
Securing RESTful Web Services
using Multiple JSON Web Tokens

Pedro Mestre, Member, IAENG, Rui Madureira, Pedro Melo-Pinto, and Carlos Serodio, Member, IAENG

Abstract—Because of their stateless property RESTful web
services cannot use session based authentication, therefore
other authentication and authorization techniques must be
used instead. Basic HTTP Authentication Scheme or HTTP
Digest Access Authentication are two valid options, however
these techniques are not very suitable when performance is a
key issue, because the user credentials must be checked for
every HTTP transaction (e.g. using a database). An alternative
method is to use token based authorization, for example using
JSON Web Tokens. The client credentials are verified once by
an authentication service, which issues a token that the client
uses to access the services. While the token is valid there is
no need to check the user credentials again. In this paper it
is presented a system based on multiple JSON Web Tokens,
one per transaction to prevent replay attacks, which supports
anytime token revoking, based on distributed token issuing and
validation. The proposed token based system, when compared
with those that do not use tokens had a better performance.
When a single service provider is used, in our test conditions, it
is 198% faster than authenticating all requests using a database.

Index Terms—RESTful, web services, authentication, autho-
rization, token, multiple tokens, JSON Web Token.

I. INTRODUCTION

ACCORDING to [1] RESTful web services, which are
lightweight web services, are particularly well suited

for creating APIs for clients spread out across the Internet
and some authors have been using RESTful web services in
projects related to agriculture and farm management [2],[3].
These were therefore chosen by the authors of the preset
paper to create remote data access services in projects also
related to agriculture and wine production.

In these projects a set of distributed applications and sen-
sors are used to collect georeferenced data from vineyards,
such as multispectral images of grape bunches, photographies

Manuscript received March 1, 2017; revised 3 April, 2017.This work was
supported by the project ”VitiNov” - PA 52306, funded by he Agricultural
and Rural Development Fund (EAFRD) and the Portuguese Government
by Measure 4.1– Cooperation for Innovation PRODER program – Rural
Development Programme.

P. Mestre is with Centre for the Research and Technology of Agro-
Environmental and Biological Sciences, CITAB, University of Trás-os-
Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real,
Portugal, www.utad.pt, and, Algoritmi Research Centre, Guimarães, Portu-
gal (phone: +351-259350363; email: pmestre@utad.pt)

R. Madureiria is with University of Trás-os-Montes and Alto Douro,
UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal, www.utad.pt, email:
rccmadureira@gmail.com)

P. Melo-Pinto is with Centre for the Research and Technology of Agro-
Environmental and Biological Sciences, CITAB, University of Trás-os-
Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real,
Portugal, www.utad.pt, and Algoritmi Research Centre, Guimarães, Portugal
(email: pmelo@utad.pt)

C. Serodio is with Centre for the Research and Technology of Agro-
Environmental and Biological Sciences, CITAB, University of Trás-os-
Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real,
Portugal, www.utad.pt, and Algoritmi Research Centre, Guimarães, Portugal
(email: cserodio@utad.pt)

of vine leaves, micro-meteorological data, textual informa-
tion inserted by staff (e.g. anomalies reporting), etc.

These data are collected using wireless sensors, embedded
computers and mobile devices, and uploaded to a server
for storage and processing. To the above mentioned data
it can also be added additional information, for example
by the vineyard manager, such as comments and vineyard
works schedule. Besides data upload these web services also
support data access anytime and anywhere.

In those projects web services and applications are being
developed to work as generic as possible, to allow its use
in several vineyards (at the moment) and crop types (in
the future), and used by several business clients/partners.
The objective is to create a cloud service for agricultural
services, in a first stage for the Douro Region in the North
of Portugal, that can serve both the Scientists and agriculture-
related Businesses. Because data belongs to several business
clients a major concern in this project is to ensure that access
to web services is made only by authorized principals (people
and devices).

Because one of RESTful web services constraints is that
communications between the client and the server must be
stateless [4], no session information can be stored in the
server, and therefore session based authentication methods
cannot be used.

If sessions are not used, then after every transaction all
relevant data related to the session (and that will be needed
later) must be sent to the client. This stateless nature of
RESTful web services plays an important reole in service
scalability.

Because servers do not store session data this means that
whenever a client requests a service the server will not
”remember” the client. The server must then be able to
authenticate the client and check its authenticity for every
HTTP transaction.

Client authentication can be made by sending authentica-
tion information in every HTTP request using for example
the Basic HTTP Authentication Scheme, as described in
RFC7617 [5], or the HTTP Digest Access Authentication,
as in RFC7616 [6].

In both cases the server must have access to the user
credentials, stored for example in a relational Database (e.g.
MySQL, PostgreSQL, etc.) or using LDAP (Lightweight Di-
rectory Access Protocol) [7], just to mention two examples.

This is a very simple method, easy to implement, but that
has scalability issues. For example let us consider the au-
thentication based on a relational Database: its performance
will depended on the database technology and on the size
of the tables [8]. If every transactions needs that the user
authentication information is checked or retrieved from the
database, if the number of clients and transactions increase,
the service performance will start to decrease.

Proceedings of the World Congress on Engineering 2017 Vol I 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017



Other authentication methods that can be used by services
to authenticate clients include the use of tokens: the user
requests authentication to an authentication service; the au-
thentication service sends a token to the client; the client uses
this token to access the service. Credentials are sent only at
the beginning or after the token has expired, not in every
transaction.

To implement such an authorization system to validate
client requests to web services we have many options,
including the use of simple tokens such as JSON Web Tokens
(JWT) [9] or use a more complex infrastructure such as
OAuth 2.0 Authorization Framework [10].

The objective of this work is to develop a scalable authenti-
cation and authorization system based on tokens that allows
anytime token revocation, that complies with the stateless
constraint of RESTful web services and that prevents replay
attacks. Because of its simplicity, instead of adapting an
existing framework to the needs, authors decided to build
a custom authorization system based on JWT.

The solution presented in this paper is based on multiple
tokens, one per transaction, to avoid replay attacks (without
the need of session tokens) and that can be easily revoked
without the need of a centralized token management system.
From the clients’ point of view, this is a lightweight system
that can be easily integrated in IoT (Internet of Things)
devices, Web and mobile applications, and M2M (Machine-
to-Machine) systems.

II. AUTHORIZING ACCESS TO WEB SERVICES USING
JSON WEB TOKENS

JWT is an open standard, RFC7519 [9], which defines
a way of sending signed information, as a JSON object,
between parties. Advantages of using JWT includes: it is
compact in comparison to XML based solutions such as
SAML (Security Assertion Markup Language) [11]; infor-
mation can be verified and trusted because tokens can be
digitally signed.

A JSON Web Token is made of three parts:
• Header – which usually has two fields: the type of the

token (JWT) and the hashing algorithm;
• Payload – that contains the token reserved, public and

private claims.
• Signature – used to verify if the token can be trusted or

not.
A typical header for a token signed using HMAC SHA256

would be:

{
"typ": "JWT",
"alg": "HS256"
}

Statements about the client (claims) are sent in the pay-
load. These can be:

• Reserved, which are predefined recommended claims:
Expiration Time (exp), Not Before (nbf), Issued At (iat),
JWT ID (jti), Issuer (iss), Audience (aud), and Subject
(sub);

• Public claims that can be freely defined;
• Private claims, which are not part of Reserved or Public

claims, and that a producer and consumer of a JWT may
agree to use.

Fig. 1. Simplified Diagram of Authentication and Service Access using a
Single Token.

An example of a Payload using some of the Reserved Claims
would be:

{
"nbf": 1499238000,
"exp": 1499450400
}

The above listing is a very simple example that uses only
two claims (Not Before and Expiration Time). This token
is valid from 05 Jul 2017 07:00:00 GMT until 07 Jul 2017
18:00:00 GMT, i.e., during WCE 2017.

Signature of a JWT token can be obtained either by using
HMAC algorithm (as above) or a public/private key pair
using RSA.

The resulting token is the concatenation of the above three
parts (Header, Payload and Signature), encoded in base64
and separated by dots. As an example the above presented
example token, signed using a shared key ”WCE2017” would
look like the example below:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJu
YmYiOjE0OTkyMzgwMDAsImV4cCI6MTQ4ODI4ODYxN
SwianRpIjoiZDA2NzQyMjYtNzZhZC00MTAzLTg3ZD
MtZWZkYzJlNWYwNjE3IiwiaWF0IjoxNDg4Mjg1MDE
1fQ.e-kIrSZgZ4hPVX4psgHGqNMPhPzB-WcLxx2V0
RbFxvk

Please notice that line breaks were added for better visu-
alization.

A. Using a Single Token

A simplified diagram exemplifying how JSON Web To-
kens can be used for authentication and authorization is
depicted in Fig. 1. In this example we assume that all servers
are trusted and can verify the token signature:

• (1) – First, the client makes an Authentication Request
to the Authentication Service, sending its credentials to
the server. This request can be made using any non-
token based method (e.g. Basic Authentication). While

Proceedings of the World Congress on Engineering 2017 Vol I 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017



the token is valid there is no need to repeat this step
again;

• (2) – Credentials are checked, for example using a
Database, and if the client can be trusted a token is
issued and returned to the client. This token can contain
claims about the client permissions (e.g. which services
the client can access), an unique token ID and token
expiry time;

• (3, 5) – As long as the token is valid, to access services
(without the need of re-authentication) the client only
needs to ”present” it to the service providers;

• (4, 6) – If the server can verify the token signature, and
the client has the correct permissions for the service it
is requesting, the server executes the service and sends
the response to the client. If the server cannot verify
the token signature, or if the token has already expired,
or the client does not have the correct permissions,
the server response will be a ”403 Forbidden” HTTP
response.

In the above example, because both servers can verify
the token signature, the client can access services of any
server using a single token, provided that it has the right
permissions.

The client only has to send authentication information
once, and there was also only a single access to the users
database. All other transactions are made without the need
to access to user information. It is then expected that the
performance of this method is better than those that rely on
user authentication for every transaction.

Obviously that the diagram presented in Fig. 1 is missing a
key player for the security of the system: what happens when
we need to revoke a token? We need a token Management
entity that stores information about the issued tokens, as
presented in Fig. 2.

When a service is requested by the client, the server must
ask to this Token Management entity if the token is valid. If
a device is lost or compromised, the token can be revoked,
and the server will be informed by Token Management that
the token is not valid anymore.

Fig. 2. Authentication and Service Access using a Single Token.

This implies that extra steps are needed (Fig. 2): (A) When
the token is issued it must be sent to the Token Management;
(B) When a client requests a service, the server must check
the token validity; (C) The Token Manager must inform the
server if the token is still valid; (D) If the token is revoked,
the Token Manager must remove it from its valid tokens list.

B. Using Multiple Tokens, one per Transaction
Relying on the Token Management service to validate the

token would create a single point of failure, and for every
transaction this server would be contacted by the service
providers. An increase on the number of clients and/or trans-
actions would also increase the number of token validation
requests. This means that a cluster of Token Management
server would be needed to cope with performance and service
availability issues.

Grouping transactions or define a time limit between token
validation verifications could solve the issue related to the
number of requests. However if a token is revoked there will
be a propagation delay.

So the solution that authors propose in this paper is that
token issuing and validation is distributed, i.e., each server
can issue a new token and validate its own tokens. When a
server receives a client request, if the token did not expire
yet, the server first verifies who issued that token. The server
will then contact the token issuer and checks if it is still valid.
A token is valid if it was not revoked or used in a previous
transaction.

URL of the token validation service is one of the public
claims inserted in the token by its issuer. Servers can only
send token validation requests to trusted servers.

This is not the same as Refresh Tokens, because Refresh
Tokens are used to obtain a new access token when the
current access token becomes invalid or expires [10]. In
this case the a new token is issued for every transaction.
Because there is a token per transaction, replay attacks can
be prevented.

The working principle of the proposed system is exempli-
fied in Fig. 3:

• (1) – The client sends its credentials to the Authentica-
tion service;

• (2) – Credentials sent by the client are verified (e.g.
using a Database) and if the principal is positively
authenticated then a new token is issued. This token
is stored locally in a token cache for later validation;

• (3) – The token is sent to the client;
• (4) – When the client makes a request to a server (in this

example Server B) it has to send the previously received
token. If the server can verify the token signature and it
has not expired already it will then check which trusted
server has issued the token (in this example it was
Server A).

• (5) – Server B will contact the token issuer (Server A)
requesting the token validation;

• (6) – If server A finds the token in its token cache
(the token is valid) then the token is deleted to prevent
further attempts from clients to use the same token;

• (7) – Server B is informed if the token was found in
the tokens cache, i.e., if the token is still valid;

• (8) – The server will issue a new token and adds it to
its token cache (for future validation);

Proceedings of the World Congress on Engineering 2017 Vol I 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017



Fig. 3. Authentication and Service Access using Multiple Tokens.

• (9) – Service requested by the client is executed and
when the server sends the response to the client it also
sends the new token that the client must use in its next
service request.

If the next client request is made to the same server (step
4 again), then the server will check for the token on its
own cache (steps 5 and 6 are not executed) and deletes
the token form its cache (8). If instead the request is made
to another server (e.g. Server C), then the above process is
repeated: (10) Request is sent to server; (11) Server asks to
the issuer server for the token validity; (12) token is deleted
form the cache; (13) Token validity response is sent back to
the requesting server; (14) A new token is issued and stored
in the local cache; (15) The new token is sent to the client
together with the service result.

Besides information regarding to the principal permissions
tokens must also have an expiry time. Whenever a token
expires it must be removed from the cache. This can be
achieved using a service that checks the expire time of
every token stored in the token cache. Even in heavy load
conditions this is a very fast operation. For example, if
an Hash Table is used to implement the cache, search for
items to remove is an operation that has a cost of O(n)
and removing an item as a cost of O(1). This means that
in the worse case scenario, when all tokens have expired,
this ”cleanup” operation will take O(n).

At anytime if there is a security problem and a token must
be revoked, it is only needed to send a message to the servers
requesting them to ”forget” any token of that client. This
means that an unique identifier for the client must be sent as
a claim in the token.

III. TESTS AND NUMERICAL RESULTS

In this section are presented the numerical results obtained
with performance tests made to the proposed system. These
tests were made using a client running multiple threads and
each thread making several service requests.

Fig. 4. Testing Scenario

A. Testing Scenario

To implement the proposed authentication service any
server technology could be used. Because this authentication
and authorization system will be used in projects that are
already using Java, the services were implemented Java
Enterprise Edition 7.

In Fig. 4 it is presented the logical diagram of the testing
scenario, which was implemented using virtual machines
(each server or client is a virtual machine). All those virtual
machines are running in the same server, and to each virtual
machine it was allocated 4Gbytes of RAM and a pro-
cessor core (Intel(R) Xeon(R) E5-2620@2.00GHz). These
resources were not shared, i.e., the test server has enough
RAM and CPU cores for all virtual machines.

Client and servers are connected using a virtual switch. To
verify how the connection speed between the peers would
influence the results, for each set of tests the switch speed
was set to: no limit; 100Mbps; 1Gbps. The last two to sim-
ulate when services and clients are physically implemented
in different computers.

In this scenario all servers and clients are running Ubuntu
Linux Server 16.10, 64 bit version, web services are run-
ning on Glassfish 4.1.1 Opensource Edition using Java 8
(1.8.0 121). To create and verify the tokens it was used JJWT
(JSON Web Tokens for Java and Android).

Server 1 is running the Authentication Service and a
”dummy” service. The Authentication Service is used by the
client to get the token that will enable access to services
provided by Server 2 and Server 3, and to validate the tokens
that it has issued (for multiple tokens). The ”dummy” service
on Server 1 requires user credentials to be sent in every
transaction, and it checks those credentials in a MySQL
database table which has 10.000 user records.

Both Server 2 and Server 3 have the following services:
a dummy service that uses a single token; a dummy service
that used multiple tokens (and issues a new token when the
service is called); a token validation service.

B. Database Authentication Tests

This first set of tests consisted in sending 250 requests per
client to a web service that authenticates the user credentials
using a database. Results of these tests are used as reference

Proceedings of the World Congress on Engineering 2017 Vol I 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017



values to assess the performance improvement, that is ex-
pected, when token-based solutions are used. In Table I are
presented the time per transaction values, in ms, that were
obtained.

TABLE I
DATABASE AUTHENTICATION.

Number of Clients

Conn. Speed 10 20 30 40 50 100

No Limit 1,409 1,406 1,400 1,394 1,395 1,384

100Mbps 1,415 1,405 1,402 1,397 1,395 1,389

1Gbps 1,407 1,404 1,399 1,390 1,387 1,383

C. Using a Single Token

The second set of tests consisted in authenticating the
client using the Authentication Service and then use a
single token to access the web services. Results presented in
Table II (in µs) were obtained using a single service provider
to which the client made 1000 requests.

TABLE II
SINGLE TOKEN, SINGLE SERVER.

Number of Clients

Conn. Speed 10 20 30 40 50 100

No Limit 446 442 446 443 448 452

100Mbps 449 443 446 444 446 443

1Gbps 451 444 452 440 450 445

Similarly to the above tests, values in Table III were
obtained using a single token, however in this case service
requests were sent to two servers. All clients made 500
requests to each server. Client requests were sequential, and
the client only sent a new request after receiving the response
to the previous request. Values in Table III are in µs.

TABLE III
SINGLE TOKEN, TWO SERVERS.

Number of Clients

Conn. Speed 10 20 30 40 50 100

No Limit 264 266 256 258 253 250

100Mbps 267 260 256 255 253 249

1Gbps 274 262 256 254 250 250

D. Using Multiple Tokens

This third set of tests consisted in using multiple tokens.
The Client sent its credentials to the Authentication Service
that issued the first token, and then each service provider
sent a new token whenever the client requests a service.

Table IV presents the time per transaction when services
are requested to a single server (1000 requests) and Table

V presents the values obtained when two servers were used.
Is the latter case clients made 500 requests to each server.
In both cases clients only sent a request after receiving a
response to the previous request. Values in the tables are in
µs.

TABLE IV
MULTIPLE TOKENS, ONE SERVERS.

Number of Clients

Conn. Speed 10 20 30 40 50 100

No Limit 476 470 473 462 466 464

100Mbps 481 470 468 463 468 467

1Gbps 481 473 476 466 461 466

TABLE V
MULTIPLE TOKENS, ONE SERVERS.

Number of Clients

Conn. Speed 10 20 30 40 50 100

No Limit 563 589 585 585 591 590

100Mbps 563 585 583 583 592 587

1Gbps 560 581 584 579 593 588

IV. DISCUSSION

As it was already expected worse performance was ob-
tained using authentication of every request, based on a
Database, which had an average time per transaction of
1.398ms. As it can be seen in the plot of Fig. 5, when a
single token (and single server) the transaction response time
decreases to approximately one third (446µs). If two servers
are used the mean time per transaction is reduced even further
(to 257µs) as a consequence of load balancing between
servers. The actual time per transaction does not decrease,
however each server has half of the requests therefore the
mean value is lower.

Fig. 5. Performance Comparison of Database Authentication vs Single
Token.

Proceedings of the World Congress on Engineering 2017 Vol I 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017



Fig. 6. Performance Comparison of Using a Single Token vs Using Multiple
Tokens.

If we compare the performance of ”Single Token” vs
”Multiple Tokens” using only one server (Fig. 6) we can
see that we have similar performance. There is only a 5%
between the obtained values. This can be easily explained
because there is only a single server, and the slight time
increase is because of the time needed to issue the new
token. However when two servers are used, as expected,
the performance will be worse. We now have the network
between service provider and token validation service. If we
compare the time per transaction with that obtained using a
”Single Token” and one server there is an increase of 32%
and an increase of 126% in comparison to ”Single Token”
with two servers.

V. CONCLUSION AND FUTURE WORK

In this paper it was presented a token based web services
authentication and authorization system using multiple JSON
Web Tokens. Although the proposed system has a worse
performance than those that use a single token, it has the
advantage of enabling fast token revoking if a device is
compromised. Also Token Management replication is an
intrinsic characteristic.

On the other hand, if we compare the performance of
”Multiple Tokens” with that of Database authentication we
can conclude that it has a much better performance. Time per
transaction of the latter is worse by 140%. If we compare
the results using a single server, that value rises to 198%.

To be noticed that the proposed system was not negatively
affected by the available bandwidth. In fact for all tests it has
no or little influence on the performance, despite the increase
of the number of messages exchanged between the servers.

Because symmetric key algorithms are faster than those
that use asymmetric keys [12], authors have used the first
option to create the token signatures. However this raises the
question of how to distribute those shared symmetric keys
with ”in production” trusted servers.

As future work authors plan to implement a key sharing
feature, that can be based on the solution presented by Foltz
and Simpson in [12] to share encryption keys for documents.

Such a key sharing system can also be extended to other
features that need to be implemented such as the distribution
the trusted servers list.

Another feature that could be very useful, and that would
increase the performance of token revoking is to implement
a multicast message exchange between the servers, that are
in the same data-center.

ACKNOWLEDGMENT

REFERENCES

[1] E. Jendrock, R. Cervera-Navarro, I. Evans, K. Haase, and W. Markito.
The Java EE 7 Tutorial: Volume 2. Oracle. [Online]. Available:
https://docs.oracle.com/javaee/7/tutorial/

[2] M. Arroqui, C. Mateos, C. Machado, and A. Zunino, “{RESTful}
web services improve the efficiency of data transfer of a whole-farm
simulator accessed by android smartphones,” Computers and Elec-
tronics in Agriculture, vol. 87, pp. 14 – 18, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0168169912001305

[3] A. Kaloxylos, A. Groumas, V. Sarris, L. Katsikas, P. Magdalinos,
E. Antoniou, Z. Politopoulou, S. Wolfert, C. Brewster, R. Eigenmann,
and C. M. Terol, “A cloud-based farm management system:
Architecture and implementation,” Computers and Electronics in
Agriculture, vol. 100, pp. 168 – 179, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0168169913002846

[4] I. Porres and I. Rauf, “Modeling Behavioral RESTful Web
Service Interfaces in UML,” in Proceedings of the 2011 ACM
Symposium on Applied Computing, ser. SAC ’11. New York,
NY, USA: ACM, 2011, pp. 1598–1605. [Online]. Available:
http://doi.acm.org/10.1145/1982185.1982521

[5] J. Reschke, “The ’Basic’ HTTP Authentication Scheme,” Internet
Requests for Comments, Internet Engineering Task Force (IETF), RFC
7617, September 2015.

[6] R. Shekh-Yusef, D. Ahrens, and S. Bremer, “HTTP Digest Access
Authentication,” Internet Requests for Comments, Internet Engineering
Task Force (IETF), RFC 7616, September 2015.

[7] J. Sermersheim, “Lightweight Directory Access Protocol
(LDAP): The Protocol,” Internet Requests for Comments,
Internet Engineering Task Force (IETF), RFC 4511, June
2006, http://www.ietf.org/rfc/rfc4511.txt. [Online]. Available:
http://www.ietf.org/rfc/rfc4511.txt

[8] A. Saikia, S. Joy, D. Dolma, and R. Mary, “Comparative Performance
Analysis of MySQL and SQL Server Relational Database Management
Systems in Windows Environment,” International Journal of Advanced
Research in Computer and Communication Engineering, vol. 4, no. 3,
2015.

[9] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),”
Internet Requests for Comments, Internet Engineering Task Force
(IETF), RFC 7519, May 2015, http://www.ietf.org/rfc/rfc7519.txt.
[Online]. Available: http://www.ietf.org/rfc/rfc7519.txt

[10] D. Hardt, “The OAuth 2.0 Authorization Framework,” Internet
Requests for Comments, Internet Engineering Task Force (IETF),
RFC 6749, October 2012, http://www.ietf.org/rfc/rfc6749.txt. [Online].
Available: http://www.ietf.org/rfc/rfc6749.txt

[11] B. Campbell, C. Mortimore, and M. Jones, “Security Assertion Markup
Language (SAML) 2.0 Profile for OAuth 2.0 Client Authentication
and Authorization Grants,” Internet Requests for Comments, Internet
Engineering Task Force (IETF), RFC 7522, May 2015.

[12] K. E. Foltz and W. R. Simpson, “Simplified Key Management for
Digital Access Control of Information Objects,” in Lecture Notes
in Engineering and Computer Science: Proceedings of The World
Congress on Engineering 2016, WCE 2016, 29 June - 1 July, 2016,
London, U.K., 2016, pp. 413–418.

Proceedings of the World Congress on Engineering 2017 Vol I 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017




