
Abstract-A manufacturing system often consists of multiple 

units as workcells with complex work systems to achieve the 

desired outcomes in an efficient and effective manner. 

Uncertain events such as machine down time or scheduled 

maintenance are unavoidable in any manufacturing unit. In 

this paper, we are trying to find the maximum workload of the 

remaining machines to fulfill the production requirements. To 

achieve this, a dynamic workload adjustment strategy has been 

proposed with dynamic upgradation of residual life 

distribution model. With parallel configurations and different 

benchmark instances the simulation experiments has been 

conducted to evaluate the degradation rate of different units. 

Results show that the proposed method is effective for finding 

the residual life of multi-unit systems.   

  Index Terms—Residual life prediction, multi-unit systems, 

simulation, workcell.  

I. INTRODUCTION 

Manufacturing systems often consist of multiple 

units as workcells which operates individually or combine 

itself for achieving the desired objectives. Parallel 

configurations are most common multiple units that operate 

autonomously and concurrently to meet the system 

requirement. Due to unavoidable degradation process face 

by each concerned unit, while performing the operations it 

has been considered that one of the unit was failed. 

 If the degradation level of a unit exceeds its predestined 

threshold it has to be repaired and restored to its original 

state, thus it can resume to its previous mode of proper 

functioning. Consequently, during a unit failure of a parallel 

unit system, the remaining functional units have to be 

assigned with relatively heavier workloads for maintaining 

the system production. For example, considering the case of 

manufacturing systems, the maximum production rate of a 

machine is designed with higher than the traditionally 

allotted workloads to overcome the unexpected or natural 

events. The Federal Reserve reported that the U.S. 

fabricating industries are 
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facing nearly 20% of average redundancy Otoo and 

Collins[14].  

Plethora of literature is available for a single unit 

system particularly in case of degradation modeling and 

prognostic analysis. But, limited research can be find on 

statistical and stochastic models for identifying the 

degradation rate of the multi-unit system which is our 

current area of interest. Liu et al., [11] present a 

methodology for constructing a composite health index for 

characterizing the performance of a system through the 

multiple degradation-based sensor data from the concept of 

a data-fusion model. The degradation model with nonlinear 

random-coefficient models, with degradation analysis and 

traditional failure-time analysis to obtain asymptotic 

efficiency is discussed by Lu and Meeker [12]. A time-scale 

transformation with Wiener process for assigning workloads 

randomly from one machine to another by accumulated 

decay modeling of a unit subjected to variable stress levels 

has been suggested by Doksum and Hόyland [6]. With two 

stochastic degradation models using real-time data from the 

units to update the model and estimate the RLD (Residual 

Life Distribution) by Gebraeel et al., [8]. Martin [13], 

Fararooy and Allan [7], Dimla [5], and Thorsen and Dalva 

[15] provide survey of similar research in different 

applications like cutting tools, high-voltage induction 

motors, railway equipment, and machine tools. The union of 

former data with real time sensor-based data to update the 

degradation model and the RLD of the component, within a 

Bayesian framework has been recommended to incorporate 

the environmental effects by Bian and Gebraell [2]. Wang 

[16] suggested several assumptions of the random 

coefficients model as the operating time progresses the 

concerned device shows its degeneration of its working 

condition and the level of degeneration can be observed at 

any point of time. As the degradation signal reaches a 

predefined threshold, the device fails to operate normally. In 

the same manner, the degradation modeling of multiple units 

during the inter-dependent degradation processes has been 

considered by Bian and Gebraeel, [3]. Hao et al., [9], 

concentrated on distinguishing unit degradation signals from 

sensor data, which involve miscellaneous documentation 

from many identical units in a composite system. From 

these results, it is identified that all these publications focus 

only on identifying or modeling the degradation of the units. 
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We extended the stochastic degradation model of 

the instantaneous degradation rate of a unit, which was 

expressed as a function of the concerned workload in Hao 

et.al. [10], by taking into account the parallel configuration. 

In this paper, the unit degradation model with a linear 

stochastic differential equation (SDE) is adopted to capture 

the variation in the degradation process. Our objective in 

this research work is to determine the amount of workload 

given to the each unit in a unit time. To achieve this, with 

already existed parallel configuration with different 

benchmark instances, the analysis has been conducted with 

the proposed dynamic workload adjustment methodology. 

With this method, initially at each stage, through analyzing 

the real-time condition monitoring data, the posterior 

distribution has been updated. Based on this updated 

distribution, the RLD of each unit for a specific workload is 

calculated. Later, with the predicted residual life, we further 

propose an optimization framework to avoid the overlap of 

unit failures for individual units. With simulation analysis 

the degradation rate of different units has been evaluated 

with different benchmark instances.  

The remaining sections of this paper is organized 

as follows: In Section 2 the problem formulation is detaield. 

The framework of Dynamic workload adjustment is detailed 

in Section 3.  The description of the proposed methodology 

for unit degradation modeling and the prediction of residual 

life distribution is illustrated in Section 4. With case study, 

the real time scenario of complex systems in a work cell has 

been discussed in Section 5. Experimentation has been done 

and their results are depicted in section 6. Section 7 

concludes the paper. 

II. PROBLEM DESCRIPTION 

The parallel configuration is the most generally used design 

in the manufacturing units due to its effectiveness and 

flexibility to handle different tasks. In this paper, we 

consider parallel configuration as unit systems and it is 

shown in Fig. 1. It consists of M units to execute the 

operations of same type where the arrival of each operation 

can be assigned to any unit to complete the task. A number 

of operations that are assigned to each unit in a unit time is 

defined by the control variable that needs to be determined 

in this paper. The maximum amount of operation of a single 

unit that is capable of performing in a unit time is defined as 

the “capacity” of that unit, which is denoted as Cm of unit m. 

The actual amount of operations performed by each unit in a 

unit time is defined as the “workload,” which is denoted by 

wm(t) for unit m at time t. In other words, here the workload 

wm(t)  is described as the control variable that needs to be 

determined in this paper. By default, we have the range of 

workload as 0≤wm(t)≤Cm, for m=1,2,…, M. If unit m fails at 

time t, then wm(t)=0. Here, the “throughput rate” of the 

system at time t, which is denoted by TH(t) and is defined as 

the summation of with “capacity” (i.e., the maximum 

throughput rate) of the system at time t, is equal to
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Assumptions: 

(1) We have considered the degradation rate of a 

unit to be directly proportional to its workload. It 

means a unit functioning under a higher workload 

is assumed to degrade faster and vice versa.  

(2) Only one type of operation is performed by the 

units, and the demand is considered to be constant. 

(3) In this paper, the actual value of λm is unknown 

and random. To capture the variation in the 

degradation processes due to material 

inhomogeneity and other manufacturing related 

uncertainty, we assume “unit to unit variability” to 

be widely adopted in this paper. 

 (4) Unit failure due to unsatisfactory 

 quality of the performed operations is not 

 considered in this paper, only its own 

 degradation rate is considered. 

 (5) The operation of a product on a  machine should 

not be interrupted until it is finished 

2.1 Mathematical Modeling 

Minimization of Throughput time
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The objective function in equation (1) represents the 

throughput time of the system which ensures that on an 

average all units fail in the slowest pace, insight is somehow 

provided by its objective value on the system’s health status 

in real time. Constraint (2) is to ensure that when the 

demand is less than the capacity of the system, then the 

throughput becomes equal to the demand. Conversely, when 

the demand is greater than the capacity of the system, the 

throughput is set according to the capacity of the system. 

Constraint (3) refers to the process of assigning higher 

workloads to units with more severe degradation status. 

Constraint (4) refers to condition or environment where the 

workload assigned to the machines is always less than the 

maximum capacity of the machines. Constraint (5) avoids 

the overlap of unit failures; that is, the difference between 

the predicted residual lives of any two units that will fail 

consecutively should be greater than the repair time. 

III. DEGRADATION MODELING FRAMEWORK 

Degradation is a natural and unavoidable process that occurs 

gradually over a period, due to performing operations. It is 

observed that a unit is considered to be failed when the 

degradation level of the concerned unit surpasses a pre-

defined failure threshold. In the paper, the pre-defined 

failure threshold is often determined by either industrial 

standards as detailed in Gebraeel et al. [8] or ideas based on 

data-driven approaches as explained in Liu et al., [11]. A 

unit once considered to be failed must be repaired or 

replaced to bring back its original status before the restart. 

Although various other types of failures exist in reality, like 

catastrophic failure and cascading systems failure, in this 

paper, we have considered failure due to degradation. 

Nevertheless, we plan to have the above-mentioned failures 

in our future works. After degradation of a unit, the quality 

of the performed operations could certainly be affected. 

However, we have not included unit failure due to the 

deficient quality of the performed operations, but solely due 

to self-degradation of the units. Substantial knowledge on 

mathematical modeling and system configuration are 

required in developing the relationship between unit 

degradation and quality of operations. 

3.1 Unit Degradation Modeling 

We interpret Am(t) as the amplitude of the degradation signal 

of unit m at time t. A generic degradation model is 

established where Am(t) is attributed as a stochastic 

differential equation given as 

( ) ( ) ( )                       (6)dA t i t dt dW tm m m   

( ) ( )                        (7)i t w tm m m
 

( ) ( ) ( )                 (8)dA t w t dt dW tm m m m 
 

where im(t) is the instantaneous degradation rate, and Wm(t) 

is a Brownian motion with variance dm
2t where dm is 

expressed as the diffusion parameter. The instantaneous 

degradation rate im(t) is proportional to the applied workload 

wm(t) where λm is defined as the degradation coefficient of 

unit m. 

IV. CASE STUDY 

A numerical case study has been taken in to 

consideration to investigate the performance of our proposed 

methodology. Having a hypothetical stamping system 

consisting of five identical stamping machines working in 

parallel configuration to fabricate parts and to obtain the 

degradation related parameters. In this study, the 

degradation related parameters such as degradation signals, 

instantaneous degradation rate and degradation coefficient 

are considered Chen and Jin, [4]. In order to capture the real 

Component 1 

Capacity C1 

Demand D Throughput TH(t) 

 

Capacity CM 

Capacity C2 

Workload c1(t) 

Workload cM(t) 

Workload c2(t) 

Component 2 

Component M 

Fig. 1 Parallel configuration 
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world characteristics, parameters that are exploited to 

generate the degradation signals a unit of workload is 

considered as the quantity of parts taken in a unit time. Each 

individual machine has its own pre-defined mean of 

“degradation coefficient”, i.e., β1,..., β5, which is equal to 

5.97 × 10-8 inch per part. Similarly, the diffusion parameter 

of the Brownian motion error of each machine, i.e., d1,...,d5, 

is 2.03 × 10-5 inch per unit time is considered. The failure 

threshold of each machine is identified as 0.004 to show the 

actual manufacturing settings. In this numerical case study, 

we assign a maximum workload of 1500 parts per day to 

each machine and the demand remains 6000 parts per day. 

Here, the decision epoch i.e. the unit time is considered as 

one day. If a machine breaks down during its ongoing 

operation, it has to undergo a repair process where a fixed 

amount of time that is not less than one decision epoch is 

taken. There may be a requirement of an excess repair time 

in terms of multiple of a day. If no more than one machine 

fails simultaneously, the demand can still be satisfied by the 

remaining machines.  

V. EXPERIMENTATION 

The resources identified from the unit degradation modeling 

and their impact on the manufacturing system performance 

were examined. The performance measures of the system 

i.e., makespan is improved by simulation analysis. Here, we 

used a FlexSim simulation tool for conducting the above 

analysis. With screen shots the created environment of the 

problem description is shown in Fig.2. The simulation was 

conducted on a PC with Intel Corei3-4005U (107GHz, 3MB 

L3 cache) running under Windows 10 Professional 

operating system with 8 GB RAM. We considered two 

benchmark instances i.e. BM-1 and BM-2 for conducting 

the experiments. In BM-1 equal workloads were assigned to 

all functional units, whereas in BM-2 the workload 

assignments were given as random distribution. While 

assigning the workloads on the functional units with BM-2, 

different combinations of workload assignments are 

established, out of which random selection has been made 

for assigning the jobs on the considered configurations. The 

results were depicted and illustrated in Figs. 3(a-c) and 4(a-

c) as Gantt charts.  

              

Fig.2 FlexSim Parallel Configuration 

Fig.3 (a-c) and Fig.4(a-c) presents results of 

simulation program i.e., for BM-1 and BM-2, for repair time 

1,3 and 5 days. With obtained results we concluded that in 

all the three cases i.e. 1, 3 and 5 days, the workloads which 

were assigned to the machines were not fully completed 

which resulted in the loss of production. From Fig.3 (a-c) it 

can be observed that machines assigned with equal 

workloads lead to failing at the same period. Whereas in 

Fig.4 (a-c) the scenario was not the same. Here, as random 

arrangement of workload was done, the failure of machines 

was in a random manner which is reflected in the results. It 

is same for BM-1, where the workload was assigned to the 

machines was not fully completed, which lead to loss of 

production. But, when a comparison is done between BM-1 

and BM-2 one can find that loss of production in BM-2 is 

less than BM-1. 

a)  

b)  

c)          
Fig. 3(a-c) Benchmark- 1(Equally distributed 

arrangement of workload). 

a)  

b)  

c)  

Fig. 4(a-c) Benchmark - 2(Random arrangements of 

workload). 
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VI. CONCLUSION AND FUTURE WORK 

In this paper, a dynamic adjustment of workload for 

degradation process controlling of each unit in real life 

adjustment of industrial units is considered. A Bayes 

scheme, which deals with degradation monitoring 

information in reality to upgrade the preliminary distribution 

of degradation coefficients, is taken in to account as a 

distribution. Thereafter, with dynamic workload assignment 

policy, the proposed method at each decision epoch the unit 

failures overlap is rectified. To demonstrate our method, we 

used a numerical study and make a contrast between two 

benchmark strategies, the former with evenly distributed and 

the later with randomly distributed workloads. The 

outcomes clarify that the proposed method can allow to find 

the throughput of the two benchmarks under different 

situations and also to prevent the overlap of unit failures and 

satisfying the demand of production. In the future work, 

with different configurations, the workload adjustments can 

be improved. 
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