
 

 
Abstract—Developing computational methods to construct 

gene networks from time series profiles can help biologists 
generating and testing hypotheses to investigate the dynamics of 
complex regulatory systems. To tackle the problem of 
scalability, we develop a hybrid method by integrating data and 
knowledge sources for network construction. Our approach 
includes a dimension reduction procedure to derive data 
features to calculate data similarity, and a knowledge mapping 
procedure to measure the semantic similarity between any two 
genes. A fuzzy gene clustering procedure is then performed. 
Experiments are conducted to evaluate the presented approach. 
The results show that our approach can produce meaningful 
clusters leading to better network construction performance. 
 

Index Terms—fuzzy clustering, time series data, gene 
network modeling, knowledge ontology 

I. INTRODUCTION 

he post-genome era sees a trend of adopting a reverse 
engineering procedure to automatically construct gene 

networks that can meet the biologists’ need to describe the 
complex phenomena of gene regulations. However, Inferring 
gene network from expression data is an under-determined 
problem. Using time series data alone to derive parameter 
values of a computational model still cannot provide detailed 
guidance regarding a biological system. This is mainly 
because the information of genetic processes contained 
within the time series is implicit and insufficient to 
comprehend the complexity of the GRNs [1]. Therefore, 
researchers advocate using additional structural knowledge 
to find solutions with biological meaning. It is to collect prior 
knowledge datasets as precisely as possible, regarding the 
gene functions, the causal links, and the partial topology of 
the biological systems (e.g., KEGG [2], CellNetOptimizer 
[3]). These databases may contain different degrees of data 
inconsistency due to various experimental settings; 
nevertheless, they serve as useful resources for providing the 
structural relationships as a practical guideline in network 
inference. Therefore, applying qualitative behavior obtained 
from prior knowledge datasets to network modeling has been 
considered a complementary strategy to construct the genetic 
dynamics. 

To tackle the scalability problem, researchers have 
presented several methods that can be classified into two 
categories. The first category means to develop more 
comprehensive computational techniques for network 
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modeling [4]. For example, the inference of a tightly coupled 
S-system is a large-scale parameter optimization problem. 
Global optimization methods with enhanced techniques 
(such as population-based algorithms with stochastic 
strategies) are better choices in estimating parameters to seek 
the global optimum for biological systems. However, they 
are computationally expensive. Meanwhile, some studies 
proposed to integrate knowledge (extracted from the 
literature) and computational methods for network inference. 
It can be performed by defining a set of constraints for the 
prior domain knowledge to restrict the parameter search, 
using a combined objective function to take both factors or 
adopting the prior knowledge to sketch the network structure 
[5]. 

The second suite of approaches takes another perspective 
to infer large-size networks. It involves a decomposition 
procedure to group genes. Clustering is a practical technique 
useful for grouping genes. Each gene cluster can be 
considered a sub-network and inferred separately. Then the 
inferred sub-networks are assembled. In the studies of gene 
networks, protein-protein interactions (PPIs) are considered 
important in tuning and regulating biological processes at the 
molecular level [6]. Many experiments have been performed 
to show that proteins from the genes belonging to the same 
clusters are more likely to interact with each other than 
proteins from the genes belonging to different clusters. In this 
regard, it can be expected to cluster genes with high PPIs 
among them to infer biologically plausible networks. 

Considering gene clustering, different types of clustering 
algorithms can be applied. In performing a gene clustering 
procedure, the first important step is to define a function to 
measure the similarity (or dissimilarity) between any two 
genes. The similarity is often measured from two 
perspectives: data and knowledge. The way to perform a 
data- driven measurement is often to extract and select 
features. Among others, the principal component analysis 
(PCA) method is a widely used technique to analyze 
multivariate data to extract important features for dimension 
reduction. It is a coordinate transformation in which each row 
in the data matrix is written as a linear sum over basis vectors 
called principal components (PCs). Only more important PCs 
are retained to reduce the dimensionality of the data. 

The other way to measure gene distance is to equip a 
domain knowledge mindset and to consider the gene 
semantic similarity through the biological information 
contained in genes [7]. Domain knowledge is useful to 
preserve biological or regulatory functions in gene clusters. 
Biological knowledge can be obtained from scientific 
literature or public databases, among which gene ontology 
(GO) is a most popular and prominent biological knowledge 
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source. Though GO is a useful method to derive biological 
similarity between genes, it is notable that appropriate use of 
functional similarity measures depends on the applications. A 
given measure can yield good performance for one 
application but performs poorly for another.  

After a large gene set is grouped into several small-size 
subsets, a modeling procedure can then be applied to 
reconstruct the network. Many existing methods have 
provided great insights for gene network modeling. However, 
present studies have not often used the known gene pathways 
to infer a network with an adequate gene group size from a 
large number of genes. Extensive research works have built 
and reinforced the content of databases regarding the gene 
functions, causal links, and gene topology over the past 
decade, for example BioGRID [8], a database stored gene 
interactions, chemical associations, and post-translational 
modifications from biomedical publications.  

Regarding the data-enriched web databases, this work is 
inspired by the idea that if a large network can be constructed 
with an appropriate set of gene-gene interactions via 
integrating time series data, gene ontology, and the known 
gene interactions from literature [8], we can adopt the results 
from an inferred sub-network without further examining the 
connectivity validity. In detail, to investigate the effect of 
using gene clustering to assist the construction of large 
networks, we present a hybrid gene clustering approach that 
adopts the PCA-based method to calculate data similarity, 
and the GO-based method to measure the semantic similarity. 
To verify the presented approach, a series of experiments 
have been conducted. Most importantly, examples of 
subnetworks are analyzed and discussed to inspect the 
quantitative experimental results. The results show that the 
presented approach can produce clusters with high gene 
interactions leading to better network construction 
performance. 

II. INTEGRATION OF DATA AND KNOWLEDGE 

In this study, we present a clustering-based approach with 
hybrid similarity measurement for inferring large-size 
networks. Our approach employs a divide-and-conquer 
strategy. It divides the entire gene set into small strongly 
correlated subsets of the original data; and then a knowledge 
base containing currently known interactions and pathways is 
used to connect the genes within the same cluster to form a 
sub-network. This approach is extended from our previous 
work [9], but here we turn to focus on the performance 
verifications and qualitative analyses of the clustering results. 

Our clustering-based method for gene grouping is based 
on analysis and interpretation of the genes involved. Two 
methods are adopted: the PCA method to extract data 
features from the expression profiles; and a knowledge 
mapping method to derive knowledge features from gene 
ontology. Euclidean distance measuring method is used to 
calculate the two types of similarities between gene pairs. 
The two types of gene similarity are aggregated in the way of 
weighted summation. Then, a network modeling procedure 
can be performed on the gene clusters obtained. The 
following sub- sections briefly describe the major steps. 

A. Using Time Expressions to Measure Gene Correlation 

The first important factor we consider in the procedure of 
clustering genes is to measure the gene-gene correlations 
from the time series data. The reason is that in a microarray 
experiment, gene products with similar genomic expressions 
may be functionally related and the correlations between 
genes indirectly correspond to the protein interactions. 
Microarray data are typically high dimensional and the gene 
expression could be complicatedly correlated. PCA is an 
exploratory multivariate statistical technique for simplifying 
complex data sets; therefore, we adopt this technique to 
tackle the difficulties associated with the time series data.  

In our work, each dataset is considered a data matrix 
including n gene variables (rows) with m observations 
(columns). The goal is to reduce the dimensionality of the 
data matrix by finding r new variables, where r is much less 
than n. The PCA method constructs linear combinations of 
gene expressions (i.e., PCs, corresponding to the r variables) 
that can effectively represent effects of the original 
measurements. Mathematically, this is equivalent to finding 
the best low rank approximation of the data via the singular 
value decomposition where coherent patterns can be detected 
more clearly. In this way, correlated genes can be projected to 
the same direction because the data dimension reduction is 
based solely on gene expression.  

The PCA-based dimension reduction approach picks up 
the dimensions with the largest variances. In the case of 
reducing dimension for gene expression data, the PCs are 
linear combinations of thousands of genes. Because PCs are 
constructed to explain variations, they are difficult to 
interpret. Consequently, we use the common rule for 
choosing how many PCs to retain. That is, we keep enough 
PCs so that the cumulative variance explained by the PCs is 
larger than a pre-specified threshold. With these PCs retained, 
the original expression data can be reduced to a lower 
dimensional subspace. Thus, each data record can be 
represented as a new feature vector with a smaller data 
dimension. The Euclidean distance measure is then applied to 
gene-to-gene similarity calculations. 

B. Using Knowledge Ontology to Measure Semantic 
Similarity 

In addition to the gene expression profiles, the second 
factor for measuring correlations among genes is the domain 
knowledge; that is, to take the perspective of molecular 
function for gene analysis. The incorporation of biological 
knowledge provides an insight toward the extraction of 
interacting groups of genes and this often leads to the 
structural correctness of the network. As mentioned above, 
we choose to use the gene ontology (i.e., GO terms) to 
annotate each gene (the corresponding proteins) of a network, 
because two proteins interacting physically are likely to be 
involved in similar biological processes. The similarity 
between genes can thus be measured from the GO terms that 
annotate these genes [10]. To exploit multiple semantic 
measures with various advantages, two popular methods for 
measuring GO-based similarity are implemented. The two 
methods used are briefly described below, and the 
computational details are referred to the original studies [11]. 
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The first method is an information content-based method 
adopted from Resnik’s algorithm, which has been shown to 
provide consistently high correlation with sequence 
similarity and gene co-expression. Resnik’s algorithm is 
based on information theoretic similarity measures [11]. It 
investigates how to measure the similarity of two concepts in 
GO from the information they share, where the shared 
information is specified by a highly specific concept in the 
taxonomy that subsumes the two concepts. According to the 
information theory, in this method the information content of 
a concept c is defined as -log p(c), where p(c) is the 
probability of encountering an instance of concept c in GO.  

This quantitative characterization of information 
provides a straight and practical way to measure the semantic 
similarities of two genes. The similarity measure of two GO 
terms relies on the information content of the minimum 
subsume; that is, their lowest common ancestor in the GO 
hierarchy. 

The second method is a topology-based method that 
mainly concerns with the intrinsic topology of the GO 
directed acyclic graph [12]. In such an approach, each 
biological term in the ontology is expected to have a fixed 
semantic value used for genome annotation, and the semantic 
value is defined as the biological content of a given term. 
Wang et al. proposed a graph-based strategy to compute 
semantic similarity using the topology of the GO graph [12], 
in which the different semantic contributions of the distinct 
relations are all taken into account. In Wang’s approach, the 
gene-gene similarity is computed based on the GO term 
similarities that annotate the target genes. According to the 
results shown in [12], this measure performs significantly 
better than Resnik’s measure on yeast protein functional 
similarities. However, Wang’s measure ignores both the 
topological distances among the lowest common ancestors 
and the statistics of gene annotations, while these factors 
have been considered in other studies (e.g., [13]). 

In this study, the above two GO-based similarity measure 
methods are both adopted to determine the data distance in 
the feature space. This measurement is implemented by 
GOSemSim [14]. It is to evaluate the GO semantic distance 
between two genes using the gene open reading frame (ORF) 
ID and to return a value between 0.0-1.0. Though there are 
some enhanced techniques proposed for GO mapping, we 
choose to use the original algorithm because our goal is to 
demonstrate the effectiveness of our integrative approach, 
rather than to compare the performance of relevant variants.  

The above GO semantic similarity measure is mainly to 
derive protein semantic (or functional) similarity between 
proteins based on their GO annotations. Because each gene 
may be annotated by multiple GO terms, it is possible to 
obtain different similarity values for a pair of genes and here 
the average value is taken. Moreover, because none of the 
existing measures account for all aspects of GO, it is 
hypothesized that integrating multiple measures can improve 
the performance. Therefore, the semantic measures obtained 
by the two methods described above are averaged to be the 
final semantic similarity for each gene pair. 

C. Fuzzy Clustering 

With the above two types of similarity measures, the 

clustering algorithm can be performed in grouping of genes. 
We adopt and revise the fuzzy c-means algorithm for cluster 
genes. The operating steps are described below.  

Step 1: Randomly choose a number of c genes as the initial 
cluster centers.  
Step 2: For each gene element gj (1≦i≦n), generate µij to be 
the membership level of belonging to cluster j (1≦j≦c) by 
the following equation: 
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In this equation, the parameter m is a fuzzifier that 
determines the fuzziness of the clusters. The membership 
level µij, is inversely related to the distance between gene 
element gi and the cluster center. 
Step 3: Calculate the centers of the c clusters by the following 
equation: 
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Step 4: Temporarily assign each gene to the closest cluster 
center. Calculate the PPI rate for each cluster cj obtained by 
the following equation: 

     100%
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As a validation information resource, a knowledge 
database with all known PPIs is used to measure the number 
of interacting gene pairs. Taking the average across all c 
clusters, one may also define the global measure assessing 
the quality (biological significance) of the whole partition. 
This step is skipped if no knowledge base is applied.  
Step 5: Return to Step 2, unless the termination criterion is 
met (e.g. no improvement is observed or a specified number 
of iteration has been performed).  

In the above procedure, the distance measure is based on 
the gene-gene similarity. In our hybrid approach, the 
similarity between any two gene elements is calculated by the 
combination of gene expression based and gene ontology 
based measures with two weighting factors.  

The performance of gene clustering here is evaluated by 
PPI rate of the clusters obtained. Here, the PPI rate is defined 
as the fraction of interacting pairs found among all gene pairs 
that end up in the same cluster. In this work, the genomic 
database BioGRID (The Biological General Repository for 
Interaction Datasets, [8]) aiming to catalogue all known PPIs 
is used. Here, adopting a knowledge base (Step 4) is an 
attempt to guide the clustering procedure to derive a set of 
clusters with high PPIs (though the knowledge base may be 
inconsistent with the hybrid effect of expression data and 
GO). It is a direct extension of integrating knowledge in 
clustering. This step can be ignored if no knowledge is 
applicable. 

D. Building Networks with a Knowledge Resource 

After a dataset is grouped into several clusters, a 
modeling method can be applied to the network construction. 
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Many modeling methods have been developed, in which a 
network model is first selected and then the corresponding 
computational techniques are used to infer the model that fits 
the most to the gene expression profiles. Our main focuses 
here are on verifying the effectiveness of the presented 
hybrid measurement and on reconstructing a network with 
correct topology, rather than on evaluating different 
inference methods. Therefore, we choose a succinct graph 
theoretic model in which genes are represented as vertices 
and the gene interactions as arcs between gene pairs. To 
reconstruct large networks, we utilize the online database 
BioGRID to find interactions connecting genes in the clusters. 
BioGRID is a public database that archives and disseminates 
gene and protein interaction data for major model organisms 
and humans. This database is established to help capturing 
biological interaction data from the primary biomedical 
literature. BioGRID currently holds over 830,000 
interactions derived from over 55,000 publications in the 
primary literature. It thus provides an important resource for 
biomedical researchers who study the functions of individual 
genes and pathways, and for computational biologists who 
analyze the properties of large biological networks. Here, we 
retrieve the interactions from BioGRID for the genes in the 
same clusters and construct the networks accordingly. 

III. EXPERIMENTS AND RESULTS 

A. Datasets 

In this experimental study, a real dataset was used to 
assess the presented approach. As our approach involves 
semantic mapping of GO terms, the gene nodes included in 
the dataset are required to be transferred by available tools to 
retrieve the relevant information. In addition, to validate the 
networks constructed, there is the need to know the 
connection information among the nodes. Considering these 
preconditions, the dataset collected from [15] was used. It 
described the yeast S. cerevisiae regulatory network with 12 
time points and contained 6,601 genes in total. Note that 
about 10% of the genes could not match the GO terms so we 
dropped them off in the experimental procedure.  

Due to the limits of the publicly available packages on 
data processing, we randomly sampled four subsets (namely 
D1~D4, each included 400 genes) from the original dataset, in 
which the four 400-gene networks contained 2,645, 3,275, 
4,765, 4,055 gene pairs. All the gene-gene interactions were 
retrieved from the BioGRID database (98,082 directed gene 
pairs in total). 

B. Effects of Data and Knowledge in Clustering and 
Network Modeling 

To evaluate the performance of the presented hybrid 
approach in gene clustering and network modeling, we 
describe the experimental trials conducted and analyze the 
results. In the first phase, we investigated the effect of using 
time series data and domain knowledge for distance 
measurement in clustering genes. As described in section II.B, 
the PCA procedure was performed on the time series data 
contained in the datasets for feature extraction, and then a set 
of PCs covering 70-90% of original information content (the 
proportion of variance) was selected. For the four datasets 
D1-D4, the first two PCs represented over 95% of the 

variation (the cumulative proportions of variance for the first 
two PCs are 95.74%, 95.30%, 95.51%, and 95.17%, 
respectively), and the two PCs truncated 12 time-point 
features to two variables (as illustrated in Fig. 1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The PCA results for different datasets. 
 

In the experiments, the semantic (knowledge) similarity 
between genes was calculated by GOSemSim. This tool 
measures the GO semantic distance between two genes using 
the ORF ID and it returns a value between 0 and 1. The two 
types of similarities were first obtained, and then combined 
and used for clustering genes. To investigate the effects of 
expression data and biological knowledge, we examined 
different weight combinations in this series of experiments.  

As mentioned above, many studies have confirmed that 
PPIs are important in regulating biological processes, and 
that the gene co-expression and protein interaction are 
correlated. In this regard, it is thus expected that clustering 
genes with high PPIs among them can lead to biologically 
plausible networks. Therefore, the PPI measurement was 
taken to evaluate the results. We calculated PPI values for the 
obtained clusters to evaluate the performance and the results 
show that the values were relatively high, in contrast to those 
reported in relevant studies [15]. However, it is notable that 
the PPI values are tightly related to the gene-gene 
interactions. Therefore, the PPI values here were calculated 
to examine the effects of data and knowledge in gene 
clustering. It is not directly comparable for the results derived 
from different datasets used in different studies. 

In the experiments, 100 trials were conducted for each 
weight combination, and the PPI values of the trials were 
averaged over the trials. In addition, the effect of the number 
of clusters specified in the experimental trials was examined. 
The results are presented in Fig. 2 (due to the space limitation, 
only the results for D1 are shown as representative). In this 
figure, the x-axis indicates the weights of similarities for data 
and knowledge; and the y-axis, the PPI value for each weight 
combination. As shown, the results illustrated on the left 
represent the combinations of a fixed data weight of 1, 
coupling with a knowledge weight shown on the x-axis. 
Similarly, the results on the right are the cases with a fixed 
knowledge weight of 1 and a data weight listed on the x-axis. 
These results indicate the effect of both factors of data and 
knowledge in deriving gene clusters with high PPIs and 
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certain combinations of weights can lead to the best 
performance. 

Following the above experiments, we took a different 
perspective to conduct another set of experiments for 
contrasting several clustering methods, including our fuzzy 
clustering algorithm (FC) and three popular methods: the 
k-means, the hierarchical clustering (HC), and the 
self-organized map (SOM). In the experiments, the above 
methods were performed on the dataset, and the online 
database BioGRID was used as the knowledge resource to 
guide the clustering process. This strategy meant to generate 
a selective (or fitting) pressure (by BioGRID) to maximize 
the computational power of the clustering methods, so that 
more objective results can be obtained. All four methods had 
the same input format. In this way, one can observe the 
efficacy of the PPI values, which provide more gene 
connections for constituting a cluster. Table 1 depicts the best, 
the average, and the standard deviation of PPI values among 
100 runs for each dataset. The results suggest that KFGC can 
derive the highest gene interaction pair rate among the four 
methods. 

 

 
 
 
 
 
 
 
 
 
 

Fig. 2. PPI values of different weight combinations in clustering. 
 

TABLE 1. Comparisons of the PPI values. The median cluster sizes 
derived from the fuzzy clustering are 23, 18, 22, 31 in D1-D4. 

Method PPI value D1 D2 D3 D4 

FC 

Best 0.9091 0.9231 0.9429 0.9211 

Avg 0.8433 0.8585 0.8050 0.8458 

SD 0.0824 0.0540 0.0727 0.0990 

k-means 

Best 0.5292 0.5498 0.4930 0.4130 

Avg 0.2263 0.1884 0.2064 0.2264 

SD 0.1143 0.0940 0.1286 0.1189 

HC 

Best 0.4330 0.5130 0.4830 0.4530 

Avg 0.1624 0.1764 0.2254 0.2434 

SD 0.1163 0.1246 0.1407 0.1316 

SOM 

Best 0.4840 0.5698 0.5198 0.4612 

Avg 0.2325 0.1794 0.1649 0.1643 

SD 0.1727 0.1232 0.1316 0.1030 

C. Case Studies and Analyses 

In addition to the quantitative experimental results, to 
verify the results in detail, further examinations and analyses 
have been made. Fig. 3 presents the gene-gene interactions 
obtained from the clusters with high PPI values. Since the 
interactions here are derived from the literature (i.e., 
BioGRID), the connected relationships in a sub-network are 
thus useful for researchers to understand the regulatory 
mechanism. By looking into the graph structure, one can find 
the hub gene of each cluster in a straight way. For example, 

the DSN1 in Fig. 3 (up) (with GO term: chromosome 
segregation, a step in cell reproduction or division) is an 
essential component of the multi-protein kinetochore 
sub-complex, and its protein (DSN1p) promotes the 
interaction between inner and outer kinetochore regions [16]. 

The illustrated example above indicates that one promising 
way to study those sub-networks is to focus on the hubs in the 
clusters and to investigate the related gene connections of 
interest. On the other hand, we can also scrutinize a set of 
multi-gene interactions (i.e., a gene pathway) from a cluster. 
For instance, both gene pairs KAR3-CLB4 and CLB4-TSR3 
in Fig. 3 (down) are recorded on the web database. The 
KAR3-CLB4 gene pair would result in synthetic lethality 
when combined in the same cell under a certain condition 
(e.g., one of them mutated) [8], while the LB4-TSR3 pair 
would severe fitness defect or lethality under a given 
environment [8]. It is worthwhile to make a case study of in 
vivo experiments for the pathway KAR3-CLB4-TSR3. 

 
Fig. 3. The interactions derived from the high PPI clusters. 

 
Moreover, we take one of the sub-clusters as an example to 

perform semantic verification. The selected sub-cluster 
(named yeast-14 herein) consists of 14 genes (RDH54, 
DUN1, MSH6, RAD51, RAD54, RAD27, RAD5, RHC18, 
UNG1, OGG1, PMS1, MSH2, DHS1, and RAD53) and the 
inferred topology is depicted in Fig. 4. The hub of this 
network is RAD5, which has the most linkages compared to 
its related genes, followed by RAD27, DHS1, and RAD54. 
Meanwhile, these genes control over half of the interactions. 

To investigate the mechanism of yeast-14, we accessed the 
Saccharomyces Genome database (SGD, http://www.yeast 
genome.org/) to evaluate the biological meaning (i.e., the 
correctness of the clustering and reconstruction) of yeast-14. 
Table 2 shows the result that includes the recognized 30 GO 
terms among genes. False discovery rate (FDR) for each GO 
term with corresponding classified genes are also provided. 
The FDR was calculated by running 50 simulations with 
random genes, and counting the average number of times for 
the case with a p-value as good as or better than the case with 
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a p-value generated from the real data. The closer the p-value 
(or the corresponding FDR) is to zero, the more significant 
the particular GO term associated with the group of genes is. 
As seen, all the FDR values are less than 10%. This shows 
that a promising cluster group has been built. 

TABLE 2. Results evaluated by the Genome database. 

GO ID GO term (#genes, %) FDR(%)

0006259 DNA metabolic process (14, 100%) 6.40% 
0033554 cellular response to stress (13, 92.9%) 8.30% 

0006974 cellular response to DNA damage stimulus (13, 92.9%) 4.20% 

0006950 response to stress (13, 92.9%) 9.10% 

0006281 DNA repair (12, 85.7%) 3.40% 

0022402 cell cycle process (9, 64.3%) 8.20% 

0007049 cell cycle (9, 64.3%) 8.80% 

0006310 DNA recombination (7, 50.0%) 2.50% 

0000003 reproduction (7, 50.0%) 6.50% 

1903046 meiotic cell cycle process (6, 42.9%) 3.30% 

0051321 meiotic cell cycle (6, 42.9%) 3.90% 

0006312 mitotic recombination (5, 35.7%) 0.80% 

0007127 meiosis I (5, 35.7%) 1.40% 

0006302 double-strand break repair (5, 35.7%) 1.50% 

0007126 meiotic nuclear division (5, 35.7%) 2.40% 

0006298 mismatch repair (4, 28.6%) 0.30% 

0060249 anatomical structure homeostasis (4, 28.6%) 1.10% 

0000723 telomere maintenance (4, 28.6%) 1.10% 

0032200 telomere organization (4, 28.6%) 1.10% 

0030491 heteroduplex formation (3, 21.4%) 0.10% 

0000710 meiotic mismatch repair (3, 21.4%) 0.10% 

0007534 gene conversion at mating-type locus (3, 21.4%) 0.20% 

0035822 gene conversion (3, 21.4%) 0.20% 

0071897 DNA biosynthetic process (3, 21.4%) 0.40% 

0007533 mating type switching (3, 21.4%) 0.40% 

0045165 cell fate commitment (3, 21.4%) 0.50% 

0007530 sex determination (3, 21.4%) 0.50% 

0007531 mating type determination (3, 21.4%) 0.50% 

0036297 interstrand cross-link repair (2, 14.3%) 0.10% 

 

 

Fig. 4. Interactions of the sub-cluster extracted from the dataset. 
 

All of the 14 genes belong to DNA metabolic process. On 
the one hand, for a widely definition in this cluster, 13 and 12 
(see the third column in Table 2) out of the 14 genes are 
identified as cellular response to DNA damage stimulus and 
DNA repair, respectively. The analyses and interpretations 
on this sub-network show that yeast-14 can be regarded as 
functioning the DNA damage stimulus and DNA repair 
processes. Looking into the gene interactions (i.e., Fig. 4) and 
each gene’s corresponding GO terms, we can not only 
observe the gene relationships in a sub-network, but also 
refer interactions to several gene functions as well. The 
approach of integrating data-driven measurement (i.e. time 
series data) and knowledge-driven measurement (i.e. gene 
ontology) to construct biological networks is thus confirmed. 

IV. CONCLUSIONS AND FUTURE WORK 

It has been shown that integrating structural knowledge 
into expression data can find networks with biological 
meaning and correct topology. Regarding the data-enriched 
web databases, this work attempts to reconstruct a large 
network with an appropriate set of gene-gene interactions via 
integrating time series data, gene ontology, and the known 
gene interactions from literature. To tackle the problem of 
scalability, we have adopted and revised a gene clustering 
method extended from our previous work, but here we 
focused on the performance verifications and qualitative 
analyses of the clustering results. In addition to the 
quantitative evaluations, examples of subnetworks are 
analyzed with the available knowledge resources. Moreover, 
the gene annotation of the subnetwork is examined and the 
corresponding semantics is evaluated. The results show that 
incorporating biological knowledge can produce clusters 
with high gene interactions to structure a biologically 
meaningful subspace. It means this method can lead to the 
extraction of useful gene pathways and has the potential for 
better performance of network reconstruction. 
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