

Abstract: Regression testing is a software quality assurance

activity performed frequently on modified software in

maintenance. This re-testing costs a lot for maintenance in

terms of effort and computing resources. The existing

approaches for test case-optimization, prioritization, reduction,

to improve the cost effectiveness of the regression testing are

not sufficient for handling the mentioned problem. Therefore,

this research proposes a holistic approach to derive test cases

from behavioral models for regression testing which estimates

test effort and detection of all the errors. The use cases are

considered primarily for identifying defects and for reducing

the number of test cases. This idea has been evaluated using

Automatic Teller Machine (ATM) and satisfactory results are

obtained. It is also observed that this method reduces the time

and cost of the regression testing considerably.

Index Terms— Test-suit, Use case point, Behavioral

model, Software maintenance, Quality assurance.

I. INTRODUCTION

EGRESSION testing validates the modified software to

confirm that the modifications are not badly affecting

the unchanged parts of software [1]. The model based

techniques have been used to generate test cases for the

behavioral model of a software system. Execute test cases

automatically or manually enables early detection of

requirement errors [2]. In this automated test design,

regression test suite design is challenging and important

task.

This paper proposes an approach for cost effective

regression testing. In contrast to prevailing approaches its

main focus is attempts to maximize the test coverage. This

method also facilitate effort estimation where Use Cases are

used to derive test cases and applied in Re-testing in any

kind of software maintenance. The use case model is taken

form the behavioral models of unified modeling language.

The use case model will identify all functionalities of a

software system like <Main flows>, <Alternative flows>,

<Includes>, <Extends> and other <Relations>. From all

these use cases, complete test cases are generated. Quality

Assurance (QA) team needs run all these test cases to ensure

that the software product is stable.

Prabhakar K. Research Scholar, Dept. of CSE, JNTUA. nanthapuramu,

India., Mobile: 9963039900, Email Id: prabhakarcs@gmail.com

Ananda Rao, Professor Dept. of CSE, DAP, JNTUA. Ananthapuramu,

India, Mobile Id: 9440990090, Email Id: akepogu@gmail.com

K.Venugopala Rao, Professor Dept. of CSE, GNITS, Hyderabad, India,

Mobile Id: 9849025342, Email Id: kvgrao1234@gmail.com

S. Sai Satyanarayana Reddy, Professor Dept. of CSE, Principal,VCE,

Hyderabad, India, Mobile Id: 9502653333, Email Id: saisn90@gmail.com

M. Gopichand, Professor & Head, Dept. of IT, VCE, Hyderabad, India,

Mobile: 9849042448, Email Id: gopi_merugu@yahoo.com

This paper structured as follows. The background and

related work is given in Sec.-II. Model based regression

testing and effort estimation is presented in Sec.-III. Finally

the results and discussions are placed in Sec.-IV and

conclusions & future enhancements are given in Sec.-V.

II. RELATED WORK

According to L. Erlikh, 85-90% of the projects are

under maintenance. So, it shows the importance of

regression testing in software maintenance [3]. Jim

Heumann, generated test cases from use cases [4]. This

paper explains the process of generating test cases from the

basic behavioral model called use cases but did not address

regression testing. Bogdan korel used state machines for test

reduction [5]. Yanping, explained regression test suit

reduction using dependency analysis with state machines

[6]. Selvakumar, explained extended dependency analysis

for test suit reduction [7]. The state machines are used to

reduce the test suit, but their main focus is on data

dependencies and control dependencies only [5, 6, 7].

III. MODEL BASED REGRESSION TESTING

To develop any quality software, test cases play a vital

role. As per the existing techniques of testing, Model Based

Testing (MBT) techniques are mostly used for system

testing. i.e. (66% of all the techniques) [8]. As using MBT

in testing is very complex in reality, it is very less used in

regression testing i.e. only 5% compared to all the other

techniques.

Fig.1. Model based regression testing approach.

The proposed approach is presented in Fig.1. Using this

model enhanced test cases are generated from the behavioral

Cost Effective Model Based Regression Testing

Prabhakar K., A. Ananda Rao, K. Venu Gopala Rao, S. S. Satyanarayana Reddy, M. Gopichand

R

ExistingSoftwar

e Product

Maintenance

Re-Testing

Existing Test

Cases

Enhanced

Test Cases

Requirements Use Cases

Test Cases

Proceedings of the World Congress on Engineering 2017 Vol I
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017

mailto:akepogu@gmail.com

models. Testing effort can be estimated very easily by this

model.

Whenever a software system comes for maintenance, it

has to fall under any one of four maintenance categories.

That is maintenance may be a corrective, adaptive,

preventive or perfective maintenance. After identification of

maintenance type, the Change Impact Analysis (CIA)

should be done on existing system. Then the maintenance

people will do necessary modifications. Now it is the job of

QA team to test the modified software by executing all test

cases [9]. This testing is called Re-Testing or Regression

Testing.

In fig.1, the retesting is done with the combination of

existing test cases and Enhanced test cases. In the proposed

model enhanced test cases are generated with help of

behavioral models. That is by considering the changed,

proposed, affected requirements and their related artifices

[10]. After this retesting is performed by considering these

generated test cases as well as existing test cases. This

process will be continued for further maintenance also.

To estimate effort that is required to carry out the

software maintenance activity, the flowing equation (Eq…1)

is used.

Regression Testing Effort =Verification of fixed bugs + EUP. Eq...1

In the above mentioned equation, first component i.e.

verification of fixed bugs, generally 20 minutes time is

required to run the script [1].

A. Generation of Test-Case from Models

Test Cases can be generated from different behavioral

models like classes, use cases, state machines...etc. These

test cases can be used in different testing activities like unit

testing, integration testing, system testing and regression

testing. These test cases can be applied for both

development paradigms and execution environments. Here

use case models are used for generating test cases, because

these models are very much closed to the behavior of the

software system and its related artifacts [4].

B. Use Case Model: Case Study &Results

The Unified Modeling Language (UML) is providing

fourteen diagrams to model the software system. Among

fourteen, the Use-Case diagrams represent behavior of the

software system intended by the customer.

Fig.2. Use Case diagram for Money withdrawal from ATM.

By considering use cases, test cases can be generated very

easily and can be executed automatically or manually. Here

is an example use case diagram for money withdrawal from

an ATM. The pictorial representation of ATM i.e., use case

diagram is shown in Fig.2. Using this figure all test cases

can derived.

Fig.3. Shows Different flows of Use Case model for Money

withdrawal module of ATM system.

Test cases result is either true or false, it depends on the

expected result and actual result.

Table 1. Different flows of Use Case model for Money

withdrawal module of ATM
S.

No.

Main Flows

of Use

Cases

Alternative Flows of Use Cases No. of

Alternativ

e Flows for

each use

case

1.

Insert card

User Interface ,Buttons, Keypad,

Backspace entries, Account

Information, Pin-code Generation,

Transaction charge, Deposit limit,

Limit per transaction, Deposit

limit per day, Withdrawal limit per

transaction, Withdrawal limit per

day, Account status, Card active,

Card inactive, Expired, Replaced,

Reported stolen, Suspicious

activity, Improper card, Proper

card, Wrong way, Upside down,

Correctly, Select language,

Language acceptance, Display

language,

28

2. Enter PIN

Receive PIN, Verify PIN, Correct

PIN move, Wrong PIN, Retype

PIN

05

3. Money

Withdrawal

from Checking account, from

Savings account, Upper limit

(+.01 and -.01), Lower limit (+.01

and -.01), Nothing, Correct

amount (Yes, No), Re-enter,

Check Amount

08

4. Check

Balance

---------- 00

5. Deduct

Amount

---------- 00

6. Receive

amount

---------- 00

7. Eject Card Another transaction (yes, No), Get

receipt (yes, No), Transaction

charge (amount + acc. type)

03

Total no. of Alternate flows of a use case = 44

Total No. of Main Flows of Use Case = 07

Total No. of Main & Alternative Flows = 51

Proceedings of the World Congress on Engineering 2017 Vol I
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017

 If <expected results> equal to < Actual results>

 Then <test case result> should be <True>

else

 <test case result> should be <False>

Test case priority is given based on the severity of the

Bug.
If <test case> result=True <Priority> should be <Low>

else

If<test case>result=False && not affecting other module

 <Priority> should be <Medium>

else

If<test case>result=False && affecting other module

 <Priority> should be <High>

C. Effort Estimation

The use case point method can be used to determine the

software system test estimation, with this technique people

can also forecast the size of software system before

development. This is widely used estimation technique for

object oriented software systems [5].

 This method will primarily take no. of use cases and no.

of actors into consideration and it will estimate the effort in

Man-Hours [11]. The existing equations [Eq..1 to Eq..6] are

used for effort estimation. In equation 6, the term PWE

considered for Plan, Write, and Execute test cases and it is

use case dependent, it varies from system to system [12].

The term TEF is Total Environmental Factor, If TEF is not

provided, tester can assume as 0.5 [11].

 In the given case study “Money withdrawal from ATM”

there are two actors namely User and Bank. User can be

treated as a simple actor because he is following only GUI

whereas Bank is having API / low-level interactions, hence

it is treated as complex actor. And this system has seven

use-cases at three different verities (simple, average and

complex) based on the number of transactions. Every verity

of U/C will have waiting factor shown in Table 2.

The effort can be estimated in man-hours for performing

regression testing. The total effort estimation for ATM

money withdrawal module is obtained as 6.17 man-hours

and this value is presented in table 2.

IV. CONCLUSIONS & FUTURE ENHANCEMENT

In this paper, the model based regression testing approach is

presented. Primarily use cases are considered for generating

test cases for ATM system. This approach achieved to

deriving test cases from behavioral models, maximized test

coverage, early detection of requirements errors, automatic

test case prioritization, automatic test suit reduction/

optimization and effort estimation.

For this case study 55 test cases are derived and these test

cases are used in effort estimation which is represented in

man-hours. This information is useful in carrying out the

software maintenance. It provides low test execution cost

which leads to low project maintenance. Here the model

itself will regenerates the test cases for new functionalities.

 Further research includes implementation of Model Based

Testing (MBT) Techniques for test case optimization with

an experimental setup.

 The Unadjusted Use Case Weight (UUCW) = (Total No. of Simple Use Case *1)+ (Total No. of Average Use Case *2)+

 (Total No. of Complex Use Case *3) ---

Eq.--2

 The Unadjusted Actor Weight (UAW) = (Total No. of Simple Actors *1)+ (Total No. of Average Actors *2)+

 (Total No. of Complex Actors *3) --

Eq.--3

 The Unadjusted Use Case Point (UUCP) = UUCW+UAW -- Eq.--4

 The Adjusted Use Case Point (AUCP) = UUCP * [0.65+(0.01*TEF)] -- Eq.--5

 The Total Effort Through Use Case Point (EUP) = AUCP*PWE --------------------------------------- Eq.--6

Table 2 The effort estimation for the ATM system
Unadjusted Actor weights(UAW) Unadjusted Use Case weights(UUCW)

Actor

Name

Actor Type Factor Weight Use Case Name Use Case Type Factor Total

Factor

User Simple 01 1*1=1 Check balance,

Deduct amount

Receive amount

Simple

(Transactions <=3)

01 3*1=3

------- Average 02 00 Enter PIN,

Eject Card

Average

(Transactions 4 -7)

02 2*2=4

Bank Complex 02 1*3=3 Insert ATM card(UI, Acc.

Info),

Withdrawal

Complex

(Transactions >7)

03 2*3=6

Total UAW 04 Total UUCW 13

Unadjusted Use Case Point (UUCP) = UUCW+UAW 17

Adjusted Use Case Point (AUCP) = UUCP *[0.65+(0.01*TEF)]

 AUCP =17*[0.65+(0.01*0.50)]

11.14

Total Effort through Use cases Pint (UPE) = AUCP* 0.5 5.57

Total Regression Testing Effort = verification of fixed bugs + UPE

 [20(minutes)+5.17(hours)]

6.17

Proceedings of the World Congress on Engineering 2017 Vol I
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017

Table 3. Test Cases for Withdrawal money form the ATM machine

TC

ID

TC Name TC Description Pre –

condition

Input

Fields

Expected

Results

Actual

Results

TC

Resul

t

TC

Prio

rity

1.0.0 user interface Check screens have proper

format and text

ATM Should

not be in out

of order

screens with

proper format

and text

screens

displaying

proper

format and

text

True Low

1.1.0 Buttons buttons correspond to proper

items on screens

ATM Should

have to have

Touch screen

or Buttons

 Touch

Responds to

finger touch

Responding

to finger

touch

True Low

1.2.0 Keypad keypad entries are properly

displayed

Manual and

Virtual Key

pad should

be available

keypad entries

display

properly

keypad

entries are

properly

displaying

True Low

1.3.0 backspace

entries

can backspace to delete entries There should

be a delete

option

Wrong

Data Entry

We can delete

entered data

We are able

to delete

wrong data

True Low

2.0.0 Account

Information

debit or credit card information -------- Choose the

option

Display the

account types

Displaying

Acc. Types

True Low

2.1.0 Pin-code

Generation

System should generate a PIN Max. limit is

4- digits

 ------ User will get

PIN

Getting PIN True Low

2.2.0 transaction

charge

transaction charge per

transaction

With draw

amount

Deduction

from account

Trans.

Amount

Deducted

from

account

True Low

2.3.0 deposit limit

limit per

transaction

deposit limit per transaction Open

Account

Choose

deposit

Display trans.

Limit

Displayed

trans limit

True Low

2.4.0 deposit limit

per day

deposit limit per day Open

Account

Choose

deposit

Display trans.

Limit

Displayed

trans limit

True Low

2.5.0 withdrawal

limit per

transaction

withdrawal limit per transaction Account

should have

money

Choose

withdrawal

Display trans.

Limit

Displayed

trans limit

True Low

2.5.0 withdrawal

limit per day

withdrawal limit per day Account

should have

money

Choose

withdrawal

Display trans.

Limit

Displayed

trans limit

True Low

2.5.0 account status To know the account status Open

Account

Choose

status

option

Display Acc.

Status

Displayed

Acc. Status

True Low

2.5.1 card active Activation of new card for the

first time

Receive the

card from

bank

Insert card Card will

activate

Card

activated

True Low

2.5.2 card inactive Card inactivation ------------ Insert card Card will

activate

Card in-

activated

False Medi

um

2.5.2.1 Expired Card gets Expired Compare

card date

with current

date

Insert card System will

display card

expired

System will

displayed

card expired

True Low

2.5.2.2 Replaced Card is replace with new card Lost/ Stolen

the card

Insert card System will

display

welcome

message

System will

displayed

welcome

message

True Low

2.5.2.3 reported stolen Card was stolen so receive the

complaint

Lost Card Choose the

option

System will

receive

acceptance

System will

received

acceptance

True Low

2.5.2.4 suspicious

activity

Detecting the suspicious activity

with transaction by card

Any

Unknown

activity

Any Wrong

activity

Something

has gone

wrong

False High

3.0.0 insert card Enter the card in to ATM

Machine

There should

be a card

acceptance

path

Insert card Card will go

into the ATM

Machine

Card

inserted

successfully

True Low

3.1.0 improper card The entered card is not ATM

Card

There should

be a card

acceptance

path

Insert card Card will go

into the ATM

Machine

Unable to

insert Card

True Low

3.2.0 proper card The entered card is an ATM

Card

There should

be a card

acceptance

path

Insert card Card will go

into the ATM

Machine

Card

inserted

successfully

True Low

Proceedings of the World Congress on Engineering 2017 Vol I
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017

3.2.1 wrong way Correct card inserted in wrong

direction

There should

be a card

acceptance

path

Insert card Card will go

into the ATM

Machine

Card

inserted

successfully

True Low

3.2.2 upside down Correct card inserted in upside

direction

There should

be a card

acceptance

path

Insert card Card will go

into the ATM

Machine

Card

inserted

successfully

True Low

3.2.3 correctly To check whether the system

responding for valid car or not

monitor

should be

there for

display

 ------ ATM displays

the Welcome

ATM

displayed

Welcome

True Low

3.3.0 Select

language

To check whether the system

displaying language option or

not

There should

be a

language

option

Choose the

language

Language will

be changed

Language

changed

Successfully

True Low

3.3.1 Language

acceptance

To check whether the system

accepting selected language or

not

Chosen

language is

first option

Chosen

language is

first option

only

True Low

3.3.2 Display

language

To check whether the system

displaying all thing in selected

language or not.

ATM Will

display all

language

related options

ATM Will

displayed all

language

related

options

True Low

4.0.0 Enter PIN To check whether the system

asking for pin or not

Enter pin

ATM Will

accept PIN

ATM

accepted

PIN

True Low

4.1.0 receive PIN To check whether the system

receiving pin or not

Entered Data

will be accept

Entered

Data is

accepted

True Low

4.2.0 Verify PIN To check whether the system is

verifying pin with card

information and database or not

Expecting PIN

is correct

Expecting

PIN

verification

decision

True Low

4.2.1 Correct PIN

move

To check whether the system

moving to next activity for

correct pin moves

screen moves

to next level

Screen

moved to

next screen

True Low

4.2.2

Wrong PIN

To check whether the system is

able to identify wrong pin and

asking for reenter the pin or not

wrong Card

& PIN

entries

PIN and the

card is wrong

PIN and the

card are

wrong

True Low

4.2.3 Retype PIN To check whether the system is

retaining the card for more no of

wrong pin entries or not

Re type

correct

PIN

PIN and the

card is correct

PIN and the

card are

accepted

True

Low

5.0.0 withdrawal To check whether the system is

showing withdrawal options or

not (like current, savings acc.)

Choose

withdrawal

option

Choose

savings or

current a/c

Chosen

savings

True Low

5.1.0 from checking

account

To check whether the system

accepting checking account

option or not.

Choose

withdrawal

option

Choose

savings or

current a/c

Chosen

savings

True Low

5.2.0 from savings

account

To check whether the system

accepting savings account option

or not.

Choose

withdrawal

option

Choose

savings or

current a/c

Chosen

savings

True

Low

5.2.1 upper limit

To check whether the system

sending warning message if user

entered amount exceeds max

limit or not.

Enter the

amount

Account

having

sufficient

funds

Account

having

sufficient

funds

True

Low

5.2.2 lower limit To check whether the system

sending warning message if user

entered amount exceeds lower

limit or not.

Enter the

amount

Account

having

sufficient

funds

Account

having

sufficient

funds

True

Low

5.2.3 Fund limit To check whether the system

having sufficient funds or not, if

not warning message is sending

or not

Enter the

amount

Account

having

sufficient

funds

Account

having

sufficient

funds

True

Low

6.0.0 correct amount To check whether the entered

amount is correct or not.

Have a look

on entered

amount

Get options

Yes and No

Gat options

Yes and No

True

Low

6.1.0 Yes Proceed with withdrawal Account

having

sufficient

funds

Press YES Counting

machine

(amount)

starts

Counting

amount

started

True

Low

6.2.0 No Cancel withdrawal option

Press No Eject card Ejected

Card

True

Low

6.2.1 Re-enter Enter the amount once again Insufficient Enter the Transaction Proceeding True Low

Proceedings of the World Congress on Engineering 2017 Vol I
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017

fund/ limit

exceeds

…etc.

amount proceeds with

Transaction

7.0.0 Check Balance To check the account status

Account

Existence

Enter

Account

Number

Sufficient

amount is

available in

the Account

Amount is

available

True Low

8.0.0 Deduct

Amount

To deduct the requested amount

from the account.

Sufficient

amount in

the account

Amount will

debit from

Account

Amount was

deducted

from

account

True Low

 9.0.0 Receive

amount

To check whether the user is able

to receive amount or not

ATM will

send money

Received

amount

True

Low

10.0.0 another

transaction

To check whether the system is

asking for another transaction or

not

Complete

previous

transaction

Choose an

option

System will

display Yes or

No options

System will

displayed

Yes or No

options

True

Low

10.1.0 yes

To check whether the system

Proceeding with other

transaction or not

Account

having

sufficient

funds

Press YES Counting

machine

(amount)

starts

Counting

amount

started

True

Low

10.2.0 No To check whether the system

proceeding with no transaction or

not.

Press No Eject card Ejected

Card

True

Low

10.3.0 Get receipt

To check whether the system is

Asking the user to get the receipt

on his/her account or not.

Transactions

completed

Choose an

option

System will

display Yes or

No options

System will

displayed

Yes or No

options

True Low

10.4.0 yes

To check whether the system

receiving get the receipt option

or not.

Printer

should ready

Choose Yes ATM will

send printed

paper

Received

Printed

paper

True

Low

10.5.0 No To check whether the system

receiving print receipt is not

required or not

Choose No True

Low

11.0.0 transaction

charge

(amount + acc.

type)

To check whether the system

displaying transaction charges or

not.

Choose

trans.

Charges

Displays the

list

Displayed

the list

True

Low

12.0.0 Eject Card To check whether the ATM

machine card back or not.

Click on

eject option

Card will be

ejected by

ATM

Received

Card from

ATM

machine

True

Low

3.3.0 Select

language

To check whether the ATM

system is displaying different

user continent languages or not

There should

be a

language

option

Choose the

language

Language will

be changed

Language

changed

Successfully

True Low

*TC- Test- Case.

REFERENCES

[1] Prof. A. Ananda Rao et al “An Approach to Cost Effective Regression

Testing in Black-Box Testing Environment”, IJCSI International

Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, ISSN

(Online): 1694-0814,May 2011.

[2] Susanne Rösch, Sebastian Ulewicz, Julien Provost, Birgit Vogel-

Heuser “Review of Model-Based Testing Approaches in Production

Automation and Adjacent Domains—Current Challenges and

Research Gaps”, Journal of Software Engineering and Applications, ,

2015, 8, 499-519.

[3] L. Erlikh, “Leveraging legacy system dollars for e-business”, IEEE,

IT Professional, Volume: 2, Issue: 3, May/Jun 2000.

[4] Jim Heumann, “Generating test cases from Use Cases” Rational edge,

Copyright Rational Software 2001 | Privacy/Legal Information.

[5] Korel, B., Tahat, L. and Vaysburg, B. (2002) Model Based Regression

Test Reduction Using Dependence Analysis. 2002 International

Conference on Software Maintenance, Montreal, 3-6 October 2002,

214-223.

[6] Yanping hen, “Regression Test Suit Reduction Using Extended

DependencyAnalysis”Pages62-69 ACM NewYork, NY, USA ©2007

table of contents ISBN:978-1-59593-724.

[7] S. Selvakumar et al ,“Extended Finite State Machine Model-Based

Regression Test Suite Reduction Using Dynamic Interaction

Patterns” Springer-Verlag Berlin Heidelberg-2010 10.1007/978-3-

642-12214-9_82

[8] Arilo C. Dias Neto1 Rajesh Subramanyan2 Marlon Vieira2 Guilherme

H. Travassos1, "A Survey on Model-based Testing Approaches: A

Systematic Review", ACM November 5, 2007.

[9] Julien Courbe, “An ounce of prevention: Why financial institutions

need automated testing,” PwC, November 2014, www.pwc.com/fsi

[10] M. Gopichand, A.AnandaRao “Five Layered model for identification

of software performance requirements” International Journal of

Software Engineering and Applications(IJSEA),Volume 3,No.5, pp

47-61,September 2012.

[11] Gregory Tassey, “The Economic Impacts of Inadequate Infrastructure

for Software Testing”, Health, Social, and Economics Research

Research Triangle Park, NC 27709, May 2002.

[12] Suresh Nageswaran, “Test Effort Estimation Using Use Case Points”,

Copyright(c) 2001, Cognizant Technology Solutions, Quality Week

2001, San Francisco, California, USA, June 2001.

Proceedings of the World Congress on Engineering 2017 Vol I
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017

http://www.scirp.org/journal/AuthorInformation.aspx?AuthorID=204355&searchCode=Susanne++R%26ouml%3bsch&searchField=authors&page=1
http://www.scirp.org/journal/AuthorInformation.aspx?AuthorID=204356&searchCode=Sebastian++Ulewicz&searchField=authors&page=1
http://www.scirp.org/journal/AuthorInformation.aspx?AuthorID=204358&searchCode=Julien++Provost&searchField=authors&page=1
http://www.scirp.org/journal/AuthorInformation.aspx?AuthorID=204359&searchCode=Birgit++Vogel-Heuser&searchField=authors&page=1
http://www.scirp.org/journal/AuthorInformation.aspx?AuthorID=204359&searchCode=Birgit++Vogel-Heuser&searchField=authors&page=1
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.L.%20Erlikh.QT.
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6294
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=18354
http://www.acm.org/publications
http://dl.acm.org/citation.cfm?id=1295074&picked=prox&cfid=859058213&cftoken=65252540
http://www.pwc.com/fsi

