

Study of Parallel Image Processing with the

Implementation of vHGW Algorithm using CUDA

on NVIDIA’S GPU Framework

Sanjay Saxena, Shiru Sharma, Neeraj Sharma

Abstract - This paper provides an effective study of the

implementation of parallel image processing techniques using

CUDA on NVIDIA GPU framework. It also discusses about the

major requirements of parallelism in medical image processing

techniques. Additional important aspect of this paper is to

develop vHGW(van Herk/Gill-Werman morphology)

algorithm intended for erosion and dilation proposed for

diverse types of structuring elements of random length and

along with random angle parallely on NVidia’s GPU GeForce

GTX 860M. The main motive behind implementing image

morphological operations is its importance for extracting

components of an image. That can be beneficial in the

demonstration and explanation of shape of the region. These

experiments have been implemented on CUDA 5.0 architecture

with NVidia’s GPU GeForce GTX 860M and got significant

results in terms of time.

Index Terms: Image Processing, CUDA (Computed Unified

Device Architecture), GPU, Parallel Computing, vHGW (van

Herk/Gill-Werman morphology)

I. INTRODUCTION

Real time image processing techniques/issues

requisite a massive extent of processing supremacy,

expertise in computing and massive resources to perform the

computation and operations. These constraints generally

appear on the system due to the mammoth dimension, nature

of the images to be processed and severe augmentation of

data from kilo to terabyte in last few years. Parallel

processing of the images is found to be the most effective

approach to handle this issue. For the efficient and quick

implementation of image processing parallel, There are

several tools and techniques are available such as CUDA,

GPU, PCT of MATLABTM, Open-CV, and Open-CL. In the

present day situation GPU(Graphics Processing Unit) has

long been utilized to quicken computer aided design,

computer fluid dynamics, computational structural

mechanics, electronic design automation, 3D gaming,

applications, high performance image processing and some

other applications [1][2]. NVIDIA introduced its

This work is financially and technically supported by the Indian Institute of

Technology(BHU), Varanasi and International Institute of Information

Technology, Bhubaneshwar, India.

Dr. Sanjay Saxena is the Assistant Professor in Computer Science &

Engineering at IIIT, Bhubaneshwar, India. Email – sanjay@iiit-bh.ac.in,

Phone No - +91 9839677691.

Dr. Shiru Sharma is the Assistant Professor in School of Biomedical

Engineering at IIT(BHU), Varanasi, India. Email – shiru.bme@itbhu.ac.in

Dr. Neeraj Sharma is the Associate Professor in School of Biomedical

Engineering at IIT(BHU), Varanasi, India. Email – neeraj.bme@itbhu.ac.in

enormously parallel architecture named as CUDA

(Computed Unified Device Architecture) in 2006- 2007 and

transformed the whole outlook of GPU programming[3], As

it provides a perfect environment for developing parallel

programs on GPU [2]. In this paper, we have implemented

and developed CUDA codes for vHGW algorithm of image

morphology. Assessment has been measured between its

parallel execution and its sequential execution on the same

configuration of physical unit. The algorithms developed in

CUDA environment for GPU have been applied for

processing abdomen CT images. This paper is divided into

five sections. Section II describes about the brief

introduction of parallel image processing, Section III

presents about the morphological operations and its

implementation in NVidia’s GPU 860M. Conclusion and

future scope is presented in section IV.

II. IMAGE PROCESSING USING PARALLEL

COMPUTING

High performance computing/Parallel Computing

has become an indispensable part of today’s mainstream

computing systems. GPU plays a very vital role for

handling time consuming image processing techniques/

issues / algorithms.

A. GPU

GPU is a processor on a graphics card fanatical for

compute- rigorous, highly parallel calculation. It is mainly

intended for transforming, interpreting and quickening

graphics. It consists millions of transistors rather than the

central processing unit (CPU), specializing in arithmetic of

floating point. The GPU has evolved into a highly parallel,

multithreaded processor with excellent computational

power. The GPU, since its beginning in 1999, has been a

prevailing technology in the field of accelerated gaming and

3D graphics application. It empowers us to run HD (high

definitions) graphics, which are the demand of current

computing. GPU computation has delivered an enormous

edge overhead the CPU with reverence to speed of

computation. The major difference among a CPU and a

GPU is that, CPU is a serial processor while the GPU is a

stream processor. The CPU is optimized for high

performance on sequential operations. It makes usage of

classy control logic to accomplish the execution of many

threads while maintaining resources of a sequential

execution. The large cache memory is used to reduce access

latency and slow memory bandwidth also contributes to the

performance gap.

Proceedings of the World Congress on Engineering 2017 Vol I
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017

mailto:sanjay@iiit-bh.ac.in
mailto:shiru.bme@itbhu.ac.in
mailto:neeraj.bme@itbhu.ac.in

B. CUDA

It is a parallel computing environment deliberated by

NVidia for enormously parallel high-performance

computing. It is the compute mechanism in the GPU and is

reachable by developers through paradigm programming

languages. CUDA is proprietary to NVidia video cards.

NVidia offers APIs in their CUDA SDK to give a stage of

hardware extraction that hides the GPU hardware from

developers. Developers no longer have to realize the

complexities at the back of GPU. All the particulars of

instruction optimizations, memory and thread management

are handled by the API. One benefit of the hardware

abstraction is that it allows NVidia to change the GPU

architecture in the prospect deprived of requiring the

developers to absorb a new set of instructions.

C. Image Processing, CUDA and GPU

As we know that Image processing is a form of

signals processing in which the input is an image, and the

output suggest being an image or whatsoever else that

experiences some meaningful processing. Several methods

for image processing that exploit CUDA have been

anticipated in the last few years. Till now, there are a

number of researches have been embedded parallelism in

image processing techniques. Following Table 1 illustrates

the investigation of some prominent researches of

implanting parallel computing in image processing

techniques/issues/algorithms.

 Table I: Analysis of Parallel Image Processing Techniques on CUDA and GPU

Image Processing

Techniques/Issues/Algorithms

Observations

In [4] authors presented comprehensive

review on medical image segmentation

techniques such as thresholding, region

growing , active contour, atlas based and

many more.

Authors have pointed out that mainly segmentation and image

processing issues each pixel using the similar instructions, and data from

a miniature neighbourhood around the pixel so the thread count is too

high but some segmentation methods do not process each pixel for e.g.

active contours, statistical shape models.

In [5] authors have implemented several

image enhancement algorithms such as

brightening filter, darkening filter, negative

filter and RGB to gray scale filter. Sobel

filter for edge detection, low pass and high

pass filter are also implemented.

They have used recursive ray tracing (RRT) technique is used. RRT also

considers the light coming through the surrounding for e.g. light from

reflection, refraction and shadows. They concluded that issues that

involves high inter-thread communication increase in value of number of

threads per block gives faster result. Issues that do not require inter-

thread communication produces better result with lower no of threads.

Region growing algorithm of image

segmentation is implemented in [6].

Initially all pixels are considered as seeds segments and fine grained

parallel thread are assigned to individual pixels. That merges adjacent

segments iteratively using minimization of the average heterogeneity

(Spectral and Morphological Features) of image segmentation criteria.

Gained speed up around 14.6 to 19.

In [7] region growing image segmentation

using fine grained parallel thread is

implemented and it also provides alteration

to the heterogeneity computation that

enhances the segmentation performance

The proposed parallelization scheme exploits the enormous

computational competence of the GPU and also gives a good load

balancing, as every thread deals with the similar amount of computation.

One more benefit of this method is the capability to process each image

segment directly, without partitioning the image into tiles.

In [8] median filtering is implemented by

the authors on GPU.

They have used different CUDA fundamentals and methods for

implementing median filtering and found that it is possible to get gain in

response time with an access level GPU, allowing real-time image and

audio filtering. Though, The bottleneck of these systems is the PCI

Express bus, for devoted and straight bus throughout GPU/RAM and

CPU/ GPU the response time is condensed.

Retinal fundus image enhancement is

implemented in [9].

Two custom design masks are used for image enhancement.

Cardiac MRI data segmentation has been

proposed in [10]. Authors have

implemented two algorithms Runge – Kutta

– Merson and GMRES method.

They implemented the Runge-Kutta-Merson and GMRES method using

CUDA. They compared the CUDA implementations with corresponding

multithreaded CPU implementations and found the CUDA

implementations were about 3–9 times quicker than the 12-threaded

CPU implementations.

In [11] authors have proposed CUDA based

techniques for Image Enhancement using

Wallis transformation.

In this paper, Wallis filter, is implemented and compared with the

sequential implementations on CPU. Authors found that significant

speedup achieved, and it increases with image resolution and size of grid

Proceedings of the World Congress on Engineering 2017 Vol I
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017

window growing.

Medical image segmentation of hepatic

vascular is implemented using fuzzy

connectedness method [12].

In this paper, an improved algorithm for (CUDA-kFOE) is proposed by

adding a correction step on the edge points. The improved algorithm can

greatly enhance the calculation accuracy. It is having two iteration, The

affinity computation strategy is altered in the first and a look up table is

employed for memory reduction. In the second one, The error voxels

because of asynchronism are updated again.

In [13] this work authors have implemented

image segmentation using fuzzy

connectedness.

In this 240 cores of GPU are grouped into 30 multiprocessors. Each

multiprocessors have 8 processing cores, organized in SIMD. CUDA

implementation achieved of fuzzy connectedness segmentation a

speedup from 7.2x to 14.4x over an optimized CPU implementation.

Interactive speed of fuzzy object segmentation is reached.

In this paper [14], A scaling method for

image segmentation using level sets is

implemented using CUDA. Basically it is

developed to find tumour from MRI bran

images.

The proposed method does not require the solution of partial differential

equation. Scaling approach, that uses fundamental geometric

transformations, is used. Thus, the required computational cost reduces.

The use of the CUDA programming on the GPU has taken benefits of

classic programming as spending time and performance. Therefore

results are obtained faster. The use of the GPU has provided to enable

real-time processing.

Morphological operations have been

implemented in [15].

In this paper, vHGW algorithm has been implemented for different

directions not only for horizontal, vertical and diagonal structuring

elements, but as well elements along the random line and of the random

length. Significant speedup is achieved with CUDA implementation.

In [16] this paper Author’s have shown a

GPU implementation of quick shift

approach which gives a 10 to 50 times

speedup, ensuing in a super-pixelization

algorithm that can run at 10Hz on 256x256

images.

This method is an exact replica of rapid shift, and could be more speeded

up by approximating the density, via subsampling or other methods. It is

likely that the implementation would also present similar speedups for

exact mean shift.

In [17] author implemented sobel edge

detection operator and gaussion blurring on

GPU using CUDA.

This work gives an introduction of the CUDA and its benefits.

Experiments are implemented on different grid size and blocks and got

significant speedup.

In [18] authors computed Haralick’s

Texture features on GPU for microscopic

biological cells.

Implementation condensed the computational time from half a year to

around 9 hours of an un-optimized software and to 4 days of an

optimized software version. The speedup of the GPU versions scales

with the memory bandwidth.

In [19] researchers presented an effective

study of Medical Image Processing on

GPU.

That paper tells about the implementation of filtering, interpolation,

histogram estimation and distance transforms, medical image processing

algorithms (registration, segmentation and denoising) and algorithms

that are specific to individual modalities (PET, CT, MRI, fMRI, SPECT,

DTI, optical imaging, ultrasound, and microscopy) on GPU. The review

concludes by providing a few future promise and challenges

Fuzzy C – Means Clustering is

implemented in [20]. An extensive study is

conducted to examine the dependency

amongst the image pixels in the algorithm

for parallelization.

In this, the pixels, memberships, and cluster midpoints arrays are defined

in a 1 D pattern. The motive is to make sure coalesced memory

transactions in GPU. Further, defining those input arrays in 1 D pattern

will ease the numeral of CUDA blocks and grid sizes computations. The

CUDA block and grid sizes are accordingly defined in 1 D patterns

analogous to the input arrays.

In this paper [21] authors presented a

parallel implementation based on CUDA of

bias field algorithm PBCFCM that is an

enhanced version of fuzzy C-means that

accurate the in-homogeneity intensity and

partitioned the image concurrently.

Firstly, initializing the centroids, vector and the variables, then assign

and transport data from CPU to GPU before the loop iteration. Two main

kernels are used, one to calculate the membership function and the

second one to calculate the estimated bias field. Speed up obtained is

significantly increasing as per the GPU’s no of cores are increasing.

[22] In this work authors have implemented In this paper authors perfectly utilized CUDA’s huge amounts of threads

Proceedings of the World Congress on Engineering 2017 Vol I
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017

first order edge detectors such as Roberts,

Sobel and Prewitt.

on GPU Ge Force GTX 860M and got significant results. They have

tested 60 images consisting three different size (512 X 512, 1024 X

1024, 3072 X 3072) and found speed up around hundred times in terms

of percentage.

In [23] authors compared performance of

canny edge detection. They introduced

hadoop map reduce and CUDA based

satellite image processing.

Significant speed up is obtained as the size of image is increasing for

canny edge detection. The portion of the algorithm implemented on GPU

gives significantly speed up.

Image filtering is implemented using

CUDA in [24].

Authors founded that Median Filtering is suitable for implementation

using CUDA on GPU. They concluded that we can’t implement

parallely. Instead we can implement those in which inherent scope of

parallelization.

D. GPU and CUDA in Medical Imaging

It is one of the important applications to take benefits of

GPU computing to get speeding up. The use of GPUs in the

field of Medical Imaging has matured to the point that there

are numerous medical modalities shipping with NVIDIA's

Tesla GPUs now. In [25] authors have represented

reconstruction time for CT(Computed Tomography) on 4

GPUs(Tesla 10 – Series) and 256 CPUs(AMD dual-core

Opteron 250) and MRI(Magnetic Resonance Imaging) on 4

GPUs(Tesla 8 – Series) and Quad-core Intel Core 2 Extreme

(2.66 GHz).

Till now, there have been done some efficient

researches based on medical image processing based on

CUDA. In [26] authors presented the past and present work

based on GPU accelerated medical image processing, That

research covers GPU acceleration of some basic image

processing operations such as filtering, interpolation,

histogram estimation , distance transforms and the most

commonly used algorithms in medical imaging like image

registration, image segmentation and image denoising and

algorithms that are precise to individual modalities like CT,

PET, MRI, SPECT, DTI, ultrasound, optical imaging ,

fMRI, and microscopy.

In [27] authors worked on the GPU for several

medical imaging applications detailed algorithm in that

paper represented key element of an automatic segmentation

package that delivers investigation of thin segment CT

angiographic images of the pelvis and abdomen. The

software exploits a staged approach which accomplishes

segmentation of the body wall and axial skeleton comprising

sub-segmentation and identification of distinct bones inside

the pelvis.

So we have seen there are so many cases where

there is the extensive need of GPU. Now we have

implemented an important issue of Image Processing

Techniques on GPU and CUDA.

III. MORPHOLOGY IN IMAGE PROCESSING

The area of mathematical morphology contributes

an extensive range of operators in the field of image

processing, that is based on the mathematical concepts from

set theory. Morphological operators are predominantly

useful for the investigation of binary images and its usages

include noise removal, edge detection, image enhancement

and image segmentation. Some important morphological

operations are dilation, erosion, opening, closing, hit or miss

Transform, morphological image gradient, skeletonization

and many more.

A. vHGW Algorithm

 This algorithm is simple and graceful deals with

the computation of dilation and erosion with complexity

liberated of the dimension of the Structuring Element [15].

It executes for all structuring elements self-possessed of

horizontal and/or vertical linear elements, and needs not

additional than 3-pixel value assessments for each output

pixel. Basic Step of the algorithm is given below

B. Basic Steps of the Algorithm:

STEP1: Image rows are segregated into divisions of length l

with (l-1)/2 columns of overlap on each side to form a

window of size 2l-1, centered at l-1, 2l-1, 3l-1, ……

STEP 2: For apiece pixel k=0 to (l-1) in a specified window

w, a suffix max array M is formed for the pixels leftward of

center

a. M[k] = max(w[j]) : j=k …(l-1) and a prefix max array N

is formed for the pixels right of midpoint (l-1)…(2l-2),

b. N[k]=max(w[l-1+j]): j=0 …. K

c. (M[k] and N[k] are merged collected to calculate max

filter)

STEP 3: For each and every pixel (l-1)/2 <= j < l+ (l-1)/2 in

w (the segment of length l), the dilation result is

a. result[j]=max(M[j-m],N[j+m]), where m=(p-1)/2

C. Performance Analysis of Algorithm

There are two phases to the vHGW of above algorithm

I. In pre processing stage, calculating M[k] and N[k]

and to find their max requires 2(p-1) comparisons

II. In merging step, merging of R[k] and S[k] requires

p-2 comparisons

a. Since this procedure computes the maximum of l

windows in total, we have that number of comparisons per

window is (2(l-1)+(l-2))/l=3-4/l

Proceedings of the World Congress on Engineering 2017 Vol I
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017

b. For large p, we have that the preprocessing step requires

two comparison operations each element, while the merge

step requires one more such comparison.

D. Implementation

vHGW algorithm based upon splitting the input

pixel to overlapping segments of size 2l-1(the segment of

length l). User is requested to input the angle for the

structuring element that decides performed pre processing.

The matrix is reserved in the original form for the

Horizontal structuring element.

An altered horizontal dilation that transcribes outcome out

into a transposed consequence image so that a consequent

horizontal dilation will produce the outcome for the vertical

structuring element. It can be executed by captivating

transpose of matrix dual stints, earlier processing and later

processing. Structuring element at random angle: It uses

predefined function to determine the next pixel in the row.

User is requested to input the angle for the structuring

element. After that the slope is then deliberated to determine

xIncrement and yIncrement. This technique sets pixels of line along

given random angle, such as single directional array. Value

of a particular point i converts the f(line(i)). The line is then

transformed and the procedure is repeated till the whole

image is processed. Here, the constraint is added, that angles

used for processing are considered angle € [0,90] degree.

Then the implementation carries on with the steps

of vHGW algorithm as discussed earlier for dilation by 1D

structuring element of size p=2N+1. Erosion trails the

similar process using least value arrays. The entire number

of pixels to be padded is (p-1)/2 at individual side of rows,

left and right, with the aim of computing prefix and suffix

valueseasily. For the dilation, pad value is taken into

account -128 and for the erosion pad value is taken 127[15].

This work presents vHGW algorithm with the shared

memory arrays for the max arrays and 2 threads per

window, one for each max array. Shared memory usage is

anoteworthysubject in the operation. If manifold threads are

used for single result, then it is indispensable to have inter-

thread communication. Though Shared memory is limited in

size making it only viable for smaller images and structuring

elements. Manifold windows can be addressed in single

CUDA block to accomplish utilization of good thread and

scheduling. Result calculation is performed in

straightforward way.

E. Setup for Simulation and Results Obtained

Hardware Environment:

Processor: Intel Core i7 -4710 CPU @2.50 GHz

RAM (Random Access Memory): 8 GB

Hard Disk Drive: 1 TB

GPU: Ge Force GTX 860M

Cuda Cores: 640

Software Environment:

System Type: 64 Bit operating System, x – 64- based

processor

Image Data Set: 3 Image Data Set (512 X 512, 1024 X

1024, 3072 X 3072) (Obtained from freely available library)

Visual C++ 2010 Express

CUDA Version 5.0

Speed up plot with different structuring elements have been

shown in the following figures

 Fig 1: Speed up Plot at Structuring Element 11

 Fig 2: Speed up Plot at Structuring Element 21

F. Discussion

Significant speed up obtained for the vHGW algorithm

shows that CUDA facilitates efficient penalization of image

processing techniques executed on GPUs. This algorithm

has been appreciably implemented in various directions with

straight, perpendicular and oblique SE (structuring element).

Further, It is also implemented on the elements along with

the random line and of the uninformed length. The

consequences designate highest performance gain of several

times than the conventional sequential implementation of

algorithm in terms of execution time with significant speed

up with the CUDA code on GPU 860 M. However, It varies

with the size of the images, size and shape of the used

structuring element. Huge performance gain is accomplished

with larger size of images by the effective use of CUDA on

GPUs compared with the speed up gain obtained by [15]. It

is shown that efficient utilization of CUDA on GPU gives

the maximum benefits in terms of time on several

application of image processing.

0

5

10

15

20

Sp
ee

d
 U

P

Images(Angle0)

Speed up Plot

0

5

10

15

20

Sp
ee

d
 U

P

Images(Angle0)

Speed up Plot

Proceedings of the World Congress on Engineering 2017 Vol I
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017

IV. CONCLUSION AND FUTURE

RECOMMENDATION

In this paper we presented the state-of-art brief

literature review of the image processing, its various

techniques, major requirement of implanting parallelism

using GPU and CUDA in image processing techniques

specially in the case of medical imaging. In this paper, an

effective comparative analysis of various parallel image

processing techniques developed by different researchers

were also been done in last few previous years. Later on, we

extensively used CUDA programming environment in a

highly parallel architecture i.e. GPU. We designed and

developed CUDA codes on CUDA 5.0 framework for

vHGW algorithm for morphological operators such as

dilation and erosion and got significant results with

effectively use of CUDA on GPU Geforce 860M. However,

performance gain varies with the size of the images, size and

shape of the used structuring element. Huge performance

gain is accomplished with larger size of images with larger

numbers of CUDA cores. For future perspective we can

implement shared memory parallel computation through an

interconnection network for fastest computing. Other

parameters such as granularity, SMP (Symmetric Multi-

Processor) can be added to this system to make it more well-

organized.

 REFERENCES

[1] P. Kaur, ―Implementation of image processing algorithms on the

parallel platform using MATLAB‖ in Int. J. Comp. Sci. Eng.

Technol., vol. 4(6), 2013, pp. 696-706.

[2] J. Tse, ―Image Processing with CUDA‖ in Master’s Thesis,

University of Nevada, Las Vegas, August, 2012.

[3] J. Ghorpade, J. Parande, M. Kulkarni, ―GPGPU Processing in CUDA

Architecture‖ in arXiv preprint arXiv:1202.4347, 2012

[4] E. Simstad, T.L. Falch, M. Bozorgi, A.C. Elster, F. Lindseth,

―Medical Image Segmentation on GPUs – A comprehensive review‖

in Medical Image Analysis, Elsevier, Vol. 20, 2015, pp. 1-18.

[5] D. Saha, K. Darji, N. Patel, D. Thakore, ―Implementation of Image

Enhancement Algorithms and Recursive Ray Tracing using CUDA‖

in 7th International conference on communication, computing and

virtualization, Procedia Computer Science, 79, 2016, pp. 516 – 524.

[6] P. N. Happ, R. Q. Feitosa, C. Bentes, R. Farias, ―A Region Growing

Segmentation Algorithms for GPUs‖ in Internal Research Report,

Maxwell/ Lambda – Dee, Vol 30, 2013.

[7] P. N. Happ, R. Q. Feitosa, C. Bentes, R. Farias, ―A Parallel Image

Segmentation Algorithms on GPUs‖ in Proceedings of the 4th

GEOBIA, May 7-9, 2012, pp. 580 – 585.

[8] Placido Salvatore Battiato, ―High Performance Median Filtering

Algorithm Based on NVIDIA GPU Computing‖, 2016.

[9] A. Arunkant, Y.P. Singh, S. Sharma, ―Retinal Fundus Image

Enhancement using CUDA Enabled GPU NVidia GT 720M‖ in

International Journal for Technological Research in Engineering,

2016, pp. 194 – 196.

[10] T. Oberhuber, A. Suzuki, J. Vacata, V. E. Zabka, ―Image

Segmentaion using CUDA implementations of the Runge – Kutta –

Merson and GMRES Methods‖ in Journal of Math – for – Industry,

Vol. 3, 2011, pp. 73 – 79.

[11] H. Xio, Y- P. Song, Q – L. Zhou, ―Multi – GPU Accelerated Parallel

Algorithms of Wallis Transformation for Image Enhancement‖ in

International Journal of Grid and Distributed Computing, vol. 7(1),

2014, pp. 99-114.

[12] L. Wang, D. Li, S. Huang, ―An Improved Parallel Fuzzy Connected

Image Segmentation method based on CUDA‖ in BioMed Eng

OnLine, BioMed Central, 2016, 15:56.

[13] Y. Zhuge, Y. Cao, J.K. Udupa and R. W. Miller, ―GPU Accelerated

Fuzzy Connected Segmentation by using CUDA‖ in Proceedings of

IEEE Engineering Medical and Biology Society, 2009, pp. 6341 –

6344.

[14] Z. Guler, A. Cinar, ―GPU – Based Image Segmentation using Level

Set Method with Scaling Approach‖ in Computer Science and

Information Technology, 2013, pp. 81 – 92.

[15] M. A. Rane, ―Fast Morphological Image Processing on GPU using

CUDA‖ in Master of Technology Thesis, Department of Computer

Engineering and Information Technology, 2013.

[16] B. Fulkerson, S. Soatto, ―Really quick shift: Image segmentation on a

gpu,‖ tech. rep., Department of Computer Science, University of

California, Los Angeles, 2010.

[17] J. Tse, ―Image Processing with CUDA,‖ Master’s Thesis, University

Of Nevada, Las Vegas, August 2012.

[18] M. Gipp, G. Marcus, N. Harder, A. Suratanee, K. Rohr, R. Konig, R.

Manner, ―Haralick's Texture Features Computations Accelerated by

GPUs in Biological Applications‖

http://www.nvidia.com/content/gtc/posters/28_gipp__haralick_texture

_features.pdf.

[19] A. Eklund, P. Dufort, D. Forsberg, S. M. Laconte, ―Medical Image

Processing on the GPU – Past, Present and Future‖ in Medical Image

Analysis, Elsevier Vol. 17, 2013, pp. 1073 – 1093.

[20] M. Almazrooie, M. Vadiveloo, R. Abdullah, ―GPU – Based Fuzzy C

– Means Clustering Algorithm for Image Segmentation‖

arXiv:1601.00072v3, 28 Mar 2016.

[21] N. Aitali, A. E. Abbassi, B. Cherraddi, O Bouattane, M. Youssfi, ―

Parallel Implementation of Bias Field Correction Fuzzy C – Means

Algorithm for Image Segmentation ‖ in International Journal of

Advanced Computer Science and Applications, vol. 7(3), 2016, pp.

375 – 383.

[22] S. Saxena, N. Sharma, S. Sharma, ―GPU constructed image

segmentation using first order edge detection operators in CUDA

environment‖ in Journal of Chemical and Pharmaceutical Research,

vol. 8(2), 2016, pp. 379 – 387.

[23] H. M. Patel, K. Panchal, P. Chauhan, M.B. Potdar, ―Satellite Image

Processing using CUDA and Haddop Architecture‖ in International

Journal of Scientific & Engineering Research , vol. 7(5), 2016, pp.

329 – 336.

[24] M. Wadpalliwar, M. Bhutani, M. M. Deshpande, ―Implementation of

an image filtering technique for image processing using CUDA‖ in

Proceedings of 20th IRF International Conference, 1st March 2015,

Chennai, India, ISBN: 978-93-84209-01-8.

[25] S.S. Stone et al., ―Accelerating Advanced MRI Reconstructions on

GPUs‖ in Journal of Parallel and Distributed Computing, 2008.

[26] A. Eklund, P. Dufort, D. Forsberg, S. M. LaConte, ―Medical image

processing on the GPU—past, present and future, Medical Image

Analysis‖, vol. 17(8), 2013, pp. 1073–1094.

[27] S. Maulik, W. Boonn, ―The Role of GPU computing in Medical

Image Analysis and Visualization‖, SPIE 7967, Medical Imaging

2011: Advanced PACS-based Imaging Informatics and Therapeutic

Applications, 79670L, 2011 doi: 10.1117/12.880093

Proceedings of the World Congress on Engineering 2017 Vol I
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017

http://www.nvidia.com/content/gtc/posters/28_gipp__haralick_texture_features.pdf
http://www.nvidia.com/content/gtc/posters/28_gipp__haralick_texture_features.pdf
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stone%20S%5Bauth%5D
http://dx.doi.org/10.1117/12.880093

