
 

 

Abstract— The Operational Aircraft Maintenance Routing 

Problem (OAMRP) determines the route for each individual 

aircraft while incorporating the operational maintenance 

considerations. This problem is significant to airline companies 

as it determines the routes to be flown in real aspect life. Most of 

the studies incorporate some operational considerations and 

neglect the rest, resulting in generation of routes that are not 

feasible to be implemented in reality. In this paper, we study 

OAMRP, with two objectives. First, to propose a model that 

considers all operational maintenance requirements. For this 

purpose, we formulate a Mixed Integer Linear Programming 

(MILP) model by modifying the connection network. The 

proposed model is solved using commercial software, but only 

for small size problems. Second, a solution algorithm is 

developed to solve the model efficiently and quickly while 

tackling large scale problems. The performance of the proposed 

solution algorithm is validated based on real data obtained from 

EgyptAir carrier. The results demonstrate high quality 

solutions and significant savings in the computational time. This 

performance is evidence that the proposed model and solution 

method can be potential tool for solving real OAMRP. 

 
Key words— Air transportation, Aircraft routing problem, 

Airline operations, Integer programming. 

 

I. INTRODUCTION 

n the last decade, the development of the aviation 

industry has shown radical economic growth. Similarly, 

the passenger demand is currently blooming and showing an 

increase of 5.2% from 2012 to 2013 [1], and it is expected to 

grow by 31% from 2012 to 2017 [2]. Despite this pleasant 

situation to the airline companies, airlines have a great 

challenge to assign more flights to their aircraft in order to 

cope with the demand growth, while considering the 

operational regulations. Managing that increased number of 

flights while keeping aircraft being maintained is a difficult 

operation for airline industry. For example, in 2010, 65000 

U.S. airline flights should not take off because the aircraft did 

not receive proper maintenance, resulting in $28.2 million as 

a penalty cost against 25 U.S. airlines [3]. This investigation 
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also presents the importance of maintenance since it was a 

cause, factor, or finding in 18 accidents, 43 deaths and 60 

injuries. In this regard, the aircraft maintenance routing 

problem (AMRP), which is the main focus of this study, is 

very significant to airlines in that it generates maintenance 

feasible routes for each aircraft to be flown in reality.  

AMRP is one of the most studied problems in the literature 

with two main focuses: tactical and operational. Regarding 

the tactical side, it aims to generate specific rotations for each 

aircraft in the fleet, while neglecting many of the operational 

maintenance constraints. That generated rotations are kept 

repeated by each aircraft in the fleet. Since using single 

rotation for each aircraft is not applicable due to lack of 

considering operational maintenance constraints. Thus, 

AMRP is studied at more operational focus, which aims to 

specify maintenance feasible routes for each aircraft in the 

fleet. A route is maintenance feasible when it satisfies the 

operational maintenance requirements such as the restrictions 

on the total cumulative flying-time, number of maintenance 

operations every four days, restrictions on the total number of 

take-offs, and the workforce capacity of each maintenance 

station.  

Focusing on the tactical side of AMRP, Kabbani and Patty 

[4] formulated AMRP as a set-partitioning model to find 

feasible routes or lines of flight (LOF) for 3-day AMRP. The 

use of (LOF) was expanded by Gopalan and Talluri [5] in 

order to solve the k-days AMRP. They developed a 

polynomial time algorithm in order to determine maintenance 

feasible routes for aircrafts for 3-day AMRP. 4-day AMRP 

was handled by Talluri [6] who developed an effective 

heuristic to solve their problem, which was shown to be 

NP-hard. Clarke, et al. [7] adopted lagrangian relaxation to 

solve their proposed model that aimed at finding feasible 

maintenance rotations that yields the maximum through 

value. The through value can be defined as the additional 

profit gained through connecting some specific flights. More 

recently, Liang, et al. [8] developed a new rotation-tour 

time-space network for AMRP, and proposed new integer 

linear programming (ILP) according to their network. The 

proposed model was solved using commercial software.  

Based on operational side of AMRP, which is called 

OMARP, Sriram and Haghani [9] presented an ILP model 

that considered only two among the four operational 

maintenance constraints. Firstly, one maintenance visit every 

four days and secondly, the workforce capacity constraints. 

An effective heuristic was proposed and the model was 

solved in a reasonable computational time when compared 

with CPLEX. In that study, the authors extended their model 
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and considered the cumulative flying hour; however, the 

authors did not attempt to solve it because of its high 

complexity. It is worth mentioning that the extended model is 

quite simple compared to our model proposed in this paper. 

Sarac, et al. [10] formulated OAMRP as a set-partitioning 

model that considered only maximum flying hour and 

workforce capacity, as maintenance constraints, and 

neglected the rest. The proposed model was solved by the 

adoption of column generation technique. Recently, Haouari, 

et al. [11] developed non-linear model for OAMRP, while 

considering three maintenance constraints simultaneously. 

These constraints are, one visit every four days, the 

maximum flying hours, and the maximum number of 

take-offs. They linearized their model by using 

reformulation-linearization technique that provided high 

quality solutions while solving the daily version of OAMRP. 

Başdere and Bilge [12] developed ILP model for OAMRP, 

while considering only maximum flying hour as a 

maintenance constraint. The proposed model was solved by 

using both branch-and-bound (B&B) and compressed 

annealing (CA). The authors reported that compressed 

annealing outperformed branch-and-bound for large scale 

problems, and it could find feasible solutions in minutes, 

which is important for the airline industry. 

The focus of this paper is the operational side of AMRP 

and the contribution of this work is as follow. Firstly, from 

the above list of work studies, we can see that set-partitioning 

or set covering based formulations are the most commonly 

used approach at which the number of feasible routes grow 

exponentially with the number of flights. However, a 

drawback of this approach is that it generates an exponential 

number of routes which is difficult to be solved. In this paper, 

in contrast to set-partitioning approach that needs 

sophisticated solutions, we propose a formulation that uses 

polynomial number of variables and constraints, which can 

handle real and large scale problem easily. Secondly, it is also 

observed that most of the OAMRP considered some 

maintenance constraints while neglecting the rest. To our best 

knowledge, the models by Barnhart, et al. [13] and Haouari, 

et al. [11] are the only models that considered three 

maintenance constraints (one maintenance visit every four 

days, maximum flying hours and maximum number of 

take-offs). However, these studies failed to consider the 

workforce capacity constraints, which is very important. 

Imagine, if, for instance, the model neglects workforce 

capacity and schedules four aircraft for maintenance in one 

station with insufficient workforce capacity.  It is highly 

probable to face two situations. First, the wait time of some of 

the aircraft will be prolonged in order to receive the 

maintenance, leading to cancellation of subsequent scheduled 

flights. Second, the wait time can be avoided if more hands 

and/or resources are deployed to handle the excess traffic. In 

both cases, additional cost will be incurred for not 

considering the workforce capacity. Therefore, the viability 

of this constraint necessitates its addition to the OAMRP. 

Since our polynomial formulation is scalable compared to 

set-partitioning formulations, so all four maintenance 

constraints can be considered in one model enabling it to be 

easily implemented in the real life situation. In addition to 

these contributions, we propose an efficient solution method, 

which generates the high quality solutions for large scale test 

instances in a short computational time allowing it to handle 

real situations in the airline industry. 

In this paper, we focus on the operational side of AMRP, 

and our aim is twofold. Firstly, to develop an OAMRP model 

that considers all the maintenance constraints in one model. 

For this purpose, a new MILP is proposed for OAMRP. 

Secondly, to propose an effective solution algorithm that can 

solve the OAMRP while tackling large scale instances that 

cannot be solved by using CPLEX. The performance of the 

proposed algorithm is validated with respect to exact 

solutions obtained from CPLEX for small size problems, 

whereas the best upper bound is used to assess the 

performance while solving large scale problems.  

The rest of the paper is organized as follow. In section 2, 

we describe the OAMRP and the new MILP formulation is 

proposed. The effective solution algorithm is proposed in 

section 3. In section 4, the computational experimental 

results for real cases are provided. We conclude in the final 

section of this paper. 

II. THE MATHEMATICAL MODEL FORMULATION 

Given a schedule of flight legs, our proposed OAMRP is to 

generate maintenance feasible routes to be flown by each 

aircraft so that the total potential profit is maximized. To 

generate maintenance feasible routes, they should satisfy the 

operational maintenance requirements mandated by Federal 

Aviation Administration (FAA), which are, the restrictions 

on the total cumulative flying-time, number of maintenance 

operations every four days, restrictions on the total number of 

take-offs, and the workforce capacity of each maintenance 

station.  

The objective function of the proposed model is to 

maximize the total potential profit, which is the difference 

between the through value or revenue and the penalty cost. 

Through value is the revenue that comes from the through 

connects which attract the passengers. On the other hand, the 

penalty cost is the cost paid by the airlines while neglecting 

maintenance workforce capacity as explained before. 

The multi-commodity network flow based MILP 

formulation presented in this paper the model formulation 

that is based on the connection network, which is commonly 

used network for AMRP, as shown in [5] and [11]. Nodes of 

the network represent the flight legs and maintenance 

stations, whereas, the arcs represent the possible connections 

among flight legs, and the connections between flight legs 

and maintenance stations. In this network, there are three 

types of arcs. Firstly, the ordinary arc that connects between 

two flight legs. Secondly, the maintenance arc, which 

connects between the flight leg and the maintenance station. 

Lastly, the auxiliary arcs, which connects between the 

maintenance station and the flight leg. Auxiliary arcs play the 

role of going back to use the ordinary arcs after finishing the 

maintenance operations. 

To formalize the representation of the proposed OAMRP, 

we first define the notations that are frequently used 

throughout this chapter, before giving the detailed 

formulation. 

First, we start by listing the sets and the indices associated 

with each set.  

𝑖, 𝑗 ∈ 𝑁𝐹: Set of flight legs. 

𝑘 ∈ 𝐾: Set of aircraft. 
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𝑚 ∈ 𝑀𝑇: Set of maintenance stations. 

𝑎 ∈ 𝐴: Set of airports. 

𝑣 ∈ {1,2, … , 𝑉}: Number of maintenance operations that at 

least should be performed by each aircraft. 

{𝑜, 𝑡}: Dummy source and sink nodes of the network. 

Next, the parameters are defined as follow. 

𝐷𝑇𝑖: Departure time of flight leg 𝑖. 
𝐴𝑇𝑖: Arrival time of flight leg 𝑖. 
𝑇𝑅𝑇: Turn-around time. 

𝑂𝑖𝑎 :  Origin binary indicator of flight leg 𝑖  such that 

𝑂𝑖𝑎 = 1 if the origin of flight leg 𝑖 and the airport 𝑎 are the 

same, and 0 otherwise. 

𝐷𝑖𝑎 : Destination binary indicator of flight leg 𝑖 such that 

𝐷𝑖𝑎 = 1 if the destination of flight leg 𝑖 and the airport 𝑎 are 

the same, and 0 otherwise. 

𝐹𝑇𝑖 : Flight duration of flight leg 𝑖. 
𝑏𝑖𝑗 : Through value of the connection between flight legs 𝑖 

and 𝑗. 

𝑇𝑚𝑎𝑥 :  Maximum flying time between two successive 

maintenance operations. 

𝐶𝑚𝑎𝑥 : Maximum number of take-offs between two 

successive maintenance operations. 

𝑀𝑃𝑚 : Workforce group that available in maintenance 

station 𝑚. 
𝐸𝑇𝑚: Close time for the maintenance station 𝑚. 

𝑀𝑏𝑚𝑎 : Maintenance binary indicator of maintenance 

station 𝑚 such that 𝑀𝑏𝑚𝑎 = 1 if the maintenance station 𝑚 

located at airport 𝑎, and 0 otherwise. 

𝑀𝐴𝑇:  Time required to perform the maintenance 

operation. 

𝐾𝑇: Total number of aircraft used to cover the flight legs. 

𝑉: The number of maintenance visits to be performed by 

each aircraft, which is calculated by using the following rule; 

𝑉 = ∑ 𝐷𝑇𝑖𝑖∈𝑁𝐹 𝑇𝑚𝑎𝑥  𝐾𝑇⁄ . 

𝑀: A considerable big number. 

𝑃𝐶𝑘𝑚 : the penalty cost paid if the aircraft 𝑘  has been 

assigned to maintenance station 𝑚 that does not have enough 

workforce capacity. 

The decision variables are: 

𝑥𝑖𝑗𝑘𝑣 ∈ {0,1}, it equals 1 if flights legs 𝑖 and 𝑗 are covered 

by aircraft 𝑘  before performing maintenance operation 

number 𝑣 and 0 otherwise. 

𝑦𝑖𝑚𝑘𝑣 ∈ {0,1}, it equals 1 if aircraft 𝑘 covers flight legs 𝑖 
then perform maintenance operation number 𝑣  at 

maintenance station 𝑚 and 0 otherwise.    

𝑧𝑚𝑗𝑘𝑣 ∈ {0,1}, it equals 1 if aircraft 𝑘 covers flight legs 𝑗 

after performing maintenance operation number 𝑣  at 

maintenance station 𝑚 and 0 otherwise. 

𝑅𝑇𝐴𝑀𝑘𝑣 > 0, it is the ready time for aircraft 𝑘 to continue 

covering another flight legs after performing the maintenance 

operation number 𝑣. This decision variable is not required to 

be integer, as the time might be fractional. 

Based on the above notations, the mathematical model of 

OAMRP can be written as follow: 

 

Max  𝑍 =
∑ ∑ ∑ ∑ 𝑏𝑖𝑗𝑣∈𝑉𝑗∈𝑁𝐹𝑖∈𝑁𝐹𝑘∈𝐾 𝑥𝑖𝑗𝑘𝑣 −

∑ ∑ ∑ ∑ 𝑃𝐶𝑘𝑚𝑣∈𝑉𝑖∈𝑁𝐹𝑘∈𝐾𝑚∈𝑀𝑇 (𝑦𝑖𝑚𝑘𝑣 − 𝑀𝑃𝑚)+              (1)  

Subject to 

∑ (∑ ∑ 𝑥𝑖𝑗𝑘𝑣𝑣∈𝑉 + ∑ ∑ 𝑦𝑖𝑚𝑘𝑣𝑣∈𝑉𝑚∈𝑀𝑇𝑗∈𝑁𝐹∪{𝑡} ) 𝑘∈𝑘 =

1                          ∀ 𝑖 ∈ 𝑁𝐹                                                   (2) 

∑ 𝑥𝑜𝑗𝑘𝑣 + ∑ 𝑦𝑜𝑚𝑘𝑣𝑚∈𝑀𝑇𝑗∈𝑁𝐹 = 1     ∀ 𝑘 ∈ 𝑘, ∀ 𝑣 ∈ 𝑉      (3) 

∑ 𝑥𝑖𝑡𝑘𝑣 + ∑ 𝑧𝑚𝑡𝑘𝑣𝑚∈𝑀𝑇𝑖∈𝑁𝐹 = 1       ∀ 𝑘 ∈ 𝑘, ∀ 𝑣 ∈ 𝑉      (4) 

∑ 𝑥𝑗𝑖𝑘𝑣 + ∑ 𝑧𝑚𝑖𝑘𝑣𝑚∈𝑀𝑇 = ∑ 𝑥𝑖𝑗𝑘𝑣 +𝑗∈𝑁𝐹∪{𝑡}𝑗∈𝑁𝐹∪{𝑜}

∑ 𝑦𝑖𝑚𝑘𝑣𝑚∈𝑀𝑇                       ∀ 𝑖 ∈ 𝑁𝐹, ∀𝑘 ∈ 𝑘 , ∀ 𝑣 ∈ 𝑉      (5) 

∑ ∑ 𝑦𝑗𝑚𝑘𝑣 = ∑ ∑ 𝑧𝑚𝑗𝑘𝑣𝑣∈𝑉𝑗∈𝑁𝐹∪{𝑡}𝑣∈𝑉𝑗∈𝑁𝐹    ∀𝑚 ∈

𝑀𝑇, ∀𝑘 ∈ 𝑘                                                                        (6) 

𝐴𝑇𝑖 + 𝑇𝑅𝑇 − 𝐷𝑇𝑗 ≤ 𝑀(1 − 𝑥𝑖𝑗𝑘𝑣)           ∀ 𝑖 ∈ 𝑁𝐹, ∀∈

𝑁𝐹, ∀𝑘 ∈ 𝑘, ∀𝑣 ∈ 𝑉                                                           (7) 

∑ 𝑥𝑖𝑗𝑘𝑣 ≤ ∑ 𝐷𝑖𝑎𝑂𝑗𝑎    ∀ 𝑖 ∈ 𝑁𝐹, ∀𝑗 ∈ 𝑁𝐹, ∀𝑣 ∈ 𝑉𝑎∈𝐴 𝑘∈𝑘   (8) 

𝐴𝑇𝑖 + 𝑀𝐴𝑇 − 𝐸𝑇𝑚 ≤ 𝑀(1 − 𝑦𝑖𝑚𝑘𝑣)     ∀ 𝑖 ∈ 𝑁𝐹, ∀𝑚 ∈
𝑀𝑇, ∀𝑘 ∈ 𝑘, ∀𝑣 ∈ 𝑉                                                          (9) 

∑ 𝑦𝑖𝑚𝑘𝑣 ≤ ∑ 𝐷𝑖𝑎𝑀𝑏𝑚𝑎          ∀ 𝑖 ∈ 𝑁𝐹, ∀𝑚 ∈𝑎∈𝐴 𝑘∈𝑘

𝑀𝑇, ∀𝑣 ∈ 𝑉                                                                      (10) 

∑ 𝑧𝑚𝑗𝑘𝑣 ≤ ∑ 𝑀𝑏𝑚𝑎  𝑂𝑗𝑎         ∀𝑚 ∈ 𝑀𝑇, ∀𝑗 ∈𝑎∈𝐴 𝑘∈𝑘

𝑁𝐹, ∀𝑣 ∈ 𝑉                                                                      (11) 

𝑅𝑇𝐴𝑀𝑘𝑣 = ∑ ∑ 𝐸𝑇𝑚𝑚∈𝑀𝑇 𝑦𝑖𝑚𝑘𝑣             𝑖∈𝑁𝐹∪{𝑜} ∀𝑘 ∈

𝑘, ∀𝑣 ∈ 𝑉                                                                         (12) 

𝑅𝑇𝐴𝑀𝑘𝑣 − 𝐷𝑇𝑗 ≤ 𝑀(1 − 𝑧𝑚𝑗𝑘𝑣)       ∀𝑚 ∈ 𝑀𝑇, ∀𝑗 ∈

𝑁𝐹, ∀𝑘 ∈ 𝑘, ∀𝑣 ∈ 𝑉                                                         (13) 

∑ ∑ 𝑥𝑖𝑗𝑘𝑣𝑗∈𝑁𝐹𝑖∈𝑁𝐹∪{𝑜} ≤ 𝐶𝑚𝑎𝑥           ∀𝑘 ∈ 𝑘, ∀𝑣 ∈ 𝑉       (14) 

∑ ∑ 𝐷𝑇𝑗𝑥𝑖𝑗𝑘𝑣𝑗∈𝑁𝐹 ≤𝑖∈𝑁𝐹∪{𝑜} 𝑇𝑚𝑎𝑥     ∀𝑘 ∈ 𝑘, ∀𝑣 = 1      (15) 

∑ ∑ 𝐷𝑇𝑗𝑥𝑖𝑗𝑘𝑣𝑗∈𝑁𝐹 +𝑖∈𝑁𝐹

∑ ∑ 𝐷𝑇𝑗𝑧𝑚𝑗𝑘𝑣𝑗∈𝑁𝐹𝑚∈𝑀𝑇 ≤ 𝑇𝑚𝑎𝑥    ∀𝑘 ∈ 𝑘, ∀𝑣 ∈ 𝑉/{1}   (16) 

∑ ∑ ∑ 𝑦𝑖𝑚𝑘𝑣𝑣∈𝑉𝑚∈𝑀𝑇𝑖∈𝑁𝐹 = 𝑉       ∀𝑘 ∈ 𝑘                       (17) 

𝑉 ≥ 1                                                                               (18) 

∑ ∑ ∑ 𝑦𝑖𝑚𝑘𝑣𝑣∈𝑉𝑘∈𝐾𝑖∈𝑁𝐹∪{𝑜}              ∀ 𝑚 ∈ 𝑀𝑇                 (19) 

𝑥𝑖𝑗𝑘𝑣 ∈ {0,1}      ∀ 𝑖 ∈ 𝑁𝐹, ∀𝑗 ∈ 𝑁𝐹, ∀𝑘 ∈ 𝑘, ∀𝑣 ∈ 𝑉     (20)   

𝑦𝑖𝑚𝑘𝑣 ∈ {0,1}     ∀ 𝑖 ∈ 𝑁𝐹, ∀𝑚 ∈ 𝑀𝑇, ∀𝑘 ∈ 𝑘, ∀𝑣 ∈ 𝑉   (21)   

𝑧𝑚𝑗𝑘𝑣 ∈ {0,1}     ∀ 𝑚 ∈ 𝑀𝑇, ∀ 𝑗 ∈ 𝑁𝐹, ∀𝑘 ∈ 𝑘, ∀𝑣 ∈ 𝑉  (22) 

𝑅𝑇𝐴𝑀𝑘𝑣 > 0      ∀𝑘 ∈ 𝑘, ∀ ∈ 𝑉                                       (23)      

                                                                                                                                                                                                                                                                                                                                                                                       

The objective function (1) is the maximization of the total 

profit, which is the through value (revenue) minus total 

penalty cost. Constraints (2), (3), and (4) describe the 

coverage constraints. Constraints (2) indicate that each flight 

leg must be covered exactly by one aircraft. The constraints 

in (3) ensure that each aircraft starts its route, whereas 

constraints (4) guarantee the route completion. 

In order to keep the circulation of the aircraft throughout 

the network, the balance constraints (5) and (6) are 

formulated. Constraints (5) keep the balance when aircraft 

covers flight leg nodes. These constraints indicate that if the 

aircraft covers flight leg either by using ordinary arc or 

auxiliary arc, then the next flight must be covered either by 

using ordinary arc or maintenance arc. Same as constraints 

(5), constraints (6) keep the balance for maintenance nodes.  

In order to connect two flight legs by using same aircraft, 

that connection should be feasible in terms of time and place 

considerations, as described by constraints (7) and (8). 

Constraints (7) indicate the time constraints such that the 

aircraft can cover two successive flight legs, if the arrival 

time of the first one plus turn-around time is less than or equal 

the departure time of second one. On the other hand, place 

constraints in (8) ensure that the aircraft can cover two 

consecutive flight legs, if the destination of the first one and 

origin of the second one are the same.  

To prepare a maintenance visit for the aircraft after 

covering a flight leg using maintenance arc, we should 
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consider the place and time issues for the last covered flight 

leg and the potential visited maintenance station. These 

considerations are summarized by constraints (9) and (10). 

Constraints (9) describe the time constraints such that the 

aircraft can visit the maintenance station, if the arrival time of 

the last covered flight leg plus the time needed to perform the 

maintenance, is less than or equal the time when the 

maintenance station will be closed. Place constraints in (10) 

ensure that the aircraft can visit the maintenance station, if the 

destination airport of the last covered flight leg and the 

location of maintenance station are the same. 

After finishing the maintenance operation, the aircraft 

should move from maintenance station and cover next flight 

leg by using auxiliary arc. For this purpose, constraints (11), 

(12), and (13) are cast, which represent time and place 

considerations for the maintenance station and the next flight 

to be covered. Constraints (11) constitute the place 

constraints such that the aircraft can cover next flight leg after 

performing the maintenance, if the origin airport of that flight 

leg and the location of the maintenance station are the same. 

Time constraints in (13) guarantee that the aircraft can cover 

next flight leg after maintenance operation, if the departure 

time of the next flight leg is less than or equal ready time of 

aircraft 𝑅𝑇𝐴𝑀𝑘𝑚, which is determined by constraints (12). 

It must be noted that the coverage and balance constraints 

do not enforce the aircraft that needs maintenance to undergo 

maintenance operation. Therefore, the operational restrictive 

constraints (14), (15), (16), (17) and (18) are cast. Constraints 

(14) guarantee that number of take-offs between maintenance 

operations does not exceed the maximum take-offs. 

Similarly, constraints (15) and (16) are the restrictive 

constraints regarding the accumulated flying time between 

maintenance operations. Constraints (17) are formulated to 

ensure that the number of maintenance visits by each aircraft 

is equal to that beginning predetermined number of visits. 

Since the planning horizon in our study is 4-day, and the 

constraint (18) ensure that the number of maintenance visit is 

larger than one, so the first operational maintenance 

constraint (one visit every four days) that is mandated by 

FAA, is satisfied. 

Before preparing appropriate maintenance visit for the 

aircraft, it is very important to check whether the 

maintenance has enough workforce capacity or not. 

Therefore, workforce capacity constraints are cast in 

constraints (19), in order to avoid overcapacity problem. 

These constraints ensure that the number of maintained 

aircraft does not exceed the maintenance workforce capacity. 

Finally, the constraints (20) - (23) define the domain of the 

decision variables.  

The scope of the proposed model is described as follow: 

 The planning horizon is 4 days. 

 The model only considers the existing maintenance 

stations and there is no recommendation for 

constructing new stations. 

 The maintenance stations are located in the hub 

airports. 

 The number of man-power groups in each 

maintenance station is deterministic. 

 All the maintenance operations discussed in this 

paper is Type A maintenance check, which is 

commonly considered one in the literature. 

III. SOLUTION APPROACH 

In this section, we propose an efficient solution algorithm 

for solving the proposed model. The algorithm can be 

summarized in two points. First, we prepare sub-routes that 

maximize the profit, while considering the coverage, balance, 

time and place constraints as shown by Eq. (2)-(8). Then, 

second, the algorithm keeps trying to construct complete 

routes using that pre-determined sub-routes, while 

considering all the maintenance constraints as described by 

Eq. (9)-(23). The steps of the algorithm are explained as 

follow: 

 

Step 0: Prepare a list that represent the aircraft (𝐾), and make 

another list to represent the flight leg nodes (𝑁𝐹). 

Step 1: Determine the number of maintenance operations (𝑉) 

to be performed by each aircraft in the fleet by using 

the following rule; 𝑉 = ∑ 𝐷𝑇𝑖𝑖∈𝑁𝐹 𝑇𝑚𝑎𝑥  𝐾𝑇⁄ . 

Step 2: Split the list of 𝑁𝐹 into two lists. First list is called star 

list (𝑆𝐿), it contains the through connects, thus that list 

is given high priority during the route construction. 

The second list is called normal list (𝑁𝐿). Since NL 

contains the remaining flight legs, so it is given low 

priority during route construction. To do that split, for 

each pair of flight legs in the 𝑁𝐹 list, the connection 

time between the pair’s flight legs is calculated. If the 

connecting time of the pair has a through value. Then, 

this pair is a through connect and has to be stored in 

𝑆𝐿 and the pair’s flight legs are removed from 𝑁𝐹. 

Otherwise, store the rest of the flight legs in 𝑁𝐿. 

Step 3: Use 𝑆𝐿  in order to construct another list called 

sub-routes list (𝑆𝑅𝐿). Each sub-route is constructed by 

connecting two pairs from 𝑆𝐿. That two pairs can be 

connected, especially when the ending flight of first 

pair and the starting flight of the second pair are the 

same. Each constructed sub-route is stored in 𝑆𝑅𝐿. Of 

course, not all the pairs can be connected, so the 

remaining non-connected pairs should be stored in 

𝑆𝑅𝐿. So, by the end of this step, we have two three 

lists, 𝐾, 𝑆𝑅𝐿, and 𝑁𝐿. 

Step 4: Initialize number of iterations=1. 

Step 5: Pick 𝑘th aircraft from 𝐾 list. If the list is empty, then 

go to step 8, otherwise go to step 6. 

Step 6: Start to construct the complete route for the 𝑘 th 

aircraft by using backward and forward insertion 

approaches, while considering the maintenance 

constraints shown in Eq. (14) -(19). In order to 

conduct the backward insertion approach, we follow 

the following sub-steps: 

Step a: Pick one element from 𝑆𝑅𝐿 randomly, because it 

contains the pairs with high priority. If 𝑆𝑅𝐿  is 

empty, then low priority 𝑁𝐿 is used for picking 

that element. This picked element is considered 

the first part of the constructed route. 

Step b: For the picked element, identify the staring flight 

leg, which is either the first flight leg if the 

element is picked from 𝑆𝑅𝐿, or it is the element 

itself if it is selected from 𝑁𝐿. 

Step c: Search for suitable elements to be inserted 

backwardly (before) to the picked element. These 

elements might be either sub-routes from 𝑆𝑅𝐿 or 
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flight legs from 𝑁𝐿. Firstly, we scan through 𝑆𝑅𝐿 

due to its high priority. As we mentioned before, 

if 𝑆𝑅𝐿  is empty, we use the second option by 

scanning through 𝑁𝐿 . The scan is conducted 

while considering constraints described in Eq. (7) 

and (8). If both 𝑆𝑅𝐿 and 𝑁𝐿 are empty, then go to 

step h, otherwise go to step d. 

Step d: Identify the list of potential elements. Then, 

calculate the connecting time and the 

corresponding through value for each potential 

element. In the case of no potential elements, then 

go to step h, otherwise go to step e. 

Step e: Select the element with the highest through value, 

while considering the maintenance constraints 

stated in Eq. (14) -(19). 

Step f: Add the selected element to the route, and remove 

that element from 𝑆𝑅𝐿 or 𝑁𝐿. 

Step g: Update the starting leg, then go to step c. 

Step h: Terminate the backward insertion approach. 

After conducting the backward insertion, we start 

conducting the forward insertion approach. First, we identify 

the ending flight leg for the element picked in step b. The 

ending flight leg is either the last flight leg if the element is 

picked from 𝑆𝑅𝐿, or it is the element itself if it is selected 

from 𝑁𝐿. Second, we follow the same steps (c)-(h) but by 

inserting the suitable elements forwardly to the element that 

is picked in step a. 

Step 7: Set the end to route that constructed for the 𝑘 th 

aircraft, remove the aircraft 𝑘 from the 𝐾 list, and go 

to step 5. 

Step 8: Calculate the solution of the current iteration, compare 

with the solution of the previous iteration, and save the 

best solution. 

Step 9: Check the stopping criteria whither it is satisfied or 

not. If it is not satisfied, then increment the iteration 

number, update the empty lists of K, 𝑆𝑅𝐿, and 𝑁𝐿 by 

using the same lists produced by the end of step 3 and 

go to step 5. If the stopping criteria satisfied, then stop. 

 

In our solution algorithm, the stopping criteria is satisfied 

when the current solution equals the exact solution for small 

test cases, or the current solution equal the best upper bound 

for large test cases, or the number of iterations equal the 

maximum number of iterations. In all test instances, the 

maximum number of iterations is set at 1000. 

One of the obvious questions after using that solution 

algorithm is how to evaluate the performance of the proposed 

solution algorithm. To make this evaluation, we propose 

comparing the solution obtained from our efficient algorithm 

with the optimal solution generated by CPLEX, especially for 

small size test instances. In the case of large size test 

instances, we propose using the best upper bound ( 𝑈𝐵 ) 

obtained from CPLEX as criteria to assess the performance of 

the proposed solution algorithm, since CPLEX fails to even 

produce feasible solution within 6 hours. 

IV. COMPUTATIONAL RESULTS 

In this section, we present the computational results 

obtained from the proposed algorithm and those obtained 

directly from solving the MILP formulations. The MILP 

formulation is solved by using CPLEX 12.1. This 

computational study aims to verify the effectiveness of the 

proposed solution algorithm while solving real and large 

OAMRP. The experiments of this study were carried out 

using real flight schedule data sets from the EgyptAir carrier. 

All the test cases were carried out on an Intel i7 2.50 GHz 

laptop with 8 GB of RAM memory running on Windows 10 

operating system. The proposed algorithm in this study was 

coded in Matlab R2014a. 

A. Test instances 

The six test instances used in our experiments are real 

schedules, which were constructed by extracting ten flight 

schedules in which each schedule is covered by different 

fleet. Detailed information about the test instances are 

presented in table 1. 

For all test instances, we assume that the turn-around time 

𝑇𝑅  is 45 minutes, the maximum flying time  𝑇𝑚𝑎𝑥  is 40 

hours, and the time required for maintenance operation is 8 

hours. Also, it is assumed by the EgyptAir carrier that the 

through value occurs if the connecting time between two 

consecutive flight legs, covered by the same aircraft, is 

between 45 minutes and 1.5 hour. In this study, all the 

through values are provided by EgyptAir carrier. Also, the 

penalty cost is assumed to be 500 $ for each aircraft. 

 
TABLE 1: CHARACTERISTICS OF ALL TEST CASES. 

Test 

cases 

Number 

of flight 

legs 

Fleet 

size 

Maximum 

number of 

take-offs 

Number 

of 

airports 

Maintenance 

Stations 

Case 1 160 11 15 10 6 

Case 2 200 15 15 8 9 

Case 3 240 26 15 19 9 

Case 4 296 30 15 26 9 

Case 5 400 42 15 28 18 

Case 6 496 45 15 33 18 

 

B. Performance characteristics while solving small size 

test instances 

Table 2 shows the comparison of the results obtained from 

the CPLEX and those obtained from the proposed solution 

algorithm for the cases 1 through 3, which are considered a 

small size test instances. The first two columns of the table 

represent the results of CPLEX, which are the exact or 

optimal solution (𝑍∗) and the computational time 𝐶𝑃𝑈(𝑠). 

The remaining columns of the table summarize the results of 

the proposed algorithm. 𝑍𝑏𝑒𝑠𝑡  and �̅� columns report the best 

solution and the average solution, respectively, whereas the 

𝐶𝑃𝑈(𝑠) column records the computational time. In order to 

assess the performance of the proposed algorithm, we use the 

optimality gap (%Difference) as a performance indicator. 

%Difference is computed by (𝑍∗ − �̅�)/ 𝑍∗. 

 
TABLE 2: PERFORMANCE CHARACTERISTICS OF CPLEX AND PROPOSED 

ALGORITHM WHILE SOLVING SMALL SIZE CASES 

Test 

cases 

CPLEX Proposed algorithm %Difference 

𝑍∗ 𝐶𝑃𝑈(𝑠) 𝑍𝑏𝑒𝑠𝑡 �̅� 𝐶𝑃𝑈(𝑠) 

Case 1 22000 372 22000 21852 1.56 0.67 

Case 2 42667 633 42666 42542 1.61 0.29 

Case 3 34083 9130 34083 33899 2.64 0.54 

 

By looking at the results in table 2, 𝑍𝑏𝑒𝑠𝑡 equal the 𝑍∗ for 

all cases, but  �̅� deviates from 𝑍∗  by at most 0.67%. The 
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computational time for both approaches in table 2 reveals that 

the proposed algorithm is much faster than CPLEX since it 

produces the solution within at most 3 seconds while the 

CPLEX needs up to 2.5 hours to solve the same problem. 

It is clear that solving test cases with the size up to 240 

flights and 26 aircraft is not large scale enough to discuss the 

efficiency of the proposed algorithm; however, with the small 

size test instances, we are able to compare the performance 

with the exact methods as shown in this section. In the large 

size test instances, the CPLEX fails to even produce feasible 

solution within 6 hours due to the size of problem and then 

computing the optimality gap becomes immeasurable. 

Therefore, we propose using the gap (%GAP) to be the 

performance indicator while solving the large cases. %GAP 

is the difference between the best upper bound (𝑈𝐵) obtained 

from CPLEX and the average solution obtained from the 

proposed algorithm. On the other hand, testing the proposed 

algorithm in large size test instances is necessary to show its 

applicability to handle real life problem. For this purpose, we 

perform computational experiments using large size test 

instances in the next section.   

C. Performance characteristics while solving large size 

test instances 

In this section, the proposed algorithm is tested on larger 

instances to assess its applicability and scalability to solve 

real life problems. The experiments in this section are carried 

out by using the cases 4 throughout case 6. The summary of 

the proposed algorithm results can be seen in table 3, in 

which we report the same statistics as in table 2.  

We can see from table 3 that performance of the proposed 

algorithm still produces high quality solutions in a reasonable 

computational time. Starting with the solution quality, it is 

noticed that 𝑍𝑏𝑒𝑠𝑡  reaches 𝑈𝐵  in all cases, whereas �̅� 

deviates from 𝑈𝐵  with a %GAP of around 0.55%. It is 

worthy note that the %GAP produced in all cases is less than 

0.7%. Regarding the computational time, it is clear cut that 

the proposed algorithm is very fast. For the largest test case, 

which is case 6, it is solved in less than 12 seconds.  

 
TABLE 3: PERFORMANCE CHARACTERISTICS OF CPLEX AND PROPOSED 

ALGORITHM WHILE SOLVING LARGE SIZE CASES 

Test 

cases 

𝑼𝑩 Proposed algorithm %GAP 

𝑍𝑏𝑒𝑠𝑡 �̅� 𝐶𝑃𝑈(𝑠) 

Case 4 60333 60333 59997 2.57 0.55 

Case 5 72583 72583 72097 9.22 0.66 

Case 6 111000 111000 110425 11.22 0.52 

 

These experiments show that the proposed algorithm can 

be used efficiently to solve real life problems as it handles 

large size test instances and provides profitable solution in a 

very short computational time.  

V. CONCLUSIONS 

In this paper, we presented a new MILP model for 

OAMRP while considering all the operational maintenance 

constraints along with effective solution algorithm. 

In terms of solution methods, first, we solved the model 

using commercial software (e.g. CPLEX) that can produce 

exact solutions for only small size test instances in a long 

computational time. In order to handle large size test 

instances, we proposed an effective algorithm that can find 

high quality solution quickly. Regarding the proposed 

algorithm, it can handle small size test instances easily, as it 

produces best solutions that equal to the exact solution, 

whereas the average solutions deviate from optimality by at 

most 0.67%. With respect to the computational time, the 

proposed algorithm improves the computational time 

significantly, since it can find the solution within 3 seconds 

while the CPLEX needs up to 2.5 hours to solve the problem. 

The proposed algorithm, on the other hand, can handle large 

scale test instances efficiently, where CPLEX fails to even 

produce feasible solution. It can find the best solutions that 

equal to the upper bound, whereas the average solutions 

deviate from upper bound by at most 0.67%. With respect to 

the computational time, it shows quick performance as it 

found the solution for the largest case in less than 12 seconds. 
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