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Abstract— Accelerometers and Gyroscopes are typically used to 

measure rotation angles. However, the nature of both sensors 

makes difficult to estimate an angle using only one of these 

sensors. This is because gyroscopes return high bias data, and, 

since accelerometers detects every small acceleration in each 

axis, the output of this sensor is very noisy. 

A common solution is to combine both signals in so-called 

sensor fusion. Two popular techniques are Complementary 

Filters and Constant Gyro Bias Kalman Filters. These 

algorithms are attractive because they are simple to implement 

and do not depend on specific parameters of the system. 

Because these filters use the arctangent function, they cannot 

resolve a discontinuity on the estimated signal. This discontinuity 

is caused by a flip among the two endpoints in the range of 

arctangent function. This range is usually [-π/2, π/2] or [-π, π]. 

This problem occurs because of the discontinuous nature of the 

tangent function, and because tangent is strictly not invertible. 

To solve this, an additional routine must be implemented to 

patch these flips.  

This paper presents a practical Dual Extended Kalman Filter 

algorithm for angle estimation. This work focus on the restricted 

problem of measuring the angle of rotation of a body respect to 

one axis parallel to the earth surface. The main characteristic of 

the developed algorithm is that it does not depend on physical 

parameters and does not use the inverse tangent function on its 

implementation.  

For the implementation, the accelerometer and gyro signals 

were acquired from the IMU MPU-6050 with a 50 ms sampling 

time. The complete algorithm was implemented in a MATLAB 

script and then it was compared with two other methods usually 

used in tilt estimation: Complementary Filters and Constant 

Gyro Bias Kalman Filter. 

 

Index Terms—Angle Estimation, Dual Extended Kalman 

Filter, Sensor Fusion, Kalman Filter, Tilt Estimation.  

  

I. INTRODUCTION  

n many applications it is needed to know the orientation of 

a body respect to a certain coordinate system. This work  
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focus on the restricted problem of measuring the angle of 

rotation of a body respect to one axis parallel to the earth 

surface.  

There are two common sensors used to measure this 

orientation: accelerometers, and gyroscopes. One way of 

doing this is to use an accelerometer to find the gravity 

components, then the angle is calculated using an inverse 

tangent function. Other form is to use a gyroscope to measure 

the angular speed, and the angle is simply this angular speed 

accumulated over the time. 

Both techniques have their drawbacks. The accelerometer 

does not measure only the gravity components. It also 

measures every small acceleration in each axis, so its signals 

are usually noisy. On the other hand, the gyroscope is less 

noisy but the accumulation of the angular speed over the time 

also causes an accumulation of the noise, producing a bias in 

the angle signal. 

To overcome these problems two popular techniques of 

sensor fusion are usually used: Complementary filters and 

Kalman filters [2] [4].  

A complementary filter is employed because it is very 

practical, and has low computational complexity. It is a 

weighted sum of the gyro and accelerometer data: 

 

𝜃𝑘+1 = 𝑎(𝜃𝑘 + 𝜔𝑘) + (1 − 𝑎)𝑧𝑘   (1) 

𝑧𝑘 = arctan(𝑎𝑚𝑡𝑘
/𝑎𝑚𝑟𝑘

) 

 

𝑎: Adjustable parameter between 0 and 1. 

𝑧𝑘: Measured angle at the kth instant. 

𝑎𝑚𝑡𝑘
: Measured tangential acceleration at the kth instant. 

𝑎𝑚𝑟𝑘
: Measured radial acceleration at the kth instant. 

𝜃𝑘: Angle of rotation at the kth instant. 

𝜔𝑘: Angular velocity at the kth instant. 

 

Also, it is typically preferred a Linear Kalman filter [2] 

using the following constant gyro bias model: 

 

𝜃𝑘+1 = 𝜃𝑘 + (𝑏𝑘 +𝜔𝑘)    (2) 

𝑏𝑘+1 = 𝑏𝑘 

 

𝑏𝑘: Gyroscope bias at the kth instant. 

 

Both filters are simple to implement and do not depend on 

physical parameters. 

This paper presents a Dual Extended Kalman Filter [1] 

algorithm designed for tilt estimation. The algorithm relies 

principally on the gyroscope measures that are less noisy than 

accelerometer signals. This model does not depend on 
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physical parameters, does not use the arctangent function and 

it was designed and tested using MATLAB software. 

 

II. MATHEMATICAL MODEL  

As mentioned in the introduction, this model greatly relies 

on the angular speed measured with the gyroscope. Ideally, 

the measured angle is simply the accumulated angular speed 

over the time. If the sampling time is one, the equation is: 

𝜃𝑘+1 = 𝜃𝑘 +𝜔𝑘     (3) 

𝜃𝑘: Measured angle at the kth instant. 

𝜔𝑘: Angular velocity at the kth instant. 

 

To improve the model, additional information is obtained 

from the accelerometer. The accelerometer measures the 

gravity and the acceleration at the same time. This is 

represented as: 

 𝑎𝑚𝑡𝑘
= 𝑎𝑡𝑘 + 𝑔𝑐𝑜𝑠(𝜃𝑘)    (4) 

𝑎𝑚𝑟𝑘
= 𝑎𝑟𝑘 + 𝑔𝑠𝑖𝑛(𝜃𝑘) 

 

𝑎𝑡𝑘: Tangential acceleration at the kth instant. 

𝑎𝑟𝑘: Radial acceleration at the kth instant. 

𝑎𝑚𝑡𝑘
: Measured tangential acceleration at the kth instant. 

𝑎𝑚𝑟𝑘
: Measured radial acceleration at the kth instant. 

𝑔: Local gravity. 

 

 The tangential and radial acceleration are: 

𝑎𝑡𝑘 = 𝑟𝛼𝑘 + 𝑎𝑡𝑘𝑐𝑚    (5) 

𝑎𝑚𝑟𝑘
= −𝑟𝜔𝑘

2 + 𝑎𝑟𝑘𝑐𝑚     (6) 

 

𝛼𝑘: Angular acceleration respect to the center of curvature 

at the kth instant. 

𝑟:  Radius of curvature. 

𝑎𝑡𝑘𝑐𝑚 : Tangential acceleration of the center of mass 

relative to an inertial frame. 

𝑎𝑟𝑘𝑐𝑚: Radial acceleration of the center of mass relative to 

an inertial frame. 

 

The terms 𝑎𝑡𝑘𝑐𝑚 and 𝑎𝑟𝑘𝑐𝑚 can be used to give additional 

information to the system. For example, if it is plausible, an 

additional accelerometer can be placed in the center of mass. 

On this work, a null acceleration model is used for the center 

of mass. Thus, the center of mass is the inertial frame. 

The radius of curvature is a parameter needed for the 

implementation. In specific applications, this parameter can 

be measured directly, but for generality and practicability of 

the filter, it is assumed unknown. As there is not much 

information about this parameter, therefore a simple model is 

used: 

 

𝑟𝑘+1 = 𝑟𝑘     (7) 

 

Even though the radius is assumed to be constant, the 

appropriate tuning of the Kalman filter will allow this 

estimated value to change over the time. 

Thus, the complete model is: 

 

𝜃𝑘+1 = 𝜃𝑘 +𝜔𝑘     (8) 

𝑟𝑘+1 = 𝑟𝑘 

𝑧𝑘 = ℎ(𝑟𝑘 , 𝜃𝑘 , 𝛼𝑘, 𝜔𝑘) = (
𝑟𝑘𝛼𝑘 +𝑔𝑐𝑜𝑠(𝜃𝑘)

−𝑟𝑘𝜔𝑘
2 +𝑔𝑠𝑖𝑛(𝜃𝑘)

) 

𝛼𝑘: Angular acceleration at the kth instant. 

𝑟𝑘:  Radius of curvature. 

𝑔: Local gravity. 

𝜃𝑘: Angle of rotation at the kth instant. 

𝜔𝑘: Angular velocity at the kth instant. 

𝑧𝑘: Observation vector 

 

III. Kalman Filter 

The algorithm for the implementation is a Dual Extended 

Kalman Filter [1] (DEKF). A linear Kalman filter [2] and an 

extended Kalman filter are executed at the same time, for the 

radius estimation and angle estimation respectively. The 

Kalman equations are:  

  

Prediction: 

  

�̂�𝑘|𝑘−1 = �̂�𝑘−1|𝑘−1 +𝜔𝑘    (9) 

𝑃𝜃𝑘|𝑘−1 = 𝑃𝜃𝑘−1|𝑘−1 + 𝑄𝜃𝑘
   

�̂�𝑘|𝑘−1 = �̂�𝑘−1|𝑘−1    

𝑃𝑟𝑘|𝑘−1 = 𝑃𝑟𝑘−1|𝑘−1 + 𝑄𝑟𝑘
   

 

Update:  

  

𝑌𝑘 = 𝑧𝑘 − ℎ(�̂�𝑘|𝑘−1, 𝜃𝑘|𝑘−1, 𝛼𝑘, 𝜔𝑘)  (10) 

𝐾𝜃𝑘 = 𝑃𝜃𝑘|𝑘−1𝐻𝜃𝑘
𝑇 (𝐻𝜃𝑘

𝑃𝜃𝑘|𝑘−1𝐻𝜃𝑘
𝑇 + 𝑅𝑘)

−1

 (11) 

𝜃𝑘|𝑘 = 𝜃𝑘|𝑘−1 + 𝐾𝑘𝑌𝑘    (12) 
𝑃𝜃𝑘|𝑘 = (𝐼 − 𝐾𝜃𝑘𝐻𝜃𝑘

)𝑃𝜃𝑘|𝑘−1   (13) 

 

𝐾𝑟𝑘 = 𝑃𝑟𝑘|𝑘−1𝐻𝑟𝑘
𝑇
(𝐻𝑟𝑘𝑃𝑟𝑘|𝑘−1𝐻𝑟𝑘

𝑇 +𝑅𝑘)
−1

 (14) 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘𝑌𝑘    (15) 

𝑃𝜃𝑘|𝑘 = (𝐼 − 𝐾𝑟𝑘𝐻𝑟𝑘)𝑃𝑟𝑘|𝑘−1   (16) 

 

The observation model matrix H, for each state variable is 

the gradient of ℎ, which is the observation model function. 
 

𝐻𝑟𝑘 = (
𝛼𝑘
−𝜔𝑘

2) 

For the angle, the gradient matrix is: 

 

𝐻𝜃𝑘
= (

−𝑔𝑠𝑖𝑛(�̂�𝑘|𝑘−1)

𝑔𝑐𝑜𝑠(�̂�𝑘|𝑘−1)
) 

The vector 𝑧𝑘 is the pair of measured accelerations: 

 

𝑧𝑘 = (
𝑎𝑚𝑡𝑘
𝑎𝑚𝑟𝑘

) 

Finally, notice that matrix 𝑅𝑘 is symmetric because signals 

are real, and Q matrices are simply real numbers: 

𝑅𝑘  ∈ 𝑆2𝑥2 

𝑄𝜃𝑘
, 𝑄𝑟𝑘

∈ ℝ 
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These equations can be implemented in an IDE that handle 

matrices, like MATLAB. However, the idea is to obtain one-

dimensional equations that could be easily implemented in a 

microcontroller. To simplify the problem, it was assumed that 

the observation noise is uncorrelated. This means the matrix 

𝑅𝑘is diagonal. 

Notice that the prediction equations (9) are one-

dimensional equations and (10) can be write as two simple 

one-dimensional equations. 

Now, to compute the gain matrix 𝐾𝜃𝑘  it is needed to 

calculate a determinant result of the inverse in equation (11), 

the equation is:  

(17) 

𝑑𝑒𝑡𝜃 = 𝑔2𝑝𝜃𝑘|𝑘−1((𝑟11 − 𝑟22) 𝑐𝑜𝑠
2 (𝜃𝑘|𝑘−1) + 𝑟22) + 𝑟11𝑟22 

Then, the two components of the matrix 𝐾𝜃𝑘 can be 

obtained using equation (11), these are: 
 

𝐾𝜃1𝑘 = −
𝑔𝑝𝜃𝑘|𝑘−1 𝑠𝑖𝑛(�̂�𝑘|𝑘−1)𝑟22

𝑑𝑒𝑡𝜃
   (18) 

𝐾𝜃2𝑘 =
𝑔𝑝𝜃𝑘|𝑘−1𝑐𝑜𝑠(�̂�𝑘|𝑘−1)𝑟11

𝑑𝑒𝑡𝜃
    (19) 

 

To compute the equations (12) and (13) it is needed to do 

some matrix algebra, the reduced expressions are: 
 

𝜃𝑘|𝑘 = 𝜃𝑘|𝑘−1 + 𝐾𝜃1𝑘𝑌𝑘1 + 𝐾𝜃2𝑘𝑌𝑘2   (20) 

𝑝𝜃𝑘|𝑘 = 𝑝𝜃𝑘|𝑘−1(𝑔𝐾𝜃1𝑘𝑠𝑖𝑛(𝜃𝑘) − 𝑔𝐾𝜃2𝑘𝑐𝑜𝑠(𝜃𝑘) + 1) (21) 

 

 

In the same way, the equations for the radius are: 
 

𝑑𝑒𝑡𝑟 = 𝑝𝑟𝑘|𝑘−1𝑟11𝜔𝑘
4 + 𝑝𝑟𝑘|𝑘−1𝑟22𝛼𝑘

2 + 𝑟11𝑟22  (22) 

𝐾𝑟1𝑘 =
𝛼𝑘𝑝𝑟𝑘|𝑘−1𝑟22

𝑑𝑒𝑡𝑟
     (23) 

𝐾𝑟2𝑘 = −
𝜔𝑘
2𝑝𝑟𝑘|𝑘−1𝑟11

𝑑𝑒𝑡𝑟
    (24) 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑟1𝑘𝑌𝑘1 + 𝐾𝑟2𝑘𝑌𝑘2   (25) 

𝑝𝑟𝑘|𝑘 = 𝑝𝑟𝑘|𝑘−1(−𝐾𝑟1𝑘𝛼𝑘 + 𝐾𝑟2𝑘𝜔𝑘
2 + 1)  (26) 

 

Once these equations are obtained, it is needed to define the 

values of the covariance matrices 𝑅𝑘,𝑄𝜃𝑘
and 𝑄𝑟𝑘

.There is no 

standard method to obtain these matrices. On this 

implementation, they were tuned manually by trial and error. 

 

IV. IMPLEMENTATION AND RESULTS  

For implementation, the MPU-6050 [3] was employed. 

This is a popular device among hobbyist. It is a MEMS 

accelerometer and a MEMS gyro in a single chip. For this 

implementation, both sensors were sampled each 50 ms. 

 The algorithm was tested using a MATLAB script. The 

equations implemented were the one-dimensional prediction 

equations (9), equation (10) and (17) to (26). Matrices Q and 

R obtained after the tuning are:  

 

𝑅𝑘 = (
250 0
0 250

)  

𝑄𝜃𝑘 = 0.000021 

𝑄𝑟𝑘
= 20 

Fig. 1. Accelerometer input (Solid) and estimated acceleration read (Dotted): 

a) Tangent acceleration b) Radial acceleration.  
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Fig. 2. Gain matrix elements for the estimated radius. 

a) First component. b) Second component. 

 

 
Fig. 3. Gain matrix elements for the estimated angle. 

a) First component. b) Second component. 

 

 
Fig. 4. Tilt angle measure using directly the Gyroscope reading, the Accelerometer reading, and the estimation using DEKF 

  

 

An adequate tuning allows the predicted signals to follow 

the sensor signal. This is shown in Figure 1. The estimated 

signal does not have the same initial value than the read 

signals, but after approximately 0.5 seconds the filter 

converges, and both signals are approximately equal. 

Notice, that while the filter output converged after 0.5 

seconds, the gain matrices did not converge. The gain matrix 

𝐾𝑟𝑘for the radius is shown in the Figure 2, and the gain matrix 

𝐾𝜃𝑘 for the angle is shown in the Figure 3. The elements of 

these matrices do not converge to any value, rather they are 

always being self-adjusted during the whole simulation. 

 The angle estimated by the filter is shown in Figure 4, and 

it is compared with the angle calculated integrating the gyro 
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signal, and with the angle calculated with the data acquired 

from the accelerometer. 

 The estimated radius is shown in Figure 5, as mentioned 

before, this signal is not constant even though a constant 

model was assumed. 

 

V. CONCLUSIONS  

During twenty seconds, an encoder measure was compared 

with the CF (1), LKF (2) and DEKF outputs. The Euclidean 

distance between the encoder signal and the signal of each 

filter was used as a similarity measure. All filters variables 

were initialized to zero and, to test the filters response, the 

tangential acceleration input was intentionally fixed to zero at 

time 9.15 seconds. For the same reason, at 15.9 seconds the 

gyro input was fixed to minus one. This is shown in Figure 6. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Estimated Radius using the DEKF

Fig. 6. Encoder measured angle compared with three filters: Complementary, Linear Kalman, and Dual Extended Kalman 
 

The CF (1) was tune with a=0.8. This filter is the more 

distant to the encoder angle signal (d=20.0594 radians), but it 

is simpler to implement. Moreover, because it uses directly a 

weighted average between the gyro and accelerometer signals, 

the time of convergence is zero. For the same reason, at time 

15.9 s the complementary filter cannot restore its estimated 

signal, but at time 9.15 s it was successfully restored. 

The LKF model (2) is simpler than the DEKF, but its time 

of response is longer. This filter can successfully restore its 

value at 9.15 s and 15.9 s, and it has a distance to the encoder 

signal of d= 6.8386 radians. Nevertheless, when distances 

were measured between 9.85 and 14.65 seconds, these values 

were d=0.6047 radians, d=0.5105 radians and d=0.4805 

radians, for the CF, LKF, DEKF respectively. It means that, if 

there is no perturbation, and all the filters have converged, the 

LKF estimation is closer to the encoder reading than the 

DEKF estimation. 

The distance between the encoder signal and the DEKF 

signal is d=3.2505 radians, the shortest one. This is because 

this filter converges faster than the LKF and it has a better 

response to input perturbations, as shown in Figure 6. 

The CF and the LKF stand out because of the simplicity of 

the model. However, it is important to note that, to estimate 

angles out of the range of the arctangent function, it is needed 

to implement an additional routine to make the tangent 

continuous in the desired interval. The DEKF algorithm use 

directly the sine and cosine functions, so it does not need any 

additional routine. 
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