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Abstract— The control problem of planar motions of a space 

tether system (STS) is considered in this note. The STS is 

modeled by weight rod with two point masses. They are fixed 

on the rod. A third mass point can move along the rod. The 

control is the distance from the centre of mass of the STS to the 

movable mass. The control is a bounded continuous law of 

motion for a moving mass along the tether on the swing 

principle. New limited control laws processes of excitation and 

damping, diametrically reorientation and gravitational 

stabilization to the local vertical of the STS are constructed. 

The problem is solved by the method of Lyapunov’s functions 

of the classical theory of stability. The theoretical results are 

illustrated by graphical representation of the numerical 

results. 

 
Index Terms— orbit, space tether system, gravitational 

torque, asymptotic stability, swing principle 

 

I. INTRODUCTION 

URrently, a number of projects of interplanetary 

missions are being developed, which, in addition to the 

use of modern jet engines, require more energy 

efficient methods of motion in space. One promising area is 

the study of possibilities of the use of space tether systems 

(STS), under which two spacecraft connected by a tether 

with a length of tens or hundreds of kilometers are 

understood. The idea of using of STS for gravity simulation 

on the spacecraft was proposed by K.E. Tsiolkovsky [1]. 

Space tethers have received more attention in recent 

decades, with many notes and books available [1-6]. The 

fundamental note by Beletsky and Levin [2] presents the 

important results in providing the basis for the study of STS 

dynamics. Problems of simultaneous transport of loads by 

tether systems without changing the amount of system 

movement, which give the theoretical possibility of 

delivering a payload to a higher orbit and simultaneously 

lower the orbit of other cargo, such as space debris, without 

energy input, were discussed in [3]. 

In this paper we study the problem of gravitational 

stabilization of the relative equilibrium position of the STS 

in a circular orbit. We solve the problem of its reorientation 

by a movable mass swings principle. Swing can be 

simulated single-mass [7] or the two-mass [8, 9] pendulum 

of variable length. Many mechanical systems include flat 

pendulum motion, so swing models can be applied in the 

study of the dynamics and methods of control of such 
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systems. Problems of swing and damping dual-mass 

pendulum resolved in [9], using the original continuous 

control law moving mass. The problem of the diametrical 

reorientation and stabilization of the gravitational plane 

motion of the satellite in a circular orbit was solved by the 

authors [10, 12], using the same law [9]. In [6] is presented 

the solution of the problem of orbital maneuvering the 

satellite using space tether system with a movable mass. The 

task of using the swing principle for gravitational 

stabilization problem and reorientation of a dumbbell 

shaped artificial satellite with movable mass in a circular 

orbit was solved in note [11]. There is flaw in the [9-11]. 

The movable mass can move without limitations. Limited 

control law on the principle of double pendulum swing was 

constructed in [13]. 

In this paper we consider the model of the STS. We build 

the limited laws of the movable mass motion for the control 

plane motion of the tether system in a circular orbit. The 

STS consists of two point masses connected by a weighty 

tether, along which a fourth point mass can be moved. 

Tether is modeled rigid rod. The center of mass of the STS 

moves in an orbit under the action of forces of central 

Newtonian gravity. Control is the distance from the 

common center of mass of the two ends of the rod to the 

cargo and moving cargo. Control imposed limitation. On the 

movement of the movable mass limitation imposed on both 

sides. 

The new law for the model of the tether system solves the 

problem of gravitational stabilization of the radial 

equilibrium position of the STS relative to flat 

perturbations. 

Control is built, which solves the problem of "swing" of 

the system and its reorientation in a diametrically opposite 

position with respect to an asymptotically stable equilibrium 

(a revolution of the STS at an angle  ) in orbit. 

II. PLANE MOTION EQUATION OF THE TETHER SYSTEM 

Consider the STS motion in a central Newtonian 

gravitational field with center O. Tether system is modeled 

rigid rod with a mass 4m . Point mass 1m  and 2m  fixed to 

the ends of the rod. The movable mass 3m  is moved along 

the rod (Fig. 1). The common center of mass of payload and 

the rod is at the point 1O . We denote the distance from the 

point 1O  to the load 3m  as l  and distance from the point 1O  

to the center of mass 2O  as d . For them, the following 

relation holds true: 
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The orbital coordinate system 2O XYZ  was selected. The 

axis 2O X  is tangential to the orbit. The axis 2O Y  is 

perpendicular to the plane of the orbit. The axis 2O Z  

completes the system of coordinates to the right hand third 

axis. 1O xyz  is coordinate system associated with the STS. 

The movement of the coordinate system 1O xyz  relative to 

the orbital coordinates will be described by Euler angles  , 

 ,  . We assume that the principal central moments of 

inertia of the system without movable mass: 1 0,B   
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here L  – length of the tether. 

We obtain from relation (1): 
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here 
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Equation of plane motion about the center of mass of the 

STS in a circular orbit by the gravitational moment of the 

article [6]: 
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here the prime denotes the derivative with respect to new 

variable  - true anomaly. 

The distance from 1O  to the moving mass 3m , is 

considered the control: 

 

( , )l l   . (5) 

 

III. GRAVITATIONAL STABILIZATION OF THE STS 

We will solve the problem of stabilization of the planar 

oscillations of a tether system relative radial position of 

equilibrium using a movable mass by swings principle. 

Control (5) are constructed according to the equations: 
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here 0 0, 0l const a const    . Taking into account the 

equality: 
2''sin ' cos ,  
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rewrite (4): 
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Equation (7) has a zero solution 0    

corresponding to the investigated relative system 

equilibrium. It is the equation of perturbed motion in the 

neighborhood of this equilibrium state. We will find a 

solution to the problem by using the second method of the 

classical theory of stability. We chose the Lyapunov 

function: 
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The function ( , )V    can be represented by a power 

series in the neighborhood of the relative equilibrium 

state 0   . The power series begins a positive definite 

quadratic form, so the function is positive definite according 

to the basis of definite function [14]. 

The derivative function (9) looks up to terms of the fourth 

degree in the variables  ,   , by virtue of (7): 
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Fig. 1.  Space tether system. 
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here 0 0F mal  , 2

1 0 0G A ml   , n  – the mean motion 

[2]. Derivative of Lyapunov function will be determined 

negatively function of its variables, if the equality 2.1G F  

holds, according to the Sylvester’s criterion. The relative 

equilibrium state 0    tether in a circular orbit is 

asymptotically stable based on Lyapunov's theorem on 

asymptotic stability [14]. Trivial solution 0    is not 

asymptotic stability in general, but numerical calculations 

showed, that the for any initial deviations and velocity 

motion in the vicinity of the lower equilibrium position the 

STS. 

A numerical integration equations of motion performed in 

the interval  0;300   rad for the following numerical 

values of system parameters 1 400m   kg, 2 300m   kg, 

3 100m   kg, 4 200m   kg,  3200L   m, 0 900l   m, 

500a   m s, 150b   and initial data: 0( ) 1,5t   rad, 

0( ) 0.1t   rad/s. These values were taken as an illustrative 

example. The phase portrait of system (7) with control (6) is 

shown in figure 2, which illustrating asymptotic damping of 

the amplitude and velocity vibrations of the of the STS 

around a zero equilibrium state. Amplitude and speed 

begins with sufficiently large initial deviations. 

 

IV. SWINGING AND REORIENTATION OF THE TETHER 

SYSTEM 

It is known [2] that the tether has two radial equilibrium 

states. The first, there is the relative equilibrium state in the 

orbit at which tether is directed along the radius of the local 

vertical. The second, there is the diametrically opposite 

equilibrium state. We solve the problem of the swinging of 

the STS from an arbitrary neighborhood of the relative 

equilibrium position and its diametrical reorientation. We 

will assume that control law parameter (2.1) is 

 

0a const  . (10) 

 

The equation of controlled motion maintains the form 

(4). The function (9) is positive-definite in the vicinity of 

equilibrium 0   . We calculate the derivative of this 

function with respect to time by virtue of (1.4) up to terms 

of the fourth order we have the relation: 
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here 0 0F mal  . 

Derivative (11) will be negative-definite, when the 

inequality 4 2 15G F  satisfying, by Sylvester’s 

criterion [14]. According to the Chetayev theorem of 

instability [14] the relative equilibrium state 0    of 

the tether system in a circular orbit is unstable. Thus, the 

process of swinging of the STS with respect to radial 

position is implemented. Numerical calculations show that 

as a result of this swing we become diametric reversal of the 

system relative to its center of mass. 

Let us show that after the STS diametric reversal control 

(6) under the conditions (10) stabilizes it in the 

neighborhood of the opposite equilibrium state   , 

0  . We write the equation of perturbation motion by 

introducing the deviation x   : 
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If now 0a const  , then equation (12) with control (6) 

will coincide with the first equation of the system (7) where 

0a const  . The solution 0x x   will be 

asymptotically stable according to the results obtained in 

Section 2. 

Thus, the control (6) under condition (10) implements 

asymptotically stable reorientation diametrically of the STS. 

Figure 3 illustrates this process by graphs of numerical 

calculations. The integration was performed in the range 

 0;200   rad, parameter 500a    ms and the initial 

 
Fig. 2.  Phase portrait. 

 
Fig. 3.  Phase portrait. 
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values: 0( ) 0.4    rad, 0( ) 0.1    rad/s. Other 

parameters of the system were the same as they were before 

in Section 2. Phase portrait (Fig.3) shows the behavior of 

the angle  . It shows swinging around the zero equilibrium 

state 0    followed by an asymptotic approach to a 

new equilibrium state   , 0  . 

Another result of the numerical research is a numerical 

integration of controlled motions for different values of the 

parameter a . It showed the choice of the values of this 

parameter can be used for control the direction of rotation of 

the tether system at the same initial conditions. 

V. CONCLUSION 

The equation of controlled planar motions relative to the 

center of mass of the dumbbell shaped satellite with a 

moving mass in a circular orbit under the action of the 

gravitational torque was obtained in this paper. New limit 

control laws of a moving mass motion was constructed. 

These laws are solve problems of gravitational stabilization 

with respect to planar perturbations of relative equilibrium 

of the dumbbell shaped satellite in a circular orbit and its 

diametrical reorientation by controlling motion of a movable 

mass. The Lyapunov functions necessary for a rigorous 

proof of the asymptotic stability and instability of studied 

movements were constructed for the proposed control. A 

numerical integration confirmed the findings. 

The results of this paper further develop results from 

notes [13, 17] and can be used for projecting control 

systems for space tether systems. 
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