calculus of variation will be
used. After taking first variation of the Eq. (7) with respect to
f1i for i = 1, 2, it will be equate to zero. In this calculations;
flextural rigidity K, the tension of the string S, final time tf ,
the location of the actuators in the system and weight factors
will be fixed.
Substituting Eqs. (33) and (34) into Eq. (7) and using the
orthonormal properties of Γn(x) leads to the following:

J(f11(t), f12(t)) =
1

2

N∑
n=1

4∑
i=1

µi
( 4∑
j=1

zijMni(tf )
)2

+

1

2

∫ tf

0

(µ5f
2
11(t) + µ6f

2
12(t))dt.

(35)

If we take variation of Eq. (35) with respect to f11(t), it
leads to

δf11J(f11(t), f12(t)) =

∫ tf

0

{
N∑
n=1

4∑
i=1

µi
( 4∑
j=1

zijMni(tf )
)
×

4∑
j=1

zije
λj(tf−τ)G1jΓn(xB) + µ5f11(τ)

}
∆f11(τ)dτ = 0,

(36)
or

N∑
n=1

4∑
i=1

µi

[
4∑
j=1

zij

{∫ tf

0

eλj(tf−τ)
(
G1jf11(τ)Γn(xB)

+G2jf12(τ)Γn(xS)
)
dτ + cje

λjtf
}]
×

[ 4∑
j=1

zije
λj(tf−τ)G1jΓn(xB)

]
+ µ5f11(τ) = 0,

(37)
where G1j and G2j are the terms from the column coefficient
matrices of Fn1(t) and Fn2(t) given in (26).
Similarly, taking first variation of Eq. (35) with respect to
f12(t), it can be derived that

N∑
n=1

4∑
i=1

µi

[
4∑
j=1

zij

{∫ tf

0

eλj(tf−τ)
(
G1jf11(τ)Γn(xB)

+G2jf12(τ)Γn(xS)
)
dτ + cje

λjtf
}]
×

[ 4∑
j=1

zije
λj(tf−τ)G2jΓn(xS)

]
+ µ6f12(τ) = 0.

(38)
We can write Eqs. (37) and (38) in a more compact form so
that coupled nonhomogeneous Fredholm integral equations
with degenerate kernel can be observed as

N∑
n=1

[
4∑
i=1

∫ tf

0

(
Uni(τ)f11(r) + Uni(τ)f12(r)

)
eλi(tf−r)dr

+ Kn(τ)

]
+ µ5f11(τ) = 0,

(39)
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N∑
n=1

[
4∑
i=1

∫ tf

0

(
Vni(τ)f11(r) + Vni(τ)f12(r)

)
eλi(tf−r)dr

+ Kn(τ)

]
+ µ6f12(τ) = 0,

(40)
where
U(τ) = diag(G1)Z>diag(µ1, µ2, µ3, µ4)

(
U(τ)

)
4×1Γn(xB)

in which (U(τ))4×1 =
(∑4

j=1 zijG1je
λj(tf−τ)

)
4×1 and

Kn(τ) = (U(τ)diag(µ1, µ2, µ3, µ4))>M(eλtfC) in which
λ is the column matrix of eigenvalues of A, and C is the
column matrix of constants that are due to the new initial
conditions obtained for the new system in (28). The other
terms can be obtained similarly.
If we define ri1 and r̄i1 by

ri1 =

∫ tf

0

eλi(tf−r)f11(r)dr, (41)

r̄i1 =

∫ tf

0

eλi(tf−r)f12(r)dr, (42)

then, the integral equations in Eqs. (39) and (40) can be
transformed into the system of linear equations in terms of
ri1 and r̄i1. And then, the system of equations can be written
in the following compact form of linear equations:

(R + IH)S + RS + V = 0,

KS + (K + IN)S + V = 0.
(43)

After computing S and S, the optimal actuators f11(τ) and
f12(τ) can be calculated as follows

f11(τ) = − 1

µ5

N∑
n=1

{
Kn(τ)+

4∑
i=1

(
Uni(τ)ri1+Uni(τ)r̄i1

)}
,

(44)

f12(τ) = − 1

µ6

N∑
n=1

{
Kn(τ)+

4∑
i=1

(
Vni(τ)ri1+Vni(τ)r̄i1

)}
.

(45)

IV. NUMERICAL EXAMPLE

In this chapter, to illustrate theoretical considerations pre-
sented in the previous part of the paper, the behavior of
uncontrolled and controlled beam-string system is presented.
In numerical simulations, the deflection and velocity of beam
are observed at points xB = 0.46 and xS = 0.63 in the
domain of beam and string, respectively , and m1 = 0.02,
m2 = 0.001, K = 10−2, S = 30, l = 1, µ1 = 0.02, µ2 =
0.003, µ3 = 0.01, µ4 = 0.004, and tf = 0.8 are used. For
simplicity of the analysis, it is assumed that the beam-string
system is subjected to the initial conditions (3) of the form

wi(x, 0) = Γ1(x),

ẇi(x, 0) = 0, i = 1, 2,
(46)

where Γ1(x) is the fundamental mode of the system.
The deflection and velocity of the beam and string in both

uncontrolled and controlled cases are illustrated in Figs. 2
and 3, respectively. As the numerical results show that the
deflection and velocity of the system is drastically suppressed
and hence the physical energy used in the system is reduced.
The location of the actuators is determined by the designer
but determining the location of the actuators is another
problem to explore for future investigations.

Fig. 2. The displacement of beam for various cases.

Fig. 3. The velocity of beam for various cases.

V. CONCLUSION

The active control of the free transverse vibrations of elas-
tically bonded beam-string system is achieved by applying
actuators. The performance index of the system is defined by
its physical energy and control expenditure over the time as a
penalty term. Galerkin method in space is used to transform
the DPS into LPS in a finite-dimensional space. Hence, the
performance index functional is expressed in temporal terms.
To obtain the optimal control forces, variation of the new
performance index is taken that yields integral equations.
Thus, optimal control forces are obtained explicitly. Numer-
ical simulation of the methodology developed to solve the
problem validates the theoretical results.
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