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Abstract—Annual cross-country data from the World Bank
database during the years 1998 and 2014 demonstrate wide
variation in infant mortality rates (IMR) and gross domestic
product per capita (GDPpc). All the datasets show that there
is a range of high infant mortality at low GDPpc levels
and there is a range of high GDPpc levels with low infant
mortality. Unfortunately, the data are so noisy that there cannot
be stated any simple relationship between IMR and GDPpc.
However, using least squares estimates of infant mortality
rates and assuming that GDPpc is subject to non-decreasing
returns offers a meaningful method that is quite appropriate
for modeling these datasets. Indeed, we understand at once
the increasing slope of the IMR curve and we provide a
quantitative explanation to what economists have observed: that
at highest GDPpc levels, IMR increases after bottoming out. The
advantage of our method is that it gives a clear quantitative
model for confirmation of assumptions which so far had only
qualitative support.

Index Terms—convexity, gross domestic product, increasing
returns, infant mortality rates, least squares, quadratic pro-
gramming.

I. INTRODUCTION

I Infant mortality rate (IMR) is the number of deaths
per 1,000 live births of children under one year of age

[8]. High levels of poverty and low health and sanitation
standards contribute to these deaths. The per capita Gross
Domestic Product (GDPpc), among some other factors, ‘as a
proxy for income significantly affects infant mortality rate’
[7]. GDP measures the monetary value of final goods and
services produced in a country in a year [4], while the ratio
of GDP to the total population of a country is the GDPpc.
In this paper, GDPpc is measured on current US dollars.

Data for these indicators are maintained in the World
Bank. Cross-country data demonstrate wide variation in
infant mortality rates as GDPpc varies in its range. They
show that infant mortality rates follow a convex descent
trend, where there is a range of high infant mortality rates at
low GDPpc levels and there is a range of high GDPpc levels
with low infant mortality rates.

Motivated by an example of Georgiadou and Demetriou
[5] concerning analogous data for 1995, we claim that a clear
link between IMR and GDPpc is provided by assuming that
GDPpc is subject to increasing returns. This is equivalent
to assuming that IMR comes from an unknown underlying
convex relationship on the IMR observations at the GDPpc
observations [6], but convexity has been lost due to errors
of measurement. The data are the coordinates (xi, φi) ∈ R2,
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for i = 1, 2, . . . , n, where the abscissae xi are the GDPpc
observations in ascending order and φi is the measurement of
the relationship of IMR at xi. We regard the measurements
as components of an n-vector φ.

We seek estimates yi of the φi that are derived by
minimizing the objective function

Φ(y) =
n∑

i=1

(yi − φi)2 (1)

subject to the convexity constraints

y[xi−1, xi, xi+1] ≥ 0, i = 2, 3, . . . , n− 1, (2)

where

y [xi−1, xi, xi+1] =
yi−1

(xi−1 − xi)(xi−1 − xi+1)
+

yi
(xi − xi−1)(xi − xi+1)

+
yi+1

(xi+1 − xi−1)(xi+1 − xi)
(3)

is the ith second divided difference on the components of y.
In this paper we provide empirical evidence for our claim,

by analyzing yearly cross-country data for 132 countries for
a period of about 20 years.

In Section II we present the data for our computation. In
Section III we give an outline of the method of Demetriou
and Powell [3] for calculating the solution of the optimization
problem that has been stated, we apply this method to the
datasets of Section II and demonstrate the suitability of our
assumption on the increasing slopes of the IMR curve.

The results are typically intended for use as a guide to
policy makers.

II. DATA

The data have been obtained from the World Bank
database, which is freely available on the website [8]. The
selection of our sample was based on the availability of IMR
and GDPpc indicators for the years 1998, 2002, 2006, 2010
and 2014, which resulted to 132 world countries. Therefore
in this paper we are able to present results that provide
sufficient details of our quantitative modeling. Some basic
descriptive statistics of our sample are displayed on Table
I. The calculated statistics include the average, quartiles,
median, minimum, maximum, range and standard deviation
of each data set of the sample. We see in Table I that
Average, Median and Quartiles of IMR decreased during the
period 1998 to 2014, while those corresponding to GDPpc
increased over the same period. Moreover, the IMR Range
was narrowed, in contrast to the GDPpc Range which was
expanded. These figures lead to the general conclusion that
IMR has been reduced significantly over the last two decades,
but without achieving such progress as the growth rates of
GDPpc.
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TABLE I
DESCRIPTIVE STATISTICS FOR THE INDICATORS INFANT MORTALITY AND GDP PER CAPITA BY YEAR (SAMPLE SIZE: 132)

Year Indicator Average 1st Quartile Median 3rd Quartile Minimum Maximum Range 
Standard 

Deviation 

1998 
IMR 42.4 10.9 29.0 70.1 3.5 148.1 144.6 37.2 

GDPpc 6645.8 469.3 1845.4 6630.6 124.7 41487.7 41363.0 9850.8 

2002 
IMR 36.9 9.3 24.8 61.4 2.6 137.7 135.1 33.2 

GDPpc 7170.8 510.3 2086.6 7290.2 111.5 43061.2 42949.6 10639.7 

2006 
IMR 31.5 8.1 20.1 50.2 2.3 124.5 122.2 28.8 

GDPpc 11482.1 964.8 3588.3 14265.3 154.9 74114.7 73959.8 16436.1 

2010 
IMR 27.2 7.1 16.7 42.2 1.9 109.6 107.7 25.4 

GDPpc 13372.0 1447.5 4979.2 16776.4 214.2 87646.3 87432.0 17953.5 

2014 
IMR 23.5 6.1 14.5 35.8 1.6 98.8 97.2 22.1 

GDPpc 15206.4 1939.3 6058.6 19357.8 286.0 97429.7 97143.7 20343.8 

The data are too many to be presented as raw numbers in
these pages, but we may easily capture their main features
by looking at Figs. 1, 2, 3, 4 and 5 for the years 1998, 2002,
2006, 2010 and 2014 respectively. We notice a descending
convex pattern of IMR with very high concentration of
observations in the left-hand range of GDPpc and spare
outliers. Further, the variation of IMR is wider at the low
levels than at the middle and higher levels of GDPpc. Most
interesting, except of the 2002 dataset, there exist IMR data at
the highest GDPpc that have higher values than those in their
vicinity. Theoretician economists explained this phenomenon
by relying upon urban theories [1].

III. FITTING IMR SUBJECT TO INCREASING RETURNS

We provide an outline of the method of Demetriou and
Powell [3] for calculating the solution to the problem of
Section I and then we apply the method to the datasets of
Section II. The description of the method is very instructive
to our analysis.

Since the constraints (2) on y are linear, we introduce the
scalar product notation

y[xi−1, xi, xi+1] = aTi y, i = 2, 3, . . . , n− 1, (4)

where ai, for i = 2, 3, . . . , n − 1 denote the constraint
normals with respect to y and the superscript “T ” is used
to distinguish a row from a column vector. By taking into
account that each divided difference depends linearly on only
3 adjacent components of y, one can immediately see that the
constraint normals are linearly independent vectors. Since in
addition, the objective function (1) is strictly convex, we have
to solve a strictly convex quadratic programming problem
that has a unique solution, y∗ say. Throughout the paper
we use occasionally the descriptive term convex fit for the
estimated IMR values.

The Karush-Kuhn-Tucker conditions provide necessary
and sufficient conditions for optimality. They state that y∗

is optimal if and only if the constraints (2) are satisfied and
there exist nonnegative Lagrange multipliers {λ∗i : i ∈ A∗}
such that the first order conditions

y∗ − φ =
1

2

∑
i∈A∗

λ∗i ai, (5)

hold, where A∗ is a subset of the constraint indices
{2, 3, . . . , n− 1} with the property

y∗[xi−1, xi, xi+1] = 0, i ∈ A∗. (6)

Equation (6) implies that the points (xi−1, y
∗
i−1), (xi, y

∗
i )

and (xi+1, y
∗
i+1) are collinear. Hence and since it is usual

in practice that there exist indices j /∈ A∗ such that
y∗[xj−1, xj , xj+1] > 0, the best convex fit is a piecewise
linear curve, which interpolates the points {(xi, y∗i ) : i =
1, 2, . . . , n}. We say that the separate linear pieces are
joined at the knots xj , where the knots are all in the set
{xj : j ∈ {1, 2, . . . , n} \ A∗}. It is important to note
that the knots are determined automatically by the quadratic
programming method.

The quadratic programming algorithm generates a finite
sequence of subsets {A(k) : k = 1, 2, . . .} of the constraint
indices {2, 3, . . . , n− 1} with the property

aTi y = 0, i ∈ A(k). (7)

For each k, we denote by y(k) the vector that minimizes (1)
subject to the equations (7) and we call each constraint in
(7) an active constraint. All the active constraints constitute
the active set. Since the constraint normals are linearly
independent, unique Lagrange multipliers {λ(k)i : i ∈ A(k)}
are defined by the first order optimality condition

y(k) − φ =
1

2

∑
i∈A(k)

λi
(k)ai, (8)

while, by strict complementarity, λ(k)j = 0, j /∈ A(k).
The method chooses A(k) so that each λ

(k)
i satisfies the

conditions
λ
(k)
i ≥ 0, i ∈ A(k). (9)

The method begins by calculating an initial approximation
to the convex fit that requires only O(n) computer operations.
This is an advantage to the included quadratic programming
calculation, because in all our runs the initial approximation
came quite close to A∗. Quadratic programming starts by
deleting constraints if necessary from the active set of the
initial approximation until all the remaining active constraints
have nonnegative Lagrange multipliers. This gives A(1). If
A(k), for k ≥ 1 is not A∗, then the quadratic program-
ming algorithm adds to A(k) the most violated constraint
and deletes constraints with negative multipliers alternately,
until the Karush-Kuhn-Tucker conditions are satisfied. This
method is far faster than a general quadratic programming
algorithm because it takes into account the band structure of
the constraints when solving (7) and (8). For proofs on its
efficiency one may consult the reference.
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TABLE II
INFANT MORTALITY AND GDP PER CAPITA DATA FOR 2014, AND LEAST SQUARES CONVEX FIT [2]

No GDPpc IMR Fit Lagrange 

Second 

difference No GDPpc IMR Fit Lagrange 

Second 

difference 

1 286.00 55.80 58.50 -  - 67 6147.34 26.20 20.17 70547.64 - 

2 362.25 45.10 57.46 411.44 0 68 6345.84 19.00 19.90 67233.55 0 

3 431.38 58.40 56.52 2493.60 0 69 6472.10 34.40 19.72 65352.01 0 

4 467.13 37.00 56.04 3436.13 0 70 6549.39 13.60 19.62 61931.43 0 

5 539.62 62.80 55.05 8107.21 0 71 7153.44 35.60 18.78 42466.48 0 

6 573.57 42.90 54.59 9768.75 0 72 7587.29 9.80 18.19 13894.57 0 

7 615.94 62.40 54.01 12833.01 0 73 7640.65 7.80 18.11 11275.39 0 

8 622.64 58.50 53.92 13205.19 0 74 7851.27 9.70 17.82 5280.97 0 

9 630.00 53.60 53.82 13546.68 0 75 7886.46 28.90 17.77 4851.06 0 

10 697.63 32.70 52.90 16714.74 0 76 7918.08 14.10 17.73 3761.11 0 

11 701.68 30.50 52.85 17068.11 0 77 8025.30 3.50 17.58 843.60 0 

12 713.46 62.20 52.69 18622.50 0 78 9680.12 19.50 15.30 2421.54 0 

13 714.57 39.10 52.67 18747.85 0 79 10002.87 12.20 14.86 19.01 0 

14 792.58 90.20 51.61 29675.39 0 80 10011.79 10.10 14.84 0 2.05E–06 

15 830.15 53.50 51.10 32038.81 0 81 10303.90 12.30 14.62 2149.10 0 

16 842.11 75.90 50.94 32733.85 0 82 10350.81 11.90 14.59 2712.04 0 

17 903.46 65.70 50.11 33236.71 0 83 10415.46 8.60 14.54 3835.15 0 

18 954.62 36.20 49.41 32060.62 0 84 10772.06 37.00 14.27 14264.09 0 

19 1024.67 86.70 48.46 32301.30 0 85 11307.06 6.20 13.86 5584.00 0 

20 1067.13 42.30 47.88 29199.88 0 86 11728.80 14.40 13.54 5200.44 0 

21 1086.80 32.10 47.62 27982.77 0 87 12324.94 11.50 13.08 3628.45 0 

22 1094.58 26.30 47.51 27742.80 0 88 12712.43 15.10 12.79 3832.81 0 

23 1113.37 39.70 47.26 27960.32 0 89 13154.84 13.50 12.45 2019.55 0 

24 1279.77 20.10 44.99 32400.93 0 90 13480.65 3.80 12.20 0 5.26E–07 

25 1315.27 67.40 44.51 35115.76 0 91 13902.14 8.50 12.05 4469.96 0 

26 1368.49 36.60 43.79 36749.46 0 92 14021.90 5.30 12.00 6589.45 0 

27 1407.40 58.60 43.26 38503.27 0 93 14566.15 7.20 11.80 23516.72 0 

28 1441.64 44.20 42.79 38996.08 0 94 15366.29 12.30 11.51 55766.05 0 

29 1545.94 68.50 41.38 40204.00 0 95 16489.73 3.60 11.09 99261.92 0 

30 1576.82 39.30 40.96 38886.50 0 96 16737.97 9.10 11.00 112592.33 0 

31 1725.97 44.70 38.93 33017.42 0 97 18501.43 6.10 10.35 213990.24 0 

32 1751.40 52.30 38.59 31723.31 0 98 18918.28 70.30 10.20 241501.39 0 

33 1875.84 48.80 36.89 21977.28 0 99 19309.61 10.00 10.05 220286.76 0 

34 1960.49 19.40 35.74 13331.89 0 100 19502.42 2.90 9.98 209853.86 0 

35 2052.32 17.80 34.50 6954.88 0 101 20147.78 2.50 9.74 184071.63 0 

36 2244.76 13.90 31.88 17.07 0 102 21317.45 18.70 9.31 154283.79 0 

37 2434.28 18.00 29.31 0 3.10E–05 103 21627.35 3.70 9.20 140571.71 0 

38 2560.52 28.30 28.83 2843.05 0 104 22124.37 3.00 9.01 124043.08 0 

39 2872.51 22.80 27.65 10198.47 0 105 22217.49 10.20 8.98 122066.06 0 

40 3065.16 8.10 26.92 16607.46 0 106 24001.88 2.20 8.32 79820.49 0 

41 3124.08 31.70 26.69 20784.90 0 107 24406.47 12.90 8.17 75193.54 0 

42 3190.31 24.60 26.44 24817.40 0 108 24855.22 5.60 8.00 65816.55 0 

43 3203.24 71.50 26.39 25652.30 0 109 27245.74 2.60 7.12 27361.09 0 

44 3365.71 21.00 25.78 21486.17 0 110 29718.50 3.60 6.21 9948.61 0 

45 3477.15 45.80 25.36 19693.49 0 111 35179.65 3.00 4.19 0 5.01E–08 

46 3499.59 23.60 25.27 18414.99 0 112 36152.69 2.10 4.15 552.61 0 

47 3641.11 21.30 24.74 10824.92 0 113 37206.18 3.30 4.10 5468.68 0 

48 3666.59 25.10 24.64 9633.41 0 114 42546.84 3.60 3.85 38935.12 0 

49 3852.88 8.60 23.93 750.10 0 115 43593.70 7.70 3.80 46018.39 0 

50 3873.53 13.20 23.85 398.65 0 116 43962.71 6.10 3.78 45637.60 0 

51 4028.16 32.60 23.27 1062.05 0 117 46278.52 3.70 3.68 32519.34 0 

52 4102.06 14.90 22.99 0 1.39E–05 118 47767.00 3.20 3.61 24013.91 0 

53 4201.74 19.90 22.85 180.15 0 119 49864.58 2.00 3.51 13729.33 0 

54 4328.90 12.60 22.68 1160.69 0 120 50185.48 4.40 3.49 13123.36 0 

55 4429.65 11.30 22.54 3968.04 0 121 51148.36 3.00 3.45 9557.16 0 

56 4588.65 12.90 22.32 11972.11 0 122 52036.73 1.60 3.41 7061.59 0 

57 4712.87 18.10 22.15 20565.33 0 123 52138.68 3.30 3.40 7143.37 0 

58 4830.98 15.80 21.98 29691.97 0 124 54321.29 3.10 3.30 9334.68 0 

59 4851.66 5.40 21.96 31545.76 0 125 54398.46 5.70 3.30 9442.83 0 

60 4884.37 14.60 21.91 35561.04 0 126 56007.29 2.20 3.22 3959.38 0 

61 5112.38 19.40 21.60 66884.18 0 127 58899.98 2.40 3.08 0 9.31E–09 

62 5119.22 13.90 21.59 67853.89 0 128 61330.91 3.00 3.09 0 6.55E–09 
63 5232.69 98.80 21.43 85685.09 0 129 61995.83 3.20 3.11 121.10 0 

64 5342.94 33.40 21.28 85950.42 0 130 85610.84 3.50 3.65 0 1.54E–09 

65 5484.07 22.00 21.08 82868.82 0 131 96732.53 7.00 4.50 3280.76 0 

66 5969.94 10.90 20.41 71370.14 0 132 97429.71 2.20 4.55 - - 
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The software package L2CXFT of Demetriou [2] imple-
ments this method and includes several useful extensions. It
is the main tool of our work. The actual calculations were
carried out by supplying the data to L2CXFT, while only a
few iterations were needed for termination. We present the
best convex fit to the most recent data set, namely that of
the year 2014, in Table II, in order to give the reader an idea
of the obtained results relating to the fit of Fig. 5. We have
tabulated GDPpc, IMR, convex fit, Lagrange multipliers and
central second differences at y∗ corresponding to xi, φi, y∗i ,
λ∗i and y∗[xi−1, xi, xi+1]. Let us note that the numbers in
the first column correspond to the countries of our sample
(see [9]). If y∗[xi−1, xi, xi+1] > 0 (sixth column) then xi is
a knot of the resultant fit, which implies that λ∗i = 0 (fifth
column). Moreover, the larger the magnitude of a Lagrange
multiplier, the stronger the underlying linearity of the IMR
indicator. Despite the existence of outliers, we see that the
convex fit follows quite satisfactorily the trend of the data.
Analogous results for the optimal fits displayed in Figs. 1–4
are demonstrated by Tzitziris [9].

However, associated with Figs. 1–5, we provide Tables III–
VII that summarize the results of these runs. They display the
knot indices j = 0, . . . , n−1−card(A∗), the data indices of
the knots, the GDPpc values, the estimated IMR values (i.e.
the best convex fit) and the first differences of the fit (namely,
the slopes of the line segments that join two consecutive
knots).

Table III presents results associated with the 1998 data. We
see in the fourth column of this table that the estimated IMR
values decline over the GDPpc range [124.68, 30901.05],
reaching a minimum value that is approximately equal to
4.65, and then increase over the range [30901.05, 41487.69].
The rates of change are negative up to 30901.05 and subse-
quently become positive, increasing from –0.1437292 up to
0.0000381.

Table IV presents results associated with the 2002 data.
The estimated IMR values decline over the full range
of values of GDPpc, with negative and increasing rates
from –0.0745481 up to –0.0000012, while GDPpc reaches
43061.15.

Table V presents results associated with the 2006 data.
The estimated IMR values decline over the GDPpc range
[154.92, 33410.75], reaching a minimum equal to 4.37 and
then increase over the range [33410.75, 74114.70], with a
rate of change equal to 0.0000178.

Table VI presents results associated with the 2010 data.
The estimated IMR values decline over the GDPpc region
[214.23, 42935.25], reaching a minimum equal to 3.59 and
then increase over the range [42935.25, 87646.27], with a
rate of change equal to 0.0000194.

Table VII presents results associated with the 2014 data.
The estimated IMR values decline over the GDPpc range
[286.00, 58899.98], reaching a minimum equal to 3.08 and
then increase over the range [58899.98, 97429.71], with
increasing rates of change successively equal to 0.0000028,
0.0000230 and 0.0000764.

IV. CONCLUSION

Our modeling approach states a relationship between
IMR and GDPpc that is derived by the missing underlying
convexity property, determines the IMR rates of change at

TABLE III
GDPPC AND KNOTS OF THE ESTIMATED IMR VALUES FOR 1998

j Knot GDP per capita Estimated IMR First difference
0 1 124.68 115.03 –
1 24 360.60 81.12 –0.1437292
2 49 869.11 42.94 –0.0750854
3 50 951.87 39.53 –0.0411843
4 66 1834.85 32.84 –0.0075749
5 97 5650.33 16.73 –0.0042237
6 106 12202.69 9.24 –0.0011421
7 117 22252.36 6.13 –0.0003098
8 119 25101.37 5.63 –0.0001766
9 127 30901.05 4.65 –0.0001692

10 132 41487.69 5.05 0.0000381

TABLE IV
AS IN TABLE III FOR 2002

j Knot GDP per capita Estimated IMR First difference
0 1 111.53 93.95 –
1 31 477.11 66.70 –0.0745481
2 48 1000.78 38.51 –0.0538358
3 57 1453.64 30.17 –0.0184195
4 95 6053.72 14.82 –0.0033368
5 107 14110.31 6.93 –0.0009787
6 108 15988.28 6.39 –0.0002901
7 119 26351.38 5.12 –0.0001227
8 132 43061.15 5.10 –0.0000012

TABLE V
AS IN TABLE III FOR 2006

j Knot GDP per capita Estimated IMR First difference
0 1 154.92 78.10 –
1 43 1448.76 36.39 –0.0322383
2 65 3394.43 23.52 –0.0066172
3 73 4428.52 21.78 –0.0016773
4 110 26455.13 5.89 –0.0007216
5 111 28482.61 4.60 –0.0006361
6 112 33410.75 4.37 –0.0000470
7 132 74114.70 5.09 0.0000178

TABLE VI
AS IN TABLE III FOR 2010

j Knot GDP per capita Estimated IMR First difference
0 1 214.23 68.54 –
1 36 1631.54 39.65 –0.0203841
2 45 2819.65 28.18 –0.0096595
3 64 4514.94 22.08 –0.0035941
4 91 11938.28 14.29 –0.0010495
5 110 30736.36 5.78 –0.0004526
6 119 42935.25 3.59 –0.0001802
7 132 87646.27 4.45 0.0000194

TABLE VII
AS IN TABLE III FOR 2014

j Knot GDP per capita Estimated IMR First difference
0 1 286.00 58.50 –
1 37 2434.28 29.31 –0.0135888
2 52 4102.06 22.99 –0.0037872
3 80 10011.79 14.84 –0.0013787
4 90 13480.65 12.20 –0.0007617
5 111 35179.65 4.19 –0.0003690
6 127 58899.98 3.08 –0.0000468
7 128 61330.91 3.09 0.0000028
8 130 85610.84 3.65 0.0000230
9 132 97429.71 4.55 0.0000764

GDPpc instants and provides a quantitative explanation to
what economists have observed: that at high GDPpc, IMR
increases after a bottoming out. Indeed, we assume that our
data come from a convex process, but convexity has been lost
due to errors. We impose the missing property as a constraint
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Chapter 3: Data smoothing method 

Year 1998 

 

Figure 3.1: Convex estimator IMR-GDP per capita for the year 1998 

Table 3.1: Results obtained by L2CXFT algorithm for the year 1998 

k Observation at k knot GDP per capita 𝑰𝑴�̂� 
(𝑰𝑴𝑹𝒌

̂ −𝑰𝑴𝑹𝒌−𝟏)̂

(𝑮𝑫𝑷𝒑𝒄𝒌−𝑮𝑫𝑷𝒑𝒄𝒌−𝟏)
, k=1…10 

0 1 124.68 115.03 - 

1 24 360.6 81.12 -0.143729219 

2 49 869.11 42.94 -0.075085355 

3 50 951.87 39.53 -0.041184267 

4 66 1834.85 32.84 -0.007574912 

5 97 5650.33 16.73 -0.004223675 

6 106 12202.69 9.24 -0.001142054 

7 117 22252.36 6.13 -0.000309843 

8 119 25101.37 5.63 -0.000175655 

9 127 30901.05 4.65 -0.000169210 

10 132 41487.69 5.05 0.000038122 
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Fig. 1. Least squares convex fit (line) to infant mortality rate data (cross) against gross domestic product per capita for 1998

Chapter 3: Data smoothing method 

Year 2002 

 

Figure 3.2: Convex estimator IMR-GDP per capita for the year 2002 

Table 3.2: Results obtained by L2CXFT algorithm for the year 2002 

k Observation at k knot GDP per capita 𝑰𝑴�̂� 
(𝑰𝑴𝑹𝒌

̂ −𝑰𝑴𝑹𝒌−𝟏)̂

(𝑮𝑫𝑷𝒑𝒄𝒌−𝑮𝑫𝑷𝒑𝒄𝒌−𝟏)
, k=1…8 

0 1 111.53 93.95 - 

1 31 477.11 66.7 -0.074548121 

2 48 1000.78 38.51 -0.053835774 

3 57 1453.64 30.17 -0.018419526 

4 95 6053.72 14.82 -0.003336815 

5 107 14110.31 6.93 -0.000978714 

6 108 15988.28 6.39 -0.000290106 

7 119 26351.38 5.12 -0.000122675 

8 132 43061.15 5.1 -0.000001224 
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Fig. 2. As in Fig. 1 for 2002
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Figure 3.3: Convex estimator IMR-GDP per capita for the year 2006 

Table 3.3: Results obtained by L2CXFT algorithm for the year 2006 

k Observation at k knot GDP per capita 𝑰𝑴�̂� 
(𝑰𝑴𝑹𝒌

̂ −𝑰𝑴𝑹𝒌−𝟏)̂

(𝑮𝑫𝑷𝒑𝒄𝒌−𝑮𝑫𝑷𝒑𝒄𝒌−𝟏)
, k=1…7 

0 1 154.92 78.1 - 

1 43 1448.76 36.39 -0.032238300 

2 65 3394.43 23.52 -0.006617201 

3 73 4428.52 21.78 -0.001677340 

4 110 26455.13 5.89 -0.000721564 

5 111 28482.61 4.6 -0.000636057 

6 112 33410.75 4.37 -0.000047016 

7 132 74114.7 5.09 0.000017787 

 

From the last column of Table 3.3, concerning the year 2006, the estimated curve of IMR 

declines in the region described by the range of per capita GDP [154.92, 33410.75], having a 
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Fig. 3. As in Fig. 1 for 2006
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Figure 3.4: Convex estimator IMR-GDP per capita for the year 2010 

Table 3.4: Results obtained by L2CXFT algorithm for the year 2010 

k Observation at k knot GDP per capita 𝑰𝑴�̂� 
(𝑰𝑴𝑹𝒌

̂ −𝑰𝑴𝑹𝒌−𝟏)̂

(𝑮𝑫𝑷𝒑𝒄𝒌−𝑮𝑫𝑷𝒑𝒄𝒌−𝟏)
, k=1…7 

0 1 214.23 68.54 - 

1 36 1631.54 39.65 -0.020384079 

2 45 2819.65 28.18 -0.009659463 

3 64 4514.94 22.08 -0.003594170 

4 91 11938.28 14.29 -0.001049468 

5 110 30736.36 5.78 -0.000452641 

6 119 42935.25 3.59 -0.000180185 

7 132 87646.27 4.45 0.000019375 

 

From the last column of Table 3.4, concerning the year 2010, the estimated curve of IMR 

declines in the region described by the range of per capita GDP [214.23, 42935.25], having a 

minimum estimated value equal to 3.59 and then increases in the region described by the 

range of GDP per capita [42935.25, 87646.27], with rate of change equal to 0.000019375. 
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Fig. 4. As in Fig. 1 for 2010
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Figure 3.5: Convex estimator IMR-GDP per capita for the year 2014 

Table 3.5: Results obtained by L2CXFT algorithm for the year 2014 

k Observation at k knot GDP per capita 𝑰𝑴�̂� 
(𝑰𝑴𝑹𝒌

̂ −𝑰𝑴𝑹𝒌−𝟏)̂

(𝑮𝑫𝑷𝒑𝒄𝒌−𝑮𝑫𝑷𝒑𝒄𝒌−𝟏)
, k=1…9 

0 1 286 58.5 - 

1 37 2434.28 29.31 -0.013588761 

2 52 4102.06 22.99 -0.003787185 

3 80 10011.79 14.84 -0.001378269 

4 90 13480.65 12.2 -0.000761714 

5 111 35179.65 4.19 -0.000369005 

6 127 58899.98 3.08 -0.000046814 

7 128 61330.91 3.09 0.000002751 

8 130 85610.84 3.65 0.000023023 

9 132 97429.71 4.55 0.000076388 
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Fig. 5. As in Fig. 1 for 2014

and derive the estimated IMR values by an optimization
calculation. Numerical evidence of Section III shows that
IMR reaches a point at which it has its lowest value and
then increases again while GDPpc is at the highest levels,
indicating the ominously increasing slope of the IMR curve.

The results so far following from our analysis of real data
suggest that the assumption that Infant Mortality Rates and
Gross Domestic Product per capita follow increasing returns
not only adequately describes reality, but also it is able
to capture imperceptible features of the underlying process.
Future research will be directed to design quantitative mon-
itoring of the convexity method so as to provide an analytic
tool for policy actions. This may be used by policy makers
as part of the information on which decisions may be made.
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