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Abstract—This article presents the solution of boundary 

value problems using finite difference scheme and Laplace 

transform method. Some examples are solved to illustrate the 

methods; Laplace transforms gives a closed form solution while 

in finite difference scheme the extended interval enhances the 

convergence of the solution. 

 
Index Terms— Finite difference method, Laplace 

transforms, boundary value problems 

I. INTRODUCTION 

wo-point boundary value problems have received a 

considerable attention due to its importance in many 

areas of sciences and engineering. These types of differential 

equations arise very frequently in fluid mechanics, quantum 

mechanics, optimal control, chemical-reactor theory, 

aerodynamics, reaction-diffusion process and geophysics. 

 Various analytical and numerical techniques proposed for 

the solution of differential equations are available in 

literature; some of these are Differential Transform Method 

[1-6], Rung-Kutta 4
th

 Order Method [7], Bernoulli 

Polynomials [8], Cubic Spline Method [9], Sinc Collocation 

Method [10], Modified Picard Technique [11], Block 

Method [12-14], Adomian Decomposition Method [15-20], 

Homotopy Perturbation Method [21-23]. 

 In this work, finite difference method proposed for the 

solution of two-point boundary value problems has been 

widely applied [24-26].  However, in this article the step 

length is extended and it is observed that the approach 

enhances the convergence of the result when compared with 

the exact from Laplace transforms (which gives a close form 

of solution), See Tables 1 and 2. 
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II. ANALYSIS OF FINITE DIFFERECE SCHEME 

Consider the second order boundary value problem below 

 ( ) ( ) ( ), ,p q r                               (1)                                                    

with the boundary conditions  

 
( ) A    and ( ) B                                            (2)                                                      

The intervals ,a b is subdivided into n  equal subintervals. 

The subintervals length is referred to as h  , given that 
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                                                                         (3) 
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The numerical solution at any point 
m  is denoted by 

m  

and the theoretical solution is written as ( )m    

 We shall consider the central difference approximation for 

the approximation of the differential equation. The 

approximation is shown below 
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using (5) in (1),we obtain 
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simplifying gives 
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 Equation (7) can be written as  

1 1 , 1,2,3,m m m m m m ma b c d m                  (8)                                                

where  
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The following equations are obtained from (8) 

1 0 1 1 1 2 1a b c d                                                    (10)                                               

2 0 2 1 2 2 2a b c d     ,etc.                                      (11)                                      

The equations above result to a system of equations of the 

form A d   for the unknowns 
1 2 3 1, , , , n    

 , 

where A is the coefficient matrix. Solving the system of 

equations above gives the solution of the boundary value 

problems 

III. NUMERICAL EXAMPLES 

Example 1: Consider the two-point boundary value problem 

below 

( ) ( ) 1, (0) 0, (1) 1e                            (12)                                                             

The theoretical solution of (12) is 

( ) 1te                                                                     (13)   

                                       

Solution by Laplace Transform 

The Laplace transform of equation (12) gives  

     1L L L                                                   (14)                                                                                

2 1
(0) (0)s s

s
                                           (15)                                                                      

Let  (0)L m    

Equation (15) becomes 

2 1
(0)s s m

s
                                                 (16)                                             

and simplifying, we obtain 
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Resolving into partial fraction, we get 
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            (18) 

The inverse Laplace gives 

1 1
1

2 2 2 2

m m
e e e e                               (19) 

Using (1) 1y e   , we obtain 

1 1 1 11 1
1 1

2 2 2 2

m m
e e e e e                           (20) 

which gives m = 1, then  

1 1 1 1
( ) 1

2 2 2 2
e e e e                             (21) 

Then  

( ) 1e                                                                    (22) 

which is the exact solution 

 

Solution by Finite Difference Method 

Equation (12) is written with the following step lengths 

1 1 0
, 10

110

10

h n
h

  
                                    (23) 

From the above we have  

(0) 0,   (0.1) ?,   (0.2) ?,   

(0.3), ,   (1) 1e

  

 

  

 
                   (24) 

Using the central difference approximations for equation 

(12), we have 

 1 1100 2 1m m m m                                    (25)                                                                                                   

For 

0 1 21, 1:     201 100 1m                            (26) 

1 2 32:    100 201 100 1m                             (27)                       
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2 3 43:    100 201 100 1m      
                     (28)                                                        

10 8 99, 1:   100 201

100 100 1

m e

e

      

 
                    (29) 

Solving the system of equations (26-29) gives the solution of 

the boundary value problems; and the comparism with the 

close form solution of Laplace transform is presented in 

table1. 

Table I: NUMERICAL SOLUTION FOR EXAMPLE 1 

n LAPLACE 
TRANSFORM 

FDM ERROR 

0 0 0 0 

0.1 0.105170918 0.105221343 5.0425E-05 

0.2 0.221402758 0.221494899 9.2141E-05 

0.3 0.349858808 0.349983405 0.0001246 

0.4 0.491824698 0.491971744 0.00014705 

0.5 0.648721271 0.648879802 0.00015853 

0.6 0.8221188 0.822276656 0.00015786 

0.7 1.013752707 1.013896278 0.00014357 

0.8 1.225540928 1.225654862 0.00011393 

0.9 1.459603111 1.459669995 6.6884E-05 

1 1.718281828 1.718281828 4.5905E-12 

 

Example 2: Consider the boundary value problems below 

1, (0) 2, (1) 2( 1)e                               (30)                                                                

The theoretical solution is 

( ) 2 1e                                                            (31)   

                                                                                                    

Solution by Laplace Transform 

The Laplace transform of equation (30) is 

 
     1L L L                                              (32)                                                                                     

   2 1
(0) (0) (0)s s s

s
                      (33)                              

Let  (0)L m  , equation (33) becomes 

2 1
1s s m s

s
                                                  (34) 

Simplifying, we obtain 

  2 22

1 1 1

1

m

s s s s ss s s
    

  
                   (35) 

Resolving into partial fraction, we obtain 

2

1 1 1 1

1 1 1

m m

s s s s s s
       

  
                  (36) 

The inverse Laplace transform of (36) is given as 

e me m                                                     (37) 

Applying (1) 2 2e               

2 2e e me m                                              (38) 

Simplifying, we obtain 1m  . Then equation (37) becomes 

1        ( ) 2 1y e e e               (39)                                   

Equation (39) is the closed form solution of the boundary 

value problems (30) 

 

Solution by Finite Difference Method 

Equation (30) is written with the following step lengths 

1, (0) 0, (1) 2 2e                                      

1 1 0
, 10

110

10

h n
h

  
                                    (40) 

With the nodal points above, we have  

(0) 0,   (0.1) ?,   (0.2) ?,   

(0.3), ,   (1) 2 2e

  

 

  

 
                   (41) 

Applying central difference approximations for equation 

(30), we obtain 

 

 
1 1

1 1

100 2

5 1

m m m

m m

  

 

 

 
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 
                                         (42)                                                                                                 

For 

0 1 21, 1:     200 95 104m                        (43)                                                   

1 2 32:    105 200 95 1m                              (44)                                               
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2 3 43:    105 200 95 1m      
                       (45)                               

10 8 99, 2 2 :   105 200

190 190 1

m e

e

      

 
                 (46)                 

The system of equations (43-46) are solved and compared 

with the closed form solution of the Laplace transforms in 

Table 2. 

Table I NUMERICAL SOLUTION FOR EXAMPLE 2 

n LAPLACE 
TRANSFORM 

FDM ERROR 

0 1 1 0 

0.1 1.110341836 1.11024861 9.3226E-05 

0.2 1.242805516 1.242628652 0.00017686 

0.3 1.399717615 1.399469751 0.00024786 

0.4 1.583649395 1.583346756 0.00030264 

0.5 1.797442541 1.79710555 0.00033699 

0.6 2.044237601 2.043891587 0.00034601 

0.7 2.327505415 2.327181416 0.000324 

0.8 2.651081857 2.650817543 0.00026431 

0.9 3.019206222 3.019046947 0.00015928 

1 3.436563657 3.436563656 9.1809E-10 

 

IV. CONCLUSION 

 In this article, Finite Difference Technique and Laplace 

transform are employed to solve two point boundary value 

problems. The step length is extended in finite difference 

method to enhance the convergence of the method; the 

results are compared with the close form solution of Laplace 

transform in Tables 1 and 2.  
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