
Scalable Engineering Calculations
on The Example of Two Component

Alloy Solidification
Elzbieta Gawronska, Robert Dyja, Andrzej Grosser, Piotr Jeruszka, Norbert Sczygiol

Abstract—Consideration of the issue of two-component alloy
solidification with the usage of the finite element method may
lead to the need to calculate the system of equations with
millions of unknowns in which the coefficient matrix is the
sparse matrix. In addition, symmetry of this matrix can be
impaired with the introduction of boundary conditions. This sit-
uation introduces laborious numerical calculations which - due
of technical limitations – is practically impossible to speed up
with the consideration of a single computational unit. Because of
this reason, using parallel and distributed processing to resolve
this issue becomes the interesting algorithmic problem. The
paper focuses on the use of scalability of available development
tools (libraries and interprocess communication mechanisms)
to engineering simulation of two-component alloy solidification
in the mold. An important aspect of the considerations are
the ways parallelization of computations taking into account
the fourth-type boundary condition – the contact between the
two materials. The implementation uses a TalyFEM library.
PETSc (Portable, Extensible Toolkit for Scientific Computation)
library is the computing pillar of this set of classes and methods.
It provides a programming interface which contains vectors,
matrices, and solvers (including systems of linear equations)
structures. This interface enables the automatic distributed
data structures in a number of computational units using MPI
(Message Passing Interface) whereby the communication itself
is hidden from the programmer. This is an advantage during
the desig of algorithms which use vectors and matrices. A
problem solved with FEM can be parallelized in two ways: the
parallelization on the mathematical formulas level (independent
parts of the pattern can be calculated parallelly) and the
division of tasks into smaller subtasks – assignment of nodes
and elements into specific computational units. Such a division
is called domain decomposition. The domain is a set of data on
a single processor. Both methods can be used in the TalyFEM
library, if the input files loading module is modified. We
have designed our own parallel input module (finite element
mesh) providing a division of loaded nodes and elements into
individual computational units. These solutions enable the full
potential of parallel computing available in the TalyFEM library
using the MPI protocol. This implemented software can be run
on any computer system with distributed memory.

Index Terms—parallel computing, distributed memory, FEM,
solidification

I. INTRODUCTION

THE development of the computing power of personal
computers increased the possibility of carrying out nu-

merical calculations. Large engineering simulations, in which
billion of unknown has to be estimated, can be calculated an
ever shorter period of time on High Performance Comput-
ing (HPC) systems. However, today’s PCs have sufficiently

Manuscript received March 29, 2017; revised April 4, 2017.
E. Gawronska et al. are with the Faculty of Mechanical Engineering and

Computer Science, Czestochowa University of Technology, Dabrowskiego
69, 42-201 Czestochowa, Poland, e-mail: elzbieta.gawronska@icis.pcz.pl

powerful computational units which are able to solve small
problems. Nowadays, due to technological limitations (size
of the printed circuit boards can not be reduced indefinitely,
disproportionate power in relation to the possibilities, etc.),
the possibility of accelerating the calculations is focused on
the use of multiple computational units in the same numeric
process. Instead of accelerating the cycle frequency of one
unit, a greater number of such units is used, especially on
HPC systems. This also can be seen in today’s processors –
they contain more cores but lack of a greater acceleration of
the clock frequency.

Software needs to be adapted to such hardware. To effi-
ciently utilize the possibilities of multi-core computing unit,
the code must include parallel computation. In addition,
the use of supercomputers, consisting of several thousands
of nodes operating in parallel, requires scalable software
project.

To avoid common problems in scalable software at the
stage of designing the algorithms, distinguishment of ele-
ments which can be calculated independently is required.
Each portion that depends on the other requires the use
of expensive and time-synchronization task to avoid errors
resulting from the use of the same variables. This paper
shows a method that uses separation of tasks into subtasks
which can be calculated separately on each computing unit.

The numerical method, which has been presented in this
paper, uses a system of linear equations to calculate the
results. Systems of equations usually stored in the form of a
coefficients matrix and additional vectors are well described
and implemented in the existing components and they are
ready to be used in the source code. Vectors, matrices,
and solvers – objects responsible for solving the system
of equations – can operate parallelly, separating items into
individual computational units. Our engineering software
used ready-made data structure used to calculate the scalable
systems of linear equations.

The presented issues such as: the division of tasks and
parallel calculation of the unknown, had to be implemented
in the form of packaged engineering software. From the soft-
ware engineering’s viewpoint, this process can be accelerated
by using the core of the finished application. The use of
such core, adjusted it to the required applications, reduces
the time needed for the design, creation and implementation
of software.

This task was carried out in the original software using
appropriate frameworks. As a numerical example, the two-
component mold was used in the solidification. The finite
element method (FEM) [1] is used as a domain discretization
method [2]. That methods are very popular in resolving of

Proceedings of the World Congress on Engineering 2017 Vol I 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017



the scientific problems connected with a system of equation
obtained from the partial differential equations. Although,
there are developed another methods, too, e.g. method of
continuous source functions which is a boundary meshless
method reducing the problem considerably comparing to
other methods [3]. The rest of this article presents the numer-
ical model, the use of preprocessor, the parallel methods of
implementation of the model in the software, and the results.

II. SOLIDIFICATION MODEL

Engineering calculations were performed on the example
of the solidification process of an alloy. The model of
solidification process is built on the basis of the equation
of heat conduction with the source member [4]:

∇ · (λ∇T ) = cρ
∂T

∂t
− ρsL

∂fs
∂t

(1)

wherein: T – temperature t – time, λ – thermal conductivity,
c – specific heat, ρ – density, L – latent heat of solidification,
fs – the solid phase fraction.

A. Discretization of the Area and of the Time

Equation (1) is converted in the model using enthalpy for-
mulation (basic capacitive formulation). As a result, it gives
one equation that describes the liquid phase and the solid
area of solidification. The apparent heat capacity formulation
keeps the temperature as the unknown in the equation [5].

As a result of this transformation and the implementation
of the discretization of the area by the finite element and
the discretization of the time with the finite difference
(Euler Backward modified scheme [6]), the linear system of
equations was achieved. It has a suitable form to be solved
by the one of the algorithms equations above:

(M + ∆tK)Tt+1 = MTt + ∆tb (2)

where:
K =

∫
Ω

λ∇N∇NdΩ

M =

∫
Ω

c∗(T )NNdΩ

b =

∫
Γ

NλT,inidΓ

(3)

wherein K – the conductivity matrix, M – the mass matrix,
b – the boundary conditions vector, N – the shape function
vector, i – spatial coordinates, Ω – the computational domain,
c∗ – effective heat capacity, Γ – boundary.

B. Boundary Conditions

The model uses two types of boundary conditions: the
Newton’s boundary condition which models heat transfer be-
tween volume and environment, and the boundary condition
of contact, which reflects the flow of heat between the two
domains (cast and mold) taking into account to the separation
layer. Both of these boundary conditions are natural boundary
conditions.

The introduction of the natural boundary conditions is
carried out by means of elements which are the boundary’s

discretization. In the case of the three-dimensional mesh
consisting of the tetrahedral elements, boundary elements
are the triangular elements and introducing the boundary
conditions is made with the following equations: b1

b2
b3

 =
A

12

 2 1 1
1 2 1
1 1 2

  q1

q2

q3

 (4)

This system is a solution of the integral in the expression
defining b in the formula (Eq. 3), wherein A is the area of
the boundary element and q’s are the flows of heat at the
boundary of a given vertex. The value of heat flux occurring
in the formula is calculated in accordance with the type of
boundary condition. For Newton’s boundary condition the
following formula is used:

Γ : q = α(T − Tot) (5)

wherein α – the coefficient of heat exchange with the envi-
ronment, T – the temperature of the body on the boundary Γ
and Tot – the ambient temperature. In contrast, the following
formula shows the exchange of heat by the boundary layer
separation:

Γ :

 q = κ(T (1) − T (2))

T (1) 6= T (2)
(6)

wherein κ – a heat transfer of a separation layer, T (1) and
T (2) – the temperature of two areas on contact point.

As it has been shown, the introduction of above boundary
conditions requires modifying the coefficient matrix because
the boundary conditions consist of a temperature of the
current time step.

III. THE IMPLEMENTATION OF THE REQUIRED
FUNCTIONALITY

Implementation of the computing module using the
TalyFEM library [7], [8] (with PETSc library, developed
by [9]) requires the implementation of several classes, pre-
sented in figure 1. The basic class is SolidEquation.
It provides an implementation of assembling the global
matrix and boundary conditions by means of overrid-
den Integrands methods and Integrands4Side. An-
other SolidInputData class manages loaded proper-
ties of the material from the text file. The next class
SolidGridField, thanks to overriding the SetIC meth-
ods with the GridField method, allows the initial condi-
tions to be introduced. On the other hand, SolidNodeData
objects store the results in nodes. As noted in the in-
troduction, one of the implementation problems was the
inclusion of the boundary condition of the fourth type with
the separation layer. To generate the Finite Element mesh,
the GMSH preprocessor was used. That preprocessor allows
entering many physical areas by setting appropriate flags for
the material. This makes it possible to distinguish the cast,
mold or external surfaces during the loading stage of the
grid. TalyFEM was not compatible with files generated by
the GMSH, therefore, implementation of several classes in
order to load and distribute the parallel distribution of the
data between all processes was required.

The second problem occurred with the limitations of the
TalyFEM library. Boundary conditions may be imposed on

Proceedings of the World Congress on Engineering 2017 Vol I 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017



Fig. 1. Class diagram of solidification module

#MeshFormat
#PhysicalNames
#Nodes
#Elements
#Periodic

2.2 0 8
type no. "TAG"
no. X Y Z
no. [desc] N1 N2 N3 ...
N1 N2

Fig. 2. The *.msh file data scheme. [desc] means a description of the
item which differs in syntax depending on the pre-processor and the element

elements with smaller dimension than the dimension of
the task. For example, the boundary conditions of two-
dimensional plates (divided into two-dimensional elements)
refer to the one-dimensional edge which can be regarded
as one-dimensional finite elements. Similarly, with a cube
(three-dimensional finite elements) – boundary conditions
apply to the two-dimensional walls. With the used library, all
elements must be the same type which unfortunately, makes
it difficult to use the data boundary (for example: to select
only one surface element located on the edge of the area).
This situation had to be resolved by the appropriate use of
configuration data.

Another required functionality was to ensure proper oper-
ation of the fourth boundary condition. In the solidification
model, the fourth condition requires a physical data derived
from adjacent elements. For example, considering the heat
transfer between the mold and the casting, the thermal
conductivity of the two areas should have been taken into
account. At the same time, it is apparent that the knowledge
about the connections between nodes (a node of one area
corresponding to the node of second area) is required.

A. Implementation of the GMSH Format

One of the essential elements of the simulation is to
load input data representing the considered problem. The
problem presented earlier loaded input data generated by the
GMSH preprocessor. Due to the scalability of the TalyFEM
library, the very process of loading must take into account the
distribution of the data (nodes, elements) into processes. The
figure 2 shows a diagram of the GMSH file. The implemen-
tation of loading of this file needs to combine a declaration
of physical conditions (here in the #PhysicalNames section)
with the properties described in the simulation configuration
file.
*.msh scheme format is simple. At the beginning, the
declarations of a physical object group – components of

a single type (eg. surface consisting of three walls) – are
given. These objects combine some physical property. The
GMSH preprocessor is not used to set specific value. It is
only possible to select specific components to connect into a
physical group. The next sections are a section of the nodes
and the finite elements. The description of each node consists
of a number of its current and subsequent coordinates. It
should be noted that regardless of the dimension of the task,
the GMSH saves the three-dimensional coordinates – the z
coordinate is stored with a value of 0 for the two-dimensional
tasks which had to be taken into account in implementation.
The description of an element consists of the item index,
a description of geometric and physical properties, and the
serial indices of nodes that make up the item. A description of
property, in the case of meshes generated for solidification,
consists of four integers – the type of an element, unused
value (usually a value of 2), the index of the physical object,
and the geometry of the object. The type of an item and
physical object of the group are important for the TalyFEM
Library.

Loading nodes did not cause major implementation issues
but loading elements required following a few rules. First of
all, for the TalyFEM library, the main information about the
physical properties (a boundary condition; they are called
indicators in the library) are stored in objects representing
nodes, and the .msh format stores this information in the
elements. The library retains the image of a mesh consisting
only of the elements of one type; GMSH also saves boundary
elements. For the three-dimensional grid for calculations,
tetrahedral elements should be only read; for boundary con-
ditions, recorded triangular elements located on the surfaces
of volume must be analysed. Loading nodes and elements
can be divided into the following steps:

• load the number of nodes and move the position of the
next character into the elements section;

• load the total number of elements and analyse the
element. The loading module analyses the boundary
elements and the space, creating a map of the node index
of the physical property. After this step, the number of
spatial elements is known, and this number determines
the number of all the items used in the calculations;

• load spatial elements;
• go back to nodes section and load nodes data using in-

formation of the constructed map of physical properties
of nodes.

The last interesting piece of the file is the information about
nodes adjacent to each other (Periodic section)1 [10]. Basi-
cally, this section consists of indices pairs, which represent
nodes having the same coordinates. This information is used
during the boundary condition of the fourth type with the
contact of two boundaries.
The loading was implemented for two scenarios for the
program based on TalyFEM:

• the calculation with the decomposition of the area (the
grid division into smaller sub-areas stored on each
process) which required the implementation of data
communications;

1There are many mechanical and technological problems with the periodic
surfaces, e.g. apearing during of an elements production by cutting or
grinding operations. A set of 3D surface parameters are used for characterize
their influence on the parts functionality.

Proceedings of the World Congress on Engineering 2017 Vol I 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017



Fig. 3. Scheme of loading and decomposing data by the main process
(process 0)

Fig. 4. The diagram of aggregation of data received from the main process

• calculation without decomposition of the area; all data
is stored in one process only.

The first scenario is interesting from the programming point
of view. The library supports parallel data storage with dis-
tributed memory but low-level data, such as node coordinates
or description of the elements, which had to be sent using
the MPI interface [11]. Figure 3 shows a scheme of loading
the .msh file using decomposition area for the main process.
The main process (process 0) reads information but does not
keep it – the individual data is transferred to the separate
processes. At the beginning, physical properties are loaded
and broadcasted to all processes. It has been recognized
that there is no need for the division of information into
the individual processes. Such information requires very
little memory resources compared with information about
the mesh.

Then the analysis and loading of elements, including map
of the physical properties of nodes is carried out. At this
stage, information is sent in the form of a NxM matrix
where N is the number of elements for the n-th process, and
M is the number of data describing an element – physically
(for simplicity of communication) it is an array of NxM size.
Similarly, the information about the nodes is sent, wherein,
additional information about physical group is transmitted
(the physical properties of a given node) and information
on the adjacent node (if the node does not have a boundary
condition of the fourth kind, a value of −1 is sent). The
task of the remaining processes is to take the data and
assemble it in a simple dynamic arrays, what is presented in
figure 4. The TalyFEM library converts information from the
arrays into its object-oriented counterpart. There is no need
for manual communications between different processes nor
even involve other processes in the process of sending the
data – excluding the information on the connected areas.

B. The Adjacent Nodes in Different Processes

The problem with parallel processing of the fourth condi-
tion mode arises due to the necessity of modifying a local
matrix (in each process) using the physical parameters and a

Fig. 5. The scheme of exchanging information on adjacent nodes (in the
boundary condition of the fourth type)

local matrix of neightbouring element. To properly assemble
the system of equations, the knowledge of a pair of nodes
that have the same coordinates (but belong to different areas)
is required. These nodes can belong to different processes.
Moreover, one process does not have information on the
location (process rank) of its adjacent node. As shown in
figure 5, communication during the loading of the mesh
is limited to the communication of the main process with
other processes. Another difficulty is the renumbering nodes
while performing of the parMETIS tools – the numbers
of nodes from a .msh file are converted to the numbers
optimal in parallel communication. Each process keeps the
map of the physical index of the node (specified in the
.msh file) in solution index but this map is limited solely
to the ones stored in the process. The library and the
modifications (shown in the next section) require knowledge
about the number of nearly processes (contain neighbouring
nodes). To avoid troublesome point-to-point (peer-to-peer)
communication, the data repository seeking for all adjacent
nodes was used in the 0 process.
Any process obtaining the nodes and converting them into
an object, analyses the proximity of the node. As shown
in the previous section, information about a node consists
of coordinates, the index of physical groups, and the index
(according to the numbering of the preprocessor) of adjacent
node. For process 0, the following information is prepared:

• map of the index from .msh file into the solution
index of nodes which are adjacent to another node (and,
therefore, they will be adjacent to the another node);

• the physical indices of those nodes for which informa-
tion about the process is required.

Process 0 takes information from each of the processes and
prepares the map reflecting the physical indices of nodes of
the two values: solution index and the rank of the process
that the node has. The last step is to re-communicate with
each of the processes which receive the missing information
on the adjacent nodes – solution index and the rank of the
process having the adjacent node. Communication between
individual processes in the course of calculating the unknown

Proceedings of the World Congress on Engineering 2017 Vol I 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017



Fig. 6. The relevant area. Cast has dark gray color, mold – light gray

value is provided by TalyFEM so there is no need for manual
communications between processes.

Above solution is not scalable (parallelization is not used
to speed up calculations), but is necessary for the proper im-
plementation of the fourth-type boundary condition. Further,
the finding of adjacent nodes is executed only once, while
loading task properties.

IV. RESULTS

Performance tests were done on the CyEnce computer lo-
cated at Iowa State University. CyEnce is a cluster consisting
of 248 computing nodes each with two eight-core Intel Xeon
E5 and 128 GB RAM. The calculations were made for the
area shown in the figure 6.
This area consists of a cast (dark gray) and mold (light gray).
As shown, the mold is a cube with a side of 0.2 ,m. The
cast also has the shape of a cube but with a side of 0.1 m.
The Al2Cu alloy is the material for the cast; steel – for the
mold. The heat exchange between the cast and the mold was
held using the boundary condition of 4th type including the
separation layer. A thermal conductivity of the release layer
was equal to 1000 W/m2K. Heat transfer through the mold
to the environment was held with the boundary condition of
the third type in which the heat transfer coefficient was equal
to 10 W/mK. The initial cast temperature is equal to 960 K;
mold – 660 K. Exemplary distributions of temperature for
different time instants are shown in the figures 7, 8, 9. The
results are consistent with the physics of the phenomenon.

Performance tests were made for two sizes of finite ele-
ments mesh: small (of 3.5 million elements, see Fig. 10), and
big (of 25 million elements, see Fig. 11). The time required
to perform 100 steps of simulation (where the size of the
time step was equal to 0.05 s) is shown in the charts on
figures 12 and 13.

For performance testing, the output file saving has been
switched off because the analysed times and the preaparation
of the calculation could be affected by the writing operation.
The charts show summarised loading time of retrieve data
from files operation and the operations described in Chapter
III. The initialization time is the time to perform optimal
decomposition of the area into the sub-areas. The number

Fig. 7. Temperatures in the relevant area after 5 s

Fig. 8. Temperatures in the relevant area after 25 s

Fig. 9. Temperatures in the relevant area after 50 s

Proceedings of the World Congress on Engineering 2017 Vol I 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017



Fig. 10. Mesh details with 3.5 milion elelemnts

Fig. 11. Mesh details with 25 milion elelemnts

Fig. 12. Time required to perform 100 steps of simulation in mesh with
3.5 million elements

of sub-areas was equal to the number of processors used.
The calculation time consists of assembling the system of
equations and subsequent solution. The GMRES method was
used to solve the system of equations [12].

V. CONCLUSIONS

The paper presents the use of libraries that support calcu-
lations which use the finite element method applied to the
solidification simulation. Although the TalyFEM library had

Fig. 13. Time required to perform 100 steps of simulation in mesh with
25 million elements

already been tested on computers of high power, its use in
solving a specific problem required adding essential pieces of
code. The essence of the research presented in the paper was
to answer the question of how changes affect the performance
and to determine the ability of using computers of distributed
memory for calculations.

The results show that despite the limitations of the in-
put/output operations, the example performs efficiently for
large tasks and it provides good scalability while the load
time equals the time of calculation.

REFERENCES

[1] O. C. Zienkiewicz and R. L. Taylor, The finite element method; 5th
ed. Oxford: Butterworth, 2000.

[2] N. Sczygiol, Modelowanie numeryczne zjawisk termomechanicznych w
krzepncym odlewie i formie odlewniczej. Politechnika Czstochowska
(in Polish), 2000.

[3] V. Kompiš and Z. Murčinková, “Thermal properties of short fibre
composites modeled by meshless method,” Advances in Materials
Science and Engineering, vol. 2014, p. 521030, 2014.

[4] J. Mendakiewicz, “Identification of solidification process parameters,”
Computer Assisted Mechanics and Engineering Sciences, vol. Vol. 17,
no. 1, pp. 59–73, 2010.

[5] R. Dyja, E. Gawronska, A. Grosser, P. Jeruszka, and N. Sczygiol,
“Estimate the impact of different heat capacity approximation methods
on the numerical results during computer simulation of solidification,”
Engineering Letters, vol. 24, no. 2, pp. 237–245, 2016.

[6] W. L. Wood, Practical time-stepping schemes / W.L. Wood. Clarendon
Press ; Oxford University Press Oxford [England] : New York, 1990.

[7] H.-K. Kodali and B. Ganapathysubramanian, “A computational frame-
work to investigate charge transport in heterogeneous organic pho-
tovoltaic devices,” Computer Methods in Applied Mechanics and
Engineering, vol. 247-248, pp. 113–129, 2012.

[8] O. Wodo and B. Ganapathysubramanian, “Computationally efficient
solution to the cahnhilliard equation: Adaptive implicit time schemes,
mesh sensitivity analysis and the 3d isoperimetric problem,” Journal
of Computational Physics, vol. 230, no. 15, pp. 6037–6060, 2011.

[9] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, PETSc
2.0 User Manual, Argonne National Laboratory, 2014. [Online].
Available: http://www.mcs.anl.gov/petsc/

[10] S. Legutko, K. Zak, and J. Kudlacek, “Characteristics of geometric
structure of the surface after grinding,” MATEC Web Conf., vol. 94, p.
02007, 2017. [Online]. Available: https://doi.org/10.1051/matecconf/
20179402007

[11] University of Tennessee, Knoxville. (2016) MPI: A message
passing interface. [Online]. Available: http://mpi-forum.org/docs/
mpi-3.0/mpi30-report.pdf

[12] Y. Saad and M.-H. Schultz, “Gmres: A generalized minimal residual
algorithm for solving nonsymmetric linear systems,” SIAM J. SCI.
STAT. COMPUT, vol. 7, no. 3, pp. 856–869, 1986.

Proceedings of the World Congress on Engineering 2017 Vol I 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017




