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Abstract—Using artificial intelligence algorithms, providers
of news analytics calculate the sentiment score of almost every
economic and financial news in real time. The sentiment score
of negative, neutral, positive news are assigned to be -1, 0, 1,
respectively. We constructed time series of news sentiments as
follows: a nine-month period of 2015 was divided into non-
overlapping consecutive intervals of equal length, and then we
calculated the sum of sentiment scores of all news within each
time interval. In this paper we examine long-range dependance
and self-similarity of time series of sentiments of economic
and financial news using the Detrended Fluctuation Analysis of
order 1 (DFA), Rescaled Range Analysis (R/S), Average Wavelet
Coefficient Method (AWC) and Fourier Transform Method
(FTM). Empirical results obtained by this methods show that
time series of news sentiments exhibit self-similarity (as well as
a long memory property). The Hurst exponent (as well as the
long-range correlation exponent) is greater than 0.55 over four
orders of magnitude in time ranging from several minutes to
dozen of days. DFA and AWC methods allowed us to reveal a
strong scaling behavior as well as to detect a distinct crossover
effect. On the other hand, it turns out that for the classic R/S
analysis and Fourier transform techniques, the scaling regimes
and/or positions of crossovers are hard to define.

Index Terms—long-range correlation, time series, detrended
fluctuation analysis, Hurst exponent.

I. INTRODUCTION

Long range dependance and self-similarity of financial
time series has been the focus of attention for many re-
searchers in the last several years [1]–[16]. However, there
are very few works devoted to the analysis of the statistical
properties of the news flow. Following papers [17] and [18],
in this work we analyze time series of news sentiments.

News analytics is an unconventional approach to the anal-
ysis of news flow based on artificial intelligence techniques.
Introduction to the news analytics tools and techniques can
be found in [19] and [20]. For each news, news analytic
providers find it sentiment score using artificial intelligence
algorithms [19]. The sentiment score of a neutral news is
assumed to be 0. Every positive news has sentiment score 1.
If news is negative then its sentiment score is assigned to be
-1. Then we constructed time series of news sentiments as
follows. We use the final data sample and divide the whole
period into non-overlapping consecutive intervals of equal
length δ = 1 and 5 minutes and calculated the sum of
sentiments of all news within each time interval.

In contrast to the work [17], in this paper we will use
Detrended Fluctuation Analysis of orders 1 (DFA), Rescaled
Range Analysis (R/S), Average Wavelet Coefficient Method
(AWC) and Fourier Transform Method (FTM) to examine
long-range auto-correlation and self-similarity of time series
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of news sentiments. We suppose that the usage of the three
estimators may prevent us from obtaining one-sided results.
By using a bigger data period, we could study the depen-
dence of the Hurst exponent not only on intra day intervals,
but at intervals of a few days duration. Moreover, our analysis
is based on a much bigger data period (189 instead of 43
trading days) from relatively recent news analytic data (from
January 1, 2015 to September 22, 2015).

The results of this paper show that the long-range power-
law correlation take place in time series of news sentiments.
All four methods showed the presence of a long-range
correlation in the time series of news sentiments (the Hurst
exponent is greater than 0.5).

II. METHODS

A. Auto-correlation types

Let X = (xt)
n
t=1 be a time series with large n and let s ∈

N, s � n. Let C(s) denote the (auto) correlation between
X1 = (xt)

n−s
t=1 and X2 = (xt+s)

n−s
t=1 . The correlation can be

of several types:
1) xt are uncorrelated; it is obvious that if X1 and X2

are uncorrelated then C(s) must be zero, C(s) = 0;
2) short-range correlations of (xt)

n
t=1 results in exponen-

tially declining of C(s), i.e. C(s) ∼ e−s/s0 , where s0
is a parameter of decay;

3) long-range correlation of the (xt)
n
t=1, C(s) should fol-

low a power-law dependence: C(s) ∼ s−γ , 0 < γ < 1.
We use the following methods for estimation of the

correlation.

B. DFA method

DFA was proposed in the papers [21], [22]. This method
is used for studying the indirect scaling of the long-range
dependence. DFA method was effectively applied for solving
a great amount of problems in science as well as in engi-
neering field, including DNA analysis [23]–[25], biomedical
signal processing [26]–[30], study of daily internet traffic
dynamics [31], analysis of economical and finance time
series [1]–[5], human gait behavior [32], [33]. While DFA
has some drawbacks [34], the work [35] remarks that DMA
and DFA stay the options of choice for evaluating the long-
range correlation of time series. DFA algorithm includes five
stages:

1) Integration. We calculate yk =
∑k
t=1(xt − x), k =

1, 2, . . . , n, where x =
∑n
t=1 xt.

2) Cutting. We separate the (yk)nk=1 into ns = [n/s] non-
crossing intervals, each of length s, starting with y1.

3) Fitting. For each interval l = 1, . . . , ns we construct
a fitting linear function Pl (trend) by means of least-
square fit of the data (yk)lsk=(l−1)s+1. Denote y∗k =
Pl(k).
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4) Detrending. The detranded time series are obtained by
εk(s) = yk − y∗k.

5) We calculate variance of residuals εi:

F 2
l (s) =

1

s

s∑
i=1

ε2(l−1)s+i(s), l = 1, . . . , ns.

6) DFA fluctuation function is defined by

F (s) = F
[m]
DFA(s) =

(
1

ns

ns∑
l=1

F 2
l (s)

)1/2

,

where m denotes the degree of approximating polyno-
mials use on stage 3.

Derivation of DFA can be found in the work [36].

C. The auto-correlation parameter

The fluctuation functions F (s) deduced in DFA let us
examine the s-dependance of F . In the case of long-range
power-law correlation of xt, the F must follow a power-law

F (s) ∼ sα

for large enough s. The fluctuation parameter α is connected
with the value of correlation exponent γ in the following
way (see [37]) α = 1 − γ/2, 0 < γ < 1. The correlation
parameter α reflects the auto-correlation properties of time
series as follows:

1) α = 1/2, the time series uncorrelated (white noise) or
short-range correlated;

2) α < 1/2, it is anti-correlated;
3) α > 1/2, it is long-range power-law correlated;
4) α = 1, pink noise (1/f noise).

D. Rescaled Range Analysis (R/S)

The R/S algorithm is one of the most widely used methods
for scale exponent estimation. R/S algorithm estimates the
value of the Hurst exponent based on an empirical data set
for the long-range dependent process that generated the data
set. R/S-analysis uses a heuristic approach developed in [38],
[39], [40], [41], [42].

R/S algorithm consists of the following steps:
1) Cutting. We divide the (xk)nk=1 into ns = [n/s] non-

overlapping intervals X(i)(s) := {x(i−1)s+1, . . . , xis},
i = 1, . . . , ns, each of length s, starting with x1.

2) Accumulation. We calculate the accumulated series for
each window X(i)(s), i = 1, . . . , ns, as follows

y
(i)
j (s) =

j∑
t=(i−1)s+1

(xt − x(s)), (1)

where x(s) = 1/s
∑is
t=(i−1)s+1 xt is the mean of ith

window of size s, and j = (i− 1)s+ 1, . . . , is.
3) Range calculation. We compute the range of devia-

tion within each window for the accumulated series
as follows R(i)(s) = max(i−1)s+1≤j≤is{y

(i)
j (s)} −

min(i−1)s+1≤j≤is{y
(i)
j (s)}.

4) Standard deviation calculation. For each window i =
1, . . . , ns we find the standard deviation:

S(i)(s) =

√√√√1

s

is∑
t=(i−1)s+1

(xt − x(s))2.

5) Computation of R/S statistics:

〈R(s)/S(s)〉 :=
1

ns

ns∑
i=1

R(i)(s)

S(i)(s)
, s = s1, . . . , sL.

6) Estimation of Hurst exponent. We solve the following
least mean square problem

L∑
j=1

(log (〈R(sj)/S(sj)〉)−H log sj − b)2 → min
H,b

R/S algorithm computes the R/S-statistic for different s
and plots the resulting estimates versus the s on loglog scale.
Then the Hurst parameter can be estimated via the slope of
the resulting log-log plot. As it pointed out in [43], classical
R/S-analysis is not suitable for small samples, but can be
highly effective for quite large samples and it often provides
a rather accurate picture of the presence or absence of long-
range dependence in a given empirical data sets. Moreover,
R/S-analysis demonstrates relative robustness under heavy
tails with infinite variance in the marginal distribution of the
data [38]–[41].

On the other hand, R/S-analysis is quite sensitive relative
to the presence of explicit short-range dependence structures
and its bias. Therefore, these shortcomings of R/S analysis
lead to the fact that many researchers do not consider this
algorithm as a rigorous statistical method.

III. WAVELET-BASED METHODS

A. The Hurst exponent

The self-similarity parameter 0 < H < 1 of self-affine
processes is also called the Hurst (or roughness) exponent
[44]. The Hurst exponent is commonly used for measuring
the duration of long-range dependence of a stochastic pro-
cess.

There are three possibilities:
• If H = 0.5 then C(s) = 0 which means that past and

future increments are uncorrelated (Brownian motion);
• In case H > 0.5 we have C(s) > 0 and the increments

are positively correlated (the process {X(t)}t is called
persistent).

• If H < 0.5 then C(s) < 0 and increments are negatively
correlated (the process {X(t)}t is called anti-persistent
or anti-correlated).

B. The Average Wavelet Coefficient Method

The Average Wavelet Coefficient Method (AWC) was
proposed in papers [45] and [46].

The method is used for measuring the temporal self-affine
correlations of a time series by estimating its Hurst exponent.
The AWC method is based on the wavelet transform (good
review of the wavelet transform can be found in books [47]
and [48]).

The strategy for the data-analysis by the AWC method
consists of three main steps:

1) Wavelet transformation of the data X(t) into the
wavelet domain, W[X](a, b), where a, b are scale and
location parameters, respectively [47], [48].

2) Then for a given scale a we can find a representative
wavelet amplitude for that particular scale, and to study
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its scaling. To do so we calculate the averaged wavelet
coefficient W [X](a) according to the equation

W [X](a) = 〈|W[X](a, b)|〉b,

where 〈·〉b denotes the standard arithmetic mean value
operator with respect to the b.

3) For a self-affine process X(t) with exponent H , the
spectrum W [X](a) should scale as aH+0.5 [46]. There-
fore, to find H + 0.5 we should plot W [h](a) against
scale a in a log-log plot. As it is pointed out in [46], a
scaling regime consisting of a straight line in this plot
implies a self-affine behavior of the data.

C. Fourier transform method

Let us recall that the Fourier transform of the function f
and inverse transform are defined by

f̂(ζ) =
∑
t

e−iζtf(t), (2)

f(t) =
∑
ζ

eiζtf̂(ζ). (3)

Fourier inversion theorem states that f can be reconstructed
from f̂ .

If ρx(s) is autocorrelation function of x(t), ρx(s) =∑
t x(t)x(t+ s), then the Fourier transform of ρx(s) is

ρ̂(ζ) = |x̂(ζ)|2. (4)

Therefore, to find the value of ρx(s) one should make the
following steps

1) Find x̂(ζ), the Fourier transform of x(t), using (2).
2) Find ρ̂(ζ), the Fourier transform of ρx(s), using (4)
3) Compute ρx(s) as the inverse transform of ρ̂x(ζ) using

(3).
Fourier transform is a classical way of correlation expo-

nent estimation γ, but it is often not appropriate due to noisy
nature, non-stationarity and imperfect measurement of data
xt.
ρ̂(ζ) is a power spectrum P (ω) of the Fourier transform.

ω = 0 : Fs/n : Fs/2 is a frequency increment (angular
frequency), where Fs is sampling frequency, and n - number
of samples.

IV. EMPIRICAL RESULTS

A. time series of news sentiments
Providers of news analytics obtain and aggregate data

from different sources (including news agencies and business
reports) and social media. Our data covers the period from
January 1, 2015 to September 22, 2015 (i.e. 189 trading
days). We consider all the news released during this period.
Initially we performed data selection and cleaning process
as described in [17] or [18].

For each news, news analytic providers find it sentiment
score using artificial intelligence algorithms. The sentiment
score of a neutral news is assumed to be 0. Every positive
news has sentiment score 1. If news is negative then its
sentiment score is assigned to be -1.

Then we constructed time series of news sentiments as
follows. We divided 189-day period ∆ into n non-crossing
consecutive segments ∆1, . . . ,∆n of the same longevity δ

0 8 16 24

0

20

40

60

80

hours

Fig. 1. Dynamics of sentiments (February 2, 2015)

minutes, ∆ = ∆1 ∪ . . . ∪∆n. We found xt, the sum of all
sentiment scores of all economical and finance news reported
in the world during each interval ∆t, t = 1, 2, . . . , n. The
sequence x1, x2, . . . , xn is the time series of news sentiments
with the δ minutes window. The overall sentiment of news for
the 189-day period is 2011463. Table I shows the summary
statistics.

TABLE I
SUMMARY STATISTICS OF TIME SERIES, δ = 1 AND δ = 5 MINUTES

δ, minutes 1 5
n 2.7 · 105 5.4 · 104

Sum sentiment 279750 126063
Mean 1.03 2.32
Minimum -45 -45
Maximum 237 237
St. deviation 4.03 7.60
Median 0 1
Skewness 11.54 7.75
Kurtosis 282.18 104.38

Fig. 1 plots an example of time series of news sentiments
with 1-min window. It is evident that time series is quite
volatile and demonstrates a non-stationary behavior. The
amount of positive news is much greater than the amount
of negative news during the period.

B. Self-Similarity Analysis

In this subsection we demostrate the auto-correlation and
self-similarity analysis with the use of DFA, R/S analysis,
AWC and Fourier transform method.

First we use DFA (of order 1) method to evaluate the
correlation and Hurst exponent. Then, we obtained values of
F (si) for different interval lengths si ∈ [101, 104.5] using
DFA. The task of selecting a needed length for scaling
range has been examined in the papers [49], [50], [51].
The influence of scaling range on the efficiency of some
detranding techniques has been investigated in the same
works. We used two ranges [101, 104.5] (for 1-min data) and
[101, 104] (for 5-min data) in our analysis. This values belong
to the scaling range adviseded by these papers.

Figures 2, 3 plot the results of DFA application to 1-min
or 5-minute time-series of sentiments respectively. Outcomes
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show that for 1-min and 5-min data sets the estimates of the
Hurst exponent are equal to 0.7 for 1-min and to 0.62 for
5-minute time-series, which indicates the presence of long-
range correlation. Linear regressions are highly significant,
since the determination coefficients R2 are close to 1. It must
be pointed out that Detranded Fluctuation Analysis let us
discover the crossover effect shown in the study [37].

AWC method gives similar results with DFA method in
identical estimates of the Hurst exponent on the whole scale
of s both for 1 minute or 5 minute time series (Table II).
The differences between estimates of the Hurst exponent
obtained by means of two different methods are less than
0.03. It should be noted that regression errors are very small
and the value of R2 is close to 1 for both methods. We
remark that AWC method also allowed to detect the so called
crossover effect (Figures 6, 7). it assessed the Hurst exponent
in small and large scales separately. It should be noted that
the crossover effect matches with 1 day period (or 24 hours).
Estimates of the Hurst exponent, for small (about one day) as
well as large scales (more than a day) using DFA and AWC
methods yield similar results, the difference being less than
0.04, on the whole scale of for both 1 minute or 5 minute
time series.

Figures 4, 5 demonstrate the log-log plot of dependance
R/S statistics of s for 1-minute and 5-minute time series
obtained by R/S analysis. In this case, though the values
of the Hurst exponent are less than H = 0.63 and 0.56
respectively, they still demonstrate that there are positive
long-range correlations in time series. Linear regressions are
also highly significant. In contrast to the DFA, R/S analysis
failed to reveal the presence of the crossover effect.

The Fourier transform analysis of the 1-min and 5-min
time series of news sentiments presented in Figures 8 and
9. The figures show the raw power spectrum, P (w) vs.
angular frequency w for the news flow intensity data. We
can see that the raw power spectrum is too noisy, which
does not allow us to accurately estimate the Hurst exponent
and certainly does not give us to detect the effect of the
crossover. We can apply the log-binning technique [52] to
reduce its noise. Results of the log-binning smoothing are
shown in Figures 10 and 11. The dashed lines of figures
corresponds to the slope of (−2H − 1) with the values of
H = 0.61 and H = 0.56 for 1-minute and 5-minute time
series respectively. It should be noted that while regressions
are significant, they are considerably worse than regressions
obtained by DFA, AWC and R/S analysis. Moreover, it is
not possible to identify the effect of the crossover even after
the smoothing of power spectrum.

Table II presents estimates of the Hurst exponent obtained
by DFA, R/S, AWC and Fourier transform methods for 1-
minute and 5-minute time series.

TABLE II
ESTIMATES OF THE HURST EXPONENT

Method δ = 1 δ = 5
DFA method 0.690 0.622
R/S analysis 0.631 0.558
AWC method 0.683 0.609
Fourier transform 0.609 0.56

1.5 2 2.5 3 3.5 4 4.5

1

2

3

log s

DFA, δ = 1

0, 7 log s− 0, 21, R2 = 0.98

Fig. 2. logF (s) versus log s for the DFA estimation method, δ = 1

1.5 2 2.5 3 3.5 4

1

2

3

log s

DFA, δ = 5

0.62 log s+ 0.15, R2 = 0.98

Fig. 3. logF (s) versus log s for the DFA estimation method, δ = 5

2 10 15 18

5

10

log s

R/S, δ = 1

0.63 log s+ 0.83, R2 = 0.99

Fig. 4. logR/S versus log s for the R/S method, δ = 1

V. CONCLUSION

In this paper we use the DFA, R/S analysis, AWC method
and Fourier transform technique to examine the presence of
long-range correlation of financial and economic time series
of news sentiments. The results of this paper show that the
long-range power-law correlation take place in time series of
news sentiments. The paper shows that the behavior of long
range dependence for time series of sentiment intensity most
similar to the news flow intensity [17]. The results show that
the self-similarity property is a stable characteristic of the
sentiment of news information flow which serves the finan-
cial industry and stock markets. All four methods showed
the presence of a long-range correlation in the time series
of news sentiments (the Hurst exponent is greater than 0.5).
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log s
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0.56 log s+ 1.02, R2 = 0.99

Fig. 5. logR/S versus log s for the R/S method, δ = 5
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log s

AWC, δ = 1

1.18 log s+ 0.28, R2 = 0.99

Fig. 6. logW [X](a) versus log a for AWC estimation method, δ = 1

1.5 2 2.5 3 3.5 4

2
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log s

AWC, δ = 5

1.11 log s+ 0.65, R2 = 0.98

Fig. 7. logW [X](a) versus log a for AWC estimation method, δ = 5

Results obtained by the DFA and AWC for sufficiently large
scale have revealed the effect of crossover (corresponding
to one day). Shortcomings of the classic R/S analysis and
Fourier technique do not allow us to determine the effect of
crossover.
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