
 

Abstract—This paper proposes an overlapping-based 

test for the equality of two Pareto distributions with 

different scale and shape parameters. The proposed test 

statistic is defined as the maximum likelihood estimate of 

Weitzman’s overlapping coefficient, which estimates the 

agreement of two densities. Simulated critical points are 

provided for the proposed test for various sample sizes 

and significance levels. Statistical powers of the 

proposed test are computed via simulation studies. Type-

I error robustness of the proposed test is studied also via 

simulation studies when the underlying distributions are 

not Pareto.  

 

    

Index Terms—MLE Monte Carlo Simulation, 

Overlapping coefficient, Simulated Power. 
 

 

 

I. INTRODUCTION 

esting the similarity of two populations is needed in 

various practical fields including pharmaceutical 

sciences, laboratory management, engineering sciences, 

food technology, management sciences, quality control and 

many other fields. Such tests are needed, for example, to 

assess the acceptability of a newly developed 

process\design\approach to a gold standard one. In this 

paper, we propose a test for the equality of two Pareto 

distributions of the first kind. Pareto distribution is 

important in practice because of its adequacy in modeling 

various distributions, for example, in the commercial sector, 

including city population distribution, stock price 

fluctuation, and oil field location. In addition, this 

distribution is highly applicable in the Air Force sector for 

modeling, for example, the failure time of equipment 

components, see Davis and Michael (1979), maintenance 

service times, see Harris (1968), nuclear fallout particles' 

distribution, see Freiling (1966), and error clusters in 

communications circuits, see Berger and Mandelbrot 

(1963).  
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As described by Johnson and Kotz (1970), the probability 

density function (pdf) and the cumulative distribution 

function (cdf) of Pareto distribution with shape and scale 

parameters   and  , respectively, are:
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Throughout this article, we denote Pareto distribution by 

 ,Pareto . 

Consider for testing the similarity of two Pareto 

populations: 

),|(),|(: 22110  xFxFH  vs

),|(),|(: 22111  xFxFH  ,                                   (3)   

which is equivalent to test:  

2121121210 or  :     .        vs and :   HH .     (4)                 

In general, testing the similarity of two distributions can be 

statistically linked to one-sided testing problem. For 

instance, testing the hypothesis: GFHo :  at a significance 

level   can be done by testing the hypothesis: 

  cGFSHo )(,:  , where  GFS ,  is a suitable measure of 

similarity (dissimilarity) of F  and G , and c  is the cut-off 

point of the measure S  at a significance level  .  

In this paper we propose an overlapping (OVL) coefficient-

based test for the similarity of two Pareto distributions. The 

proposed test is defined as the Maximum Likelihood 

Estimate (MLE) of the Weitzman’s OVL coefficient; this 

coefficient was first proposed by Weitzman (1970) to study 

the agreement of two income distributions. This OVL 

coefficient has received the attention of different authors in 

the literature for its importance in measuring the agreement 

of two statistical distributions. Helu and Samawi (2011) 

derived three Weitzman's coefficient (1970), Matusita’s 

Coefficient (1955) and Morisita’s Coefficient (1959), for 

two Pareto distributions of kind II, and proposed point and 

confidence interval estimates for these coefficients based on 

Simple Random and Ranked Set Samples, separately. Inman 

and Bradley (1989) used the OVL coefficient to measure the 

agreement between two normal distributions assuming equal 

variances. Mulekar and Mishra (1994) studied various OVL 

coefficients for two normal populations with the same mean. 

Reiser and Faraggi (1999) derived the confidence interval of 

the OVL coefficient of two normal distributions assuming 

equal variances in terms of non central t and non central F 

distributions separately. Chaubey et. al. (2008) studied the 

OVL coefficient for two inverse Gaussian populations. Al-

Saleh and Samawi (2007) studied OVL coefficients for two 

exponential populations. Recently, OVL-based tests have 

been proposed for testing the equality of two exponential 

distributions and two normal distributions separately by 

Bayoud (2015) and Bayoud and Kittaneh (2016), 
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respectively. This paper proposes the same technique for 

testing the equality of two Pareto distributions.  

The rest of this paper is organized as follows: In section 2, 

the proposed test statistic is derived in analytical form. 

Simulated critical points for the proposed test statistic are 

provided in Section 3 for various sample sizes and levels of 

significance. An approximation to the null distribution of 

the proposed test statistic is proposed in Section 4. In 

section 5, statistical power of the proposed test is studied 

under various scenarios.  Various real datasets are analyzed 

in Section 6. The paper is concluded in Section 7.     
 

II. PROPOSED TEST STATISTIC 

The proposed test statistic is defined as the estimated OVL 

coefficient. The OVL coefficient of  ),|( 11 xf  and 

),|( 22 xf  is defined as:  


x

dxxfxf )),|(),,|(min( 2211                    (5)                                                                        

 

The coefficient   ranges from zero to one. A value close to 

zero indicates no common area between the two density 

functions. A value close to one indicates that the two 

densities are identical. 

It can be easily proved that two Pareto densities  

 11,| xf  and   22 ,| xf  with different parameters 

either intersect at only one point in the support  ,* , 

where  21
* , Max , or they do not intersect at any point 

in  ,* . Note that, if  21    and  21   , then the two 

densities are clearly identical, and then 1 . If 21    

and 21   , then the two densities do not intersect. If  

21    then, regardless the values of 1  and 2 ,  the two 

densities intersect only at 0x  given by: 
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provided that this value belongs to  ,* .  

 

Algebraically, the value of 0x  in Eq(8) might be outside the 

interval   ,*  at some values of 21, , 1  and 2 ,  For 

example, when 2.11  , 12  , 51   and 12  , the 

value of 603.00 x , which does not belong to  ,2.1 , this 

means that the two densities do not intersect in their 

support; and hence, there is no intersection point. In such a 

case, we conclude that one of the densities lies above the 

other at all values in  ,* .  

Therefore, two different Pareto densities either intersect at 

only one point 0x
 in the interval  ,* , or they do not 

intersect at all values   ,*x .  

If the pdfs  11,| xf  and   22 ,| xf  intersect 

at 0x   ,* , then   in Eq (7) can be represented as: 
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where  iii xfxf  ,|)(   defined in Eq (1), 

 iii xFxF  ,|)(   defined in Eq (2), for 2,1i , and 0x  is 

the intersection point defined in Eq(8). 

 

On the other hand, if  11,| xf  and  22 ,| xf  do not 

intersect in  ,* , then one of the densities is greater than 

the other at all values in  ,* , then   in Eq (7) can be 

simplified to: 
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Clearly, Eq(10) is the limit of Eq(9) when 0x  approaches 

infinity.  

 

However, the proposed test statistic for testing the null 

hypothesis in Eq (3) is defined as the MLE of the 

overlapping coefficient   in Eq (7) which can be simplified 

either to Eq (9) or Eq (10) depending on the intersection 

point of  11,| xf  and   22 ,| xf . 

Let  11

.

11211 ,Pareto~,...,,
1


sr

nxxx  and 

 22

.

22221 ,Pareto~,...,,
2


sr

nxxx   be two random samples, not 

necessarily independent, from Pareto distributions.  

The MLEs of the scale and shape parameters based on the 

random samples above are: 
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By the invariant property of the MLE, the proposed test 

statistic, denoted by ̂ , can be obtained by replacing the 

parameters 21, , 1  , 2 , * , 1f  , 2f  and 0x  in Eq (9) or 

Eq (10) by their MLEs.  

 

The null hypothesis oH  in Eq (4) is rejected at significance 

level   if 
21,,

ˆˆ
nn , where     0,, |ˆˆ

21
HP nn ; i.e. 

21,,
ˆ

nn  is the th  percentile of the distribution of ̂  at 1n  

and 2n  under the assumption that oH  is true. Since, 

deriving the null distribution of ̂  in analytic form is 

complicated. Therefore, percentiles of ̂  (
21,,

ˆ
nn ) are 

simulated in Section 3 at different sample sizes and 
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significance levels. Moreover, the null distribution of the 

proposed test statistic is approximated by Beta distribution 

in Section 4. 

 

III. SIMULATED CRITICAL POINTS OF ̂  

 

Since the null distribution of the proposed test statistic could 

not be obtained in closed form. Therefore, simulated 

percentiles for this distribution are generated at different 

significant levels, and for different sample sizes assuming, 

for simplicity, 21 nn  . 

 

Table 1 shows the simulated 1st, 2.5th, 5th, and 10th 

percentiles of the null distribution of the proposed test 

statistic, these percentiles give the critical points of the 

proposed test statistic.  

 

These percentiles have been computed based on 10,000 

Monte Carlo Simulations generated at various significance 

levels under the assumption of equal sample sizes 

nnn  21  by using the following algorithm:  

Algorithm I: 

i) Arbitrary, choose   21  and    21  , based 

on the assumption that oH  in Eq (3) is true. 

ii) Generate  11

.

11211 ,Pareto~,...,, 
sr

nxxx  and 

 22

.

22221 ,Pareto~,...,, 
sr

nxxx .  

iii) Find the MLE 21
ˆ,ˆ   21

ˆ  , ˆ,   and  21
* ˆ,ˆˆ  Max  

from the samples obtained in step 2. Hence, 1̂  and 

2̂  are not necessarily equal, and 1̂  and 2
ˆ   as well. 

iv)  Compute the MLE of 0x  defined in Eq (8) by 

replacing the parameters by their MLEs those have 

been computed in step (3).  

v) If 0x  belongs to  ,*  then the proposed test statistic 

̂  is computed using Eq (9). Otherwise, the two 

densities do not intersect in  ,* , and then the 

proposed test statistic ̂  is computed using Eq (10).  

vi)  Repeat steps (2-5) 000,10m  iterations, to get 

 m ˆ,...,ˆ,ˆ
21 . 

vii) 1st, 2.5th, 5th, and 10th percentiles are computed for 

the set obtained in step (6) which are the simulated 

critical points of the proposed test statistic at 

significance level of 01.0 , 025.0 , 05.0  and 1.0 , 

respectively. 
   

 

IV. APPROXIMATED NULL DISTRIBUTION of ̂  

 

In his section, we propose an approximation for the null 

distribution of the proposed test. Under the assumption that 

the null hypothesis is true, it was observed from the 

simulation studies in the previous section that the 

distribution of the test statistic ̂  is skewed to the left with 

values between zero and 1, far away from zero and close to 

1. Eventually, Table 1 shows that  th100  percentiles are 

much closer to 1 than zero for fixed n . Moreover, the 

percentiles become much closer to 1 when n increases. 

Consequently, one can approximate the null distribution of 

̂  by beta distribution with parameters p  and q  assuming 

0 qp , to insure skewed to left distribution, with pdf: 

   
   

  11 ˆ1ˆˆ  





qp

qp

qp
f  provided that 0 qp  and 

1ˆ0  . 
 

  TABLE I  

SIMULATED  th100  PERCENTILE nn,,
ˆ
  OF THE NULL DISTRIBUTION 

of ̂   
n  01.0  05.0  1.0  

10 0.4614 0.5822 0.6383 

11 0.5008 0.6108 0.6590 

12 0.5386 0.6329 0.6808 

13 0.5625 0.6492 0.6960 

14 0.5829 0.6693 0.7170 

15 0.5922 0.6850 0.7239 

16 0.6161 0.6988 0.7341 

17 0.6196 0.7038 0.7483 

18 0.6423 0.7131 0.7536 

19 0.6551 0.7224 0.7619 

20 0.6594 0.7330 0.7734 

21 0.6673 0.7443 0.7789 

22 0.6749 0.7497 0.7854 

23 0.6851 0.7580 0.7895 

24 0.6972 0.7658 0.7971 

25 0.7056 0.7692 0.7992 

26 0.7116 0.7713 0.8034 

27 0.7195 0.7775 0.8097 

28 0.7185 0.7820 0.8148 

29 0.7299 0.7862 0.8169 

30 0.7357 0.7890 0.8222 

31 0.7416 0.7945 0.8252 

32 0.7416 0.7981 0.8278 

33 0.7484 0.8012 0.8313 

34 0.7510 0.8056 0.8355 

35 0.7505 0.8104 0.8375 

36 0.7588 0.8119 0.8393 

37 0.7630 0.8134 0.8417 

38 0.7653 0.8168 0.8466 

39 0.7673 0.8205 0.8479 

40 0.7726 0.8255 0.8489 

50 0.8012 0.8456 0.8679 

100 0.8600 0.8923 0.9079 

200 0.9036 0.9262 0.9363 

 

Clearly, the parameters p  and q  are functions in 1n  and 

2n . A simulation study is performed by using Algorithm II 

to test whether beta distribution adequately fits the null 

distribution of the test statistic ̂ .  For simplicity, we 

assume nnn  21 .  

Algorithm II:  

i) For a fixed n , Steps (i-v) in Algorithm I are performed 

with m 15000 iterations to get  m ˆ,...,ˆ,ˆ
21  , a set 

of 15000 ̂  values.  

ii) The parameters p  and q  of beta distribution are 

estimated by the method of moments estimation from 

the set  m ˆ,...,ˆ,ˆ
21  obtained in Step (i).  

iii) The frequency histogram for the simulated set 

 m ˆ,...,ˆ,ˆ
21  is plotted along with the fitted beta pdf 

using the estimated p  and q  in Step (ii).  

  

Table 2 shows the frequency histogram along with the fitted 

beta pdf obtained from Algorithm II for various values of 
n . It is evident from Table 2 that beta distribution 

adequately fits the null distribution of ̂ . Obviously, there 

is a positive linear relationship between n  and p , and a 

Proceedings of the World Congress on Engineering 2017 Vol II 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14048-3-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017



 

negative linear relationship between n  and q . Hence, one 

can approximate the parameters p  and q  by fitting suitable 

functions for p  and q  in terms of n . For illustrative 

purposes, we study the relationship between n , p  and q  

by analyzing a sample of the form    100)5(10;,, nqpn  

that is generated by using Algorithm II for 100)5(10n . For 

this sample, the estimated linear correlation coefficients 

between n  and p   and between n  and q  are 0.98 and -

0.92, respectively. This shows that linear models could 

adequately fit p  and q  in terms of n  as follows: 

n..np  3211480816299 )(   and n.. q(n) 00300670256622   

Therefore, the null distribution of the test statistic ̂  can be 

approximated by a beta distribution with parameters 

n..np  3211480816299 )(   and n.. q(n) 00300670256622  , 

where n  is the sample size, i.e. 

 n..n..Beta 00300670256622, 3211480816299  . For 

instance, at 3021  nnn , the parameters p  and q  are 

estimated by 4507.19  and 1664.2 , respectively. Hence, the 

null distribution of ̂  is approximately  1664.2,4507.19Beta . 

  
 

TABLE II 

FITTED BETA TO THE NULL DISTRIBUTION OF ̂  

 

n   qpBeta ,  Fitted Beta Curve  

10  2.13 8.42, Beta  

     

 

20  2.24 15.53, Beta  

      

 

30  2.21 20.48, Beta  

       

 

50  2.11 27.74, Beta  

        

 

10

0 
 1.96 39.61, Beta  

         

 

 

 

 

Note that the 5th and 10th percentiles of 

 1664.2,4507.19Beta  are 0.7785 and 0.8133 which are very 

close to the simulated 5th and 10th percentiles 

7890.0ˆ
30,30,05.0   and 8222.0ˆ

30,30,10.0  , respectively.  

It is worth mentioning that nonlinear models might also 

adequately fit p  and q  in terms of n . However, more 

studies are needed in this direction to study other models 

when 21 nn  . 

 

V.  SIMULATED POWERS 

 

Statistical power of a test is defined as the probability of 

rejecting the null hypothesis 0H  when the null hypothesis is 

false. Unfortunately, power function of the proposed test 

cannot be obtained in explicit form, then simulated 

statistical power is computed under different alternatives, 

keeping Type-I error of each test at the same level. 

However, Table 3 shows the simulated power of the 

proposed test based on 5000 Monte Carlo simulations for 

two sample sizes 10n and 30  and various alternatives 

assuming the significance level 05.0 , and the Pareto 

parameters 11   and 21  . 

 
TABLE III  

SIMULATED POWERS OF ̂ , ASSUMING 11  , 21   AND 0.05 

LEVEL OF SIGNIFICANCE 

 

              2  

    0.5 1.00     1.25         1.5   2.0 

2  

                                                  1021  nn  

0.5 0.9601 0.7846 0.9275 0.9874 1.0000 

1.0 0.9798 0.2618 0.6642 0.9583 0.9998 

1.5 0.9980 0.0827 0.5443 0.9573 0.9998 

2.0 0.9998 0.0507 0.5358 0.9711 0.9999 

2.5 1.0000 0.0722 0.5863 0.9814 1.0000 

3.0 1.0000 0.1106 0.6684 0.9889 0.9999 

 2021  nn  

 0.5 1.0000 0.9866 0.9999 1.0000 1.0000 

1.0 1.0000 0.5271 0.9759 0.9999 1.0000 

1.5 1.0000 0.1285 0.9618 1.0000 1.0000 

2.0 1.0000 0.0482 0.9726 1.0000 1.0000 

2.5 1.0000 0.0929 0.9868 1.0000 1.0000 

3.0 1.0000 0.2160 0.9942 1.0000 1.0000 

 3021  nn  

 0.5 1.0000 0.9995 1.0000 1.0000 1.0000 

1.0 1.0000 0.7161 0.9999 1.0000 1.0000 

1.5 1.0000 0.1755 0.9988 1.0000 1.0000 

2.0 1.0000 0.0460 0.9993 1.0000 1.0000 

2.5 1.0000 0.1242 1.0000 1.0000 1.0000 

3.0 1.0000 0.3024 1.0000 1.0000 1.0000 

 

It is obvious from Table 3 that the statistical powers of the 

proposed are satisfactory. Clearly, the statistical powers of 

this test increases as the sample size increase.  Furthermore, 

it appears from Table 3 that this test efficiently control the 

significance level, i.e. statistical powers achieve the correct 

significance level in simulations under the assumption that 

the null hypothesis is true. 

 However, since the proposed test is derived under the 

assumption that the distributions are Pareto, it is significant 

to study the Type-I error robustness of the proposed test for 

testing the similarity of non-Pareto distributions. Table 4 

summarizes the significance (nominal) levels of the 

proposed test based on 10,000 simulated pairs of samples 
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when the null hypothesis H0 is true for the selected 

population. Pareto, Normal, Gamma, Chi-square, and 

Exponential distributions are considered. Various 

assumptions of the sample sizes and the significance levels 

are considered. It is worth mentioning that Pareto 

distribution is considered again for the sake of testing the 

nominal levels of the test at various Type-I errors and 

sample sizes. The robustness of a test could be assessed by 

the closeness of the simulated nominal level to the correct 

Type-I error. It is evident from Table 4 that the proposed 

test is highly sensitive for violation of the Pareto 

assumption; which means that the test is not robust against 

departures from the Pareto assumption.  

 
TABLE IV  

NOMINAL LEVELS FOR ̂  WHEN H0 IS TRUE FOR THE GIVEN POPULATION  
 Significance Level 

Population 0.01 0.05 0.10 

 1021  nn  

)2,9(Pareto  0.0110  0.0533 0.1019 

)1,5(N  0.2237  0.4264 0.5187 

)3,2(Gamma  0.2249  0.4293 0.5390 

2
10  0.1884  0.3952 0.4896 

)9(Exp  0.2759  0.4641 0.5627 

 2021  nn  

)2,9(Pareto  0.0085 0.0485 0.1059 

)1,5(N  0.4342 0.5741 0.6478 

)3,2(Gamma  0.4335 0.5841 0.6507 

2
10  0.3848 0.5412 0.6169 

)9(Exp  0.4754 0.6038 0.6842 

 3021  nn  

)2,9(Pareto  0.0111 0.0524 0.1007 

)1,5(N  0.5280 0.6353 0.7090 

)3,2(Gamma  0.5281 0.6430 0.6937 

2
10  0.4689 0.5897 0.6677 

)9(Exp  0.5546 0.6655 0.7313 

 

 

VI. REAL APPLICATION 

 

In this section, a real data obtained from 

Watthanacheewakul and Suwattee (2010) is analyzed, this 

data summarizes the major rice crop (in Kilograms) in the 

crop year 2001/2002 (April 1st, 2001 to March 31st, 2002) 

from two Tambols, Nongyang and Nongjom, of Amphoe 

Sansai in the Chiang Mai province, Thailand. Samples 

(shown in Table 5) of sizes 28 and 30 were drawn from 

Nongyang and Nongjom Tambols, respectively.  

 

First, it was checked whether Pareto distribution can be used 

or not to analyze these data sets.  

For Nongyang's data, the MLEs of   and   are 75765.2  

and 3000 , respectively. The Kolmogorov-Smirnov (KS) 

distance between the empirical distribution function and the 

fitted distribution function has been used to check the 

goodness of fit. The KS statistic value is 0.107, and the KS 

critical value is 0.2250 at at 28n  and 05.0 . 

Accordingly, one cannot reject the hypothesis that the data 

are coming from T-L distribution. For Nongjom's data, the 

MLEs of   and   are 01544.3  and 3600 , respectively. 

The KS statistic value is 0.133, and the KS critical value is 

0.2176 at at 30n  and 05.0 . Accordingly, one cannot 

reject the hypothesis that the data are coming from T-L 

distribution. 

 
TABLE V  

 

THE MAJOR RICE CROP IN KILOGRAMS FROM THE TWO TAMBOLS FOR THE 

CROP YEAR 2001/2002 (APRIL 1ST , 2001 TO MARCH 31ST, 2002) 

 

Nongyang Nongjom 

3440 3600 

3200 5000 

5400 7500 

3800 7800 

4300 3600 

7000 4000 

3700 4000 

6000 4800 

3250 4900 

3500 4100 

3000 4500 

3400 4200 

5000 6800 

3600 4000 

18000 7000 

3150 4500 

8500 8300 

4500 3800 

4250 24000 

3500 5800 

3000 3720 

3600 6000 

5000 5400 

3000 3600 

4000 4500 

3600 4220 

4270 3600 

5800 4800 

 4200 

 4113 

 

 

Now, we need to test the null hypothesis that the rice crop 

of Nongyang and Nongjom are the same by using the 

proposed test. The proposed test statistic is equal to 

6048.0  which is less than the critical value 

7857.0ˆ
30,28,05.0  , this means that the hypothesis that the 

two crops are the same is rejected at significance level of 

0.05, which agrees with what was concluded by 

Watthanacheewakul and Suwattee (2010). 
 

 

VII. CONCLUSIONS 

 

In this paper, a non classical test has been proposed to test 

the similarity of two Pareto populations. The proposed test 

statistic is defined as the MLE of Weitzman’s OVL 

coefficient, which estimates the agreement of two densities. 

This test statistic has been derived in closed form. Since 

deriving the exact null distribution of the proposed test 

statistic is not simple, simulated percentiles have been 

provided at various equal sample sizes and significance 

levels. However, the null distribution of the proposed test 

statistic was approximated by beta distribution, but still 

further studies are needed in this direction. Simulated 

powers of the proposed test have been computed. It has 

been concluded that the proposed test almost has 

satisfactory power and it efficiently controls the significance 

level. Furthermore, we studied Type-I error robustness of 

the proposed test when the underlying distributions are non-
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Pareto. It has been noticed that this test the proposed test is 

highly sensitive for violation of the Pareto assumption; 

which means that the test is not robust against departures 

from the Pareto assumption. 
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