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Survival Model With Doubly Interval-Censored
Data and Time-Dependent Covariates
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Abstract—In this paper a survival model with doubly interval and Tsiatis [19] and Bagdonavicius and Nikulin [3]. Arasan
censored (DIC) data and time dependent covariate is discussed. and Lunn ([1],[2]) has discussed the bivariate exponential
DIC data usually arise in follow-up studies where the lifetime, model with time varying covariate. Kiani and Arasan [12]

T = W — V is the elapsed time between two related events, di dthe G ot del with d dent it
the first event, IV and the second event, 11/ where both events 1scusse ¢ Lompertz model with time dependent covariate

are interval censored (IC). The work starts by describing an for mixed case interval censored data.
algorithm that can be used to simulate doubly interval censored
data. Following that the parameter estimates of the model are II. THE MODEL

studied via a comprehensive simulation study. Finally the Wald DIC data often arise in the follow-up studies where the
and jackknife confidence interval estimation procedures are P

explored for the parameters of this model thorough coverage survival time of interest is time between two events where
probability study. both events are IC. For instance, infection by a virus as the
Index Terms—doubly censored, time dependent covariate, first event. and ons.et of the disease as the secogd eV.ent.
Wald, jackknife. DIC data include right censored(RC) and IC survival time
data as special cases. In order to formulate the censoring
scheme let V' and W be two non-negative continuous random
) . ) variables representing the times of two related consecutive
He analysis of doubly interval censored data begins events where both of them are IC and V < W. Then, the
when De Gruttola and Lagakos [9] proposed a non- g, vival ime of interest could be defined as, T = W — V.
parametrl'c estlmatlon. procedure pased on the Turnpulls Also, T' is a non-negative continuous random variable. Let
self-consistency algorithm. Following that, the analysis of .o o0 functions of V, T and W be S(v), S(t) and S(w).

DIC data has been studied extensively using nonparametric oo it is assumed that V and T follow the exponential
and semiparametric regression approaches. Reich et al. [13]  jicribution

proposed the likelihood contribution for a doubly interval Any value that V takes is IC when its exact value is

censored lifetime. In this research we adapted Reich et al.s |, ,1hGwn and only an interval (V7 V] is observed where
idea and proposed a parametric model by assuming both 1y, - (Vi,Vg] and Vi, < Vi with probability 1. Similarly,
initial event time and lifetime follow exponential distribution. any value that W takes is IC when the exact value of W is

It is rather common in any analysis to find time dependent |, b o 4 only an interval (W, W] is observed where
covariates, for example, blood pressure, cholesterol level and 13, - (WL, Wg] and W;, < Wg with probability 1. Finally
age. These covariates that do not remain at a fixed value observa’tion on T is DIC when the exact value of T is’
over time. A time dependent covariate, x() may take values | 1o oo only one interval (W, — Vi, Wr — V1] is
that follow a step function thus remaining constant within — p o o0 4 where T € (Wi, — Vg, Wr — V] aI;d Wy —Vg <
an interval but changes from one interval to another. Most Wr — Vi, with probability 1. Ilet fv (v) and fr(t) be the
llteraturfa on time yarylng covan?ltes involve the extension of probability density functions of V' and T and fy (w) be
the semi parametric Cox proportional hazards model because 1. yndefined probability density function of . Following

it easily accommodates time varying covariates. This is due  poih et al. [13], if fr(t) is known and v is given and
to the partial likelihood function, which is determined by the 4 _ ', then thla joint p.d.f. of V and W would be

ordered survival times and not by the actual survival times.
Authors who have made a contribution include Crowley and fo,w) = fv(v) fr(w —v).
Hu [7].Wulfsohn and Tsiatis [20], Murphy and Sen [16], g, the likelihood function for a DIC data is
Marzec and Marzec [15], Cai and Sun [5], Zucker and vR  rwr
Karr [21], Martinussen et al.[14], Goggins[8] and Hastie and L(\y) / f(v,w)dwdv
Tibshirani [11]. oL, Jwr

Apart from the Cox model, there has also been work on / R Fvr () fr(w — v)dwdv
time varying covariates with discrete-time using the logistic vy Jwyp v g '

regression model by authors such as Brown [4], Hankey and  Djstributional assumptions on V and 7' will allow us to

Mantel [10] and Pons [18]. Other works involve the acceler-  ghyain the above likelihood function of the observations. Here
ated failure time model with time varying covariates which it is assumed time to first event, V, and survival time, T,

was discussed by Cox and Oakes [6], Nelson [17], Robins  fo]jow the exponential distribution.

I. INTRODUCTION
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attendance probability of the subjects for follow-ups can take
any number between O to 1. To simulate n subjects, firstly the
vectors (t;,v;, w;, vp,, VR,, WL, Wg,) are produced. Here ¢;,
v; and as a result w; can be easily generated via simulation
because S(v) and S(¢) are known and also, W =V + T.
However, the same is not the case with the simulation of
(ULi »UR;» WL, , WR, )

In real life, vy,,vR,, wr, and wg, may only be certain
predetermined points on the time axis or discrete follow-
up times, because it is impossible to observe subjects
continuously.. In order to simulate these times, we con-
sider a sequence of potential inspection times or PO =
(po1, poa, ..., poy,) and assume that the subjects should be
inspected or examined at these times. The subject’s atten-
dance probability at each of the po;’s is indicated by p where
0<p<1landj=1,2,..., h. There are three possible cases
for the subject’s attendance probability.

1) p =1, subjects attend all of the po;’s.

2) p =0, subjects miss all of the po;’s.

3) 0 < p < 1, subjects will attend to some of the po;’s

and will miss others.

Depending on the value of p each subject will
have a sequence of actual inspection times or
ACi=(CLCi1,aCi2,...,aciki) where 0 < ki < h. The
following assumptions are made before moving on to the
simulation algorithm.

o There are h potential inspection times which are known
by design.

o All subjects are observed in the first potential inspection
time or po;.

o Subjects will attend potential inspection times with
probability p.

o Times for the first event are generated from a known
S(v).

o Survival times are generated from a known S(t).

e For each 7, v; and w; could not be in the same interval.

e V can be only IC or observed exactly (OE).

e W cannot be left censored (LC).

In order to generate DIC data for the first subject or
(vr,,vR,] and (wr,,wr,] where attendance probability is
p, the following algorithm is used:

1) Generate v from S(v) and ¢; from S(¢) and calculate

w1 = vy + t1.

2) Generate u; ~ U(0,1), where j =

assume u; = 0.
3) Define an indicator variable for po;’s,

2,3,....,k and

I 1 if subject attend po; (u; < p);
J 0 if subject miss po; (u; > p).
4) Create the sequence of actual inspection times or ACY
h
where k1 = ) I;.
j=1
5) Select the largest member of AC; which is less than
vp as a vy, and smallest member of AC; which is

more than or equal v; as a vg, . Define a time-window
[Ell, Egl] then if

(IS [Ell,Egl] = Vis OE.

6) Select the largest member of AC; which is less than
wi as a wr, and smallest member of AC which is
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more than or equal w; as a wg, . Define a time-window
[E317E41] then if

wy € [Egl,E41] = Wis OE.
Thus, if
wy > acyy, = Wis RC = (wg,, wg,| = (acig, , +00).

7) If vy, = wr, and vr, = wg,, then generate two new
values for v; and t; and calculate w; then go to step

(5).

IV. EXPONENTIAL MODEL WITH DOUBLY
INTERVAL-CENSORED DATA AND TIME-DEPENDENT
COVARIATES (EDICTD MODEL)

In this section it is assumed that the time to first event, V/,
and survival time, T, both follow the exponential distribution
with parameters A and 6 respectively. In addition, one vector
of TD covariates are incorporated into the proposed model,
Y, where it affects 7.

In the model with TD covariates we are dealing with
covariates whose values change over time and not fixed
throughout the study. Let Y7,Y5,...,Y, represent ¢ TD
covariates. Suppose that for the " subject, the m!"
covariate has updated at a sequence of update times
Tim0s Tim1y -5 Timkim » Where m = 1,2, ..., q. Tymo 1s the time
origin, 0, and we consider it to be start of the study.

{Tim;} represents the set of the update times, where j =
0,1, ..., kim. If ki, = 0, this simply means that the covariate
was not updated during the subject’s follow-up.

In order to accommodate covariate effects to the hazard
function lety;ym=Yimo, Yim1s --s Yimk,,, ) tepresents the full
history of the m!* covariate for the i*" subject which is
updated at {7;,,;}. It is clear that y;,,o is the covariate’s
baseline value, y;,,,1 is the covariate’s value after first update
and Yimk,,, 1S the covariate’s value after kff}l update.

We can easily detect whether a subject’s covariate has
updated during the follow-up because subject is monitored
continuously. We could observe the occurrence of the update
at time 7,5 and record Yim; .

We consider the case where covariate values follow a step
function which means it stays constant at y;,,; within the
interval [Ty, Tim(j+1)), and changes to y;,(j4+1) in the
following interval. An example of this kind of covariate could
be a change in a patient’s condition from one level to another
level during the study period.

For the " subject let Yi(t;)) denote the com-
plete history of the covariate values up to time ¢t;.
Yilea))=(Yi ()]s Yiz (o)) -+ Yiagee,)) WHETe Yimice,) 15
the vector of the m!" covariate values up to time ;.

For the it" subject let Yj¢,) denote vector of covariate
values at time ¢;.

Y{/[ti]=(yi1[t,;]»yi2[ti]a <o Yiqlt;)) Where Yiy,) is the m
covariate’s value at time ¢;.

th

For the i*" subject the hazard function of the V' is
A
ha(v;) = €7,
the survivor function is

Sx(v;) = exp(—vie)‘)7
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and the probability density function is
Fa(vi) = exp(X — v;et).

The hazard function for the "
given vector Y;

subject conditional on the
can be expressed as

= exp(Aip,]) = exp(Bo + BYie,)),

where 3=(51, B2, ...
0=(5o, B).

Let us consider this model with a single TD covariate and
at most one covariate update time 7;;,. For the i*" subject,
the hazard function before and after update time is

[t;]
he(tilYi[z,)

,B¢) and the vector of the parameters is

h@(ti‘yio) — ePothiyio — ho(ti)7
h@(tz‘yzl) — eﬁo+51y¢1 — hl(ti)~

The likelihood function involving both censored and un-
censored subjects is given by
L =

n R, [WR,—V
[/, /m .
b1,
X / / » fg tY[(t+v)])dth:|
wr,; o
><50( 1)—50( ])}
- SER,;
]

6DE1,
x| fg (tz‘|Y%[(ti)1)] [50(
" subject can be

dpr
(v )f@(ty;:[(t+v)])dtd1}:|

The likelihood contributions for the it
any of the following cases:

e T is DIC (both V and W are IC) and covariate is
updated

e T is DIC (both V and W are IC) and covariate is not
updated.

e Vis IC, W is RC and covariate is updated.

e Vis IC, W is RC and covariate is not updated.

e T is IC (either V or W is IC) and covariate is updated

e T is IC (either V or W is IC) and covariate is not
updated.

e T is OE (both V and W are OE) and covariate is
updated.

e T is OE (both V and W are OE) and covariate is not
updated.

e T is RC (V is OE and W is RC) and covariate is
updated.

e T is RC (V' is OE and W is RC) and covariate is not
updated.

A. Simulation Study

A simulation study using 1000 samples each with n=50,
100, 150, 200, 250, 300 and 350 was conducted for this
model. The values of 2, 0.4 and 0.08 were chosen as the
parameters of A, 5y and f;.

The update time or 7;; was generated from the exponential
distribution with parameter v. The value of v can be adjusted
to obtain larger or smaller values of 7;;.
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Random numbers from the uniform distribution on the
interval (0,1), u1;, were generated to produce v;,

v — — hl (Uh)
K3 e BN .
Random numbers from the uniform distribution on the
interval (0,1), us;, were generated to produce t;,

o . Uz < exp(—Te)it);

— ln(’ugi)

o otherwise.

— In(ug;)+71i1 (il —e7i0)

t, =

Two time-windows are defined in order to randomly select
some subjects that are OE on V' or W. The time-window for
OE on V is
[Eri, Bai] =
€],
and for OE on W is
[Esi, Eyi] = [wr, + (wr,
wr, )ua; + €,

[vL, +(vR, —vr, )uzi—€,vr, +(vR, —vL, )uzi +

— wr,)ugy; — 6w, + (wg, —

. where ¢ = 0.004 and wus; and wuy; are random numbers

generated from the uniform distribution, U (0, 1).

B. Simulation Results

The simulation study was conducted to assess the bias,
SE and RMSE of the estimates at different study periods,
attendance probabilities and sample sizes. From Table I, we
can see that the 30 months study period generates more DIC
data compared to the 20 months study period. Twenty months
study period generates more RC data on W.

From Tables II, IT and IV we can clearly see that the bias,
SE and RMSE values of the A, fy and 3; decrease with the
increase in p, sample size and study period. RMSE’s of the
all three parameters are relatively small indicating that the
estimation procedures works well for the model.

V. WALD AND JACKKNIFE CONFIDENCE INTERVAL
ESTIMATES

In this section the performance of two CI estimates when
applied to the parameters of the model are compared and
analyzed. The first method is the asymptotic normality CI
or Wald and the second is the alternative computer based
technique known as the jackknife method. For discussions
in the following sections we will use J; as our example
and similar procedures would then apply for the rest of the
parameters.

TABLE I
AVERAGE PERCENTAGES OF DIFFERENT DATA TYPES FOR EDICTD
MODEL
D 1 0.8 0.6
Updated covariates (%) 43 45 48
Study periods 20 30 20 30 20 30
T is DIC (%) 76.60  82.36 7841 8451 80.12  86.79
V is IC and W is RC (%)  8.43 2.26 876 239 9.47 2.58
T is IC (%) 1293 13.81 10.80  11.75 8.64  9.46
T is OE (%) 034 036 0.18 0.21 009 011
T is RC (%) 046  0.09 030  0.07 0.23 0.06
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TABLE II
BiAS, SE AND RMSE OF A FOR THE EDICTD MODEL

Study periods 30 20
p T 0.8 0.6 T 0.8 0.6
Bias 20.0087 -0.0209 -0.0397 0.0204 -0.0312  -0.0506
50 SE 01552 0.1573  0.1576 0.1567  0.1527  0.1549
RMSE 0.1555  0.1587  0.1625 0.1580  0.1559  0.1630
Bias 20.0049 -0.0186  -0.0404 20.0196  -0.0307 _ -0.0509
100 SE 0.1113  0.1148  0.1136 0.1095  0.1080  0.1096
RMSE 0.1114 01163 0.1206 0.1112  0.1123  0.1208
Bias 20.0097 -0.0235 _ -0.0461 00231 -0.0347 _ -0.0546
150 SE 0.0879  0.0896  0.0892 0.0870  0.0849  0.0866
RMSE 0.0884  0.0926  0.1004 0.0900  0.0917  0.1024
Bias 0.0145 00283 _ -0.0501 00258 -0.0372  -0.0546
200 SE 0.0753 00762 0.0751 0.0753 00739  0.0866
RMSE 0.0767  0.0813  0.0903 0.0796  0.0828  0.1024
Bias 00138 -0.0286 _ -0.0506 0.0255 -0.0368  -0.0584
250 SE 0.0669  0.0665  0.0668 0.0676  0.0658  0.0671
RMSE 0.0683 00724  0.0838 0.0723 00754  0.0890
Bias 00137 -0.0285 -0.0512 200262 -0.0370 _ -0.0587
300 SE 0.0637 00642  0.0643 0.0630  0.0621  0.0626
RMSE 0.0652  0.0702  0.0821 0.0682  0.0723  0.0858
Bias 00152 00292 -0.0514 20.0266  -0.0378 _ -0.0590
350 SE 0.0572 00578  0.0577 0.0576  0.0570  0.0567
RMSE 0.0592 00648  0.0773 0.0635  0.0684  0.0818
TABLE III
BiAS, SE AND RMSE OF g FOR THE EDICTD MODEL
Study periods 30 20
p 1 0.8 0.6 1 0.8 0.6
Bias 0.0073 __-0.0058 _ -0.0325 00022 -0.0270 _ 0.0193
50 SE 0.1381  0.1363  0.1330 0.1357  0.1312  0.1398
RMSE 0.1383  0.1364  0.1369 0.1357  0.1339  0.1412
Bias 0.0066  -0.0060  -0.0326 00072 -0.0215 _ 0.0231
100 SE 0.0983  0.0972  0.0943 0.0971  0.0929  0.0987
RMSE 0.0985  0.0973  0.0998 0.0973  0.0953  0.1014
Bias 0.0032 _ -0.0100 _ -0.0361 0.0050  -0.0237 _ 0.0206
150 SE 0.0767  0.0757  0.0736 0.0765  0.0745  0.0776
RMSE 0.0768  0.0764  0.0820 0.0767  0.0781  0.0803
Bias 0.0001  -0.0127 _ -0.0391 0.0030 _-0.0251 _ 0.0180
200 SE 0.0677  0.0670  0.0651 0.0680  0.0659  0.0694
RMSE 0.0677  0.0682  0.0760 0.0680  0.0705  0.0717
Bias 0.0002  -0.0132 _ -0.0397 0.0032 00253 0.0183
250 SE 0.0602  0.059%4 00575 0.0611  0.0591  0.0619
RMSE 0.0602  0.0608  0.0699 0.0612  0.0643  0.0646
Bias ©0.0001 _ -0.0131 _ -0.0395 0.0033 _ -0.0253 _ 0.0184
300 SE 0.0557  0.0552  0.0529 0.0562  0.0547  0.0573
RMSE 0.0557  0.0568  0.0660 0.0563  0.0603  0.0602
Bias 20.0010  -0.0137 _ -0.0403 0.0030 -0.0258 _ 0.0182
350 SE 0.0510  0.0504  0.0483 0.0512  0.0498  0.0523
RMSE 0.0510  0.0523  0.0629 0.0513  0.0560  0.0553
TABLE IV
Bias, SE AND RMSE OF 31 FOR THE EDICTD MODEL
Study periods 30 20
p 1 0.8 0.6 1 0.8 0.6
Bias ©0.0397 -0.0418  -0.0492 ©0.0373 _-0.0401 _ -0.0438
50 SE 0.2000 02038 02103 02095 02063 02139
RMSE 0.2039 02081  0.2160 02128 02102 02184
Bias 00317 00323 -0.0335 0.0286  -0.0321 _-0.0320
100 SE 0.1343  0.1358  0.1409 0.1359  0.1396  0.1405
RMSE 0.1380  0.1396  0.1449 0.1389  0.1432  0.1441
Bias 00300 -0.0324  -0.0383 20.0316  -0.0340 _ -0.0378
150 SE 0.1129  0.1151  0.1181 0.1171  0.1204  0.1205
RMSE 0.1171 01196 0.1241 0.1213  0.1251  0.1263
Bias 00379 -0.0382  -0.0414 ©0.0360 -0.0373 _ -0.0373
200 SE 0.0957  0.0975  0.0989 0.0978  0.0985  0.1002
RMSE 0.1029  0.1047  0.1072 0.1043  0.1053  0.1069
Bias ©0.0348  -0.0389 _ -0.0407 0.0317 -0.0346 _ -0.0388
250 SE 0.0850  0.0863  0.0852 0.0879  0.0888  0.0895
RMSE 0.0919  0.0947  0.0944 0.0934  0.0953  0.0975
Bias 00307 -0.0336 __-0.0379 00292 -0.0337 00365
300 SE 0.0795  0.0802  0.0795 0.0812 00811  0.0807
RMSE 0.0852  0.0869  0.0880 0.0863  0.0879  0.0886
Bias ©0.0278  -0.0308 _ -0.0342 200269 -0.0284  -0.0309
350 SE 0.0723 00739  0.0729 0.0739  0.0747  0.0749
RMSE 0.0774  0.0801  0.0806 0.0787  0.0800  0.0810

A. Wald Confidence Interval Estimates

Let 0 be the maximum likelihood estimator for the vector
of parameters 6 and (@) the log-likelihood function of 6.

Following Cox and Hinkley (1974), under mild regularity
conditions, 6 is asymptotically normally distributed with
mean @ and covariance matrix I~1(0), where I(0) is the
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Fisher information matrix evaluated at the true value of the 6.

The matrlx I(0) can be estimated by the observed information

matrlx 1(6). The var(ﬁl) is the (2,2)'" element of matrix
I-1(). The 100(1 — a)% CI for B is

~

31 —Z1-2 var(ﬂ ) < p1 < 51 +z1-g var(fi).

B. Jackknife Confidence Interval Estimates

For a data set with n observation, the i*" jackknife sample
is defined to be & with the i*" observation removed. So, the

it" jackknife sample would consist of (n — 1) observations,
all except the i*" subject.

.’B(z) = (331,.132, vy Li—1y LTi41, ...,a:n).

The jackknife estimate of bias and SEs are computed from
the jackknife samples. Let ﬁl( ) be the MLE of the parameter
f1 based on the jackknife sample x(;). Then, the new
estimate, El(jack) is defined by

Bi(jacky = B — (n = 1)(Bi(y — Bu),

where

.~
2 1(4)
Biy = E !

and 31 is the MLE of the parameter 3; obtained from the
full sample z= (z1,z2,...,2,). The jackknife estimate of

the SE is
~ n—1 < ~ ~
SEjack(B1) = - Z;(/Bl(i) = Biy)*
If tq g n-1) is the (1 — §) quantile of the student’s t

distribution at (n-1) degrees of freedom, the 100(1 — a)%
CI for (31 is

ﬁl(]ack :tt(lffn l)SEjack(B)

C. Coverage Probability Study

The coverage probability of a CI is the probability that the
interval contains the true parameter value and should prefer-
ably be equal or close to the nominal coverage probability,
1—oa.

A coverage probability studies was conducted using N =
1500 samples of sizes n = 50,100, 150, 200, 250, 300 and
350 to compare the performance of the CI estimates at o =
0.05 and o = 0.1 where « is the nominal error probability.
Values of the parameters were chosen are the same as those
chosen for the simulation study.

The study period was assumed 20 months with monthly
follow-ups and p = 1, for all patients. Following that, we
calculated the estimated total error probabilities by adding
the number of times in which an interval did not contain the
true parameter value divided by the total number of samples.

Following Doganaksoy and Schmee (1993), if the total
error probability is greater than « + 2.58 x SE(a@), then
the method is termed anti-conservative; if the total error
probability is less than o —2.58 x SE(&), then the method is
termed conservative and if the larger error probability is more
than 1.5 times the smaller one, then the method is termed
asymmetrical.
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Standard error of estimated error probability is approxi-
mately
- a(l —a)
SE =\ —
(@) N

D. Coverage Probability Results and Discussion

Tables V and VI show number of conservative, anti-
conservative and asymmetrical intervals for parameters A and
Bo and B at two levels of the nominal error probabilities,
o = 0.05 and 0.1 for both Wald and jackknife methods. Fig-
ure I illustrates the estimated left and right error probabilities
for parameters A and 3y and (3; at two levels of the nominal
error probabilities for both methods. Finally, Table

Both the Wald and jackknife methods produce asymmet-
rical intervals for almost all sample sizes and all parameters
at both a = 0.05 or 0.1, see Tables V and VI. There were
only 1 conservative interval and 2 anti-conservative intervals
(when o = 0.1) produced by the Wald method. However,
there was no conservative interval produced by the jackknife
method, but many anti-conservative intervals were produced
for parameters A\ and f3;.

From Figure I and Tables V and VI we can observe
that both the Wald and jackknife methods perform only
moderately for all parameters. However the low number
of conservative and anti-conservative intervals and also the
simplicity of the Wald method as compared to the jackknife,
does provide a motivation for its use. Increasing the sample
size does improve the performance slightly but caution
should be exercised due to the high number of asymmetrical
intervals produced.

VI. CONCLUSION

In this research the MLE for the parameters of a sur-
vival model with doubly interval-censored data and time-
dependent covariates was analyzed. It was shown that the
bias, SE and RMSE values decrease when the study period,
attendance probability and sample size increase. We also
evaluated two CI estimation methods for the parameters of
the models. Both the Wald and jackknife performed only
moderately for the parameters of the EDICTD model.

The discussion in this research was restricted to two
covariate levels. Thus, it would be possible to carry out
further work to include more covariate levels. Other survival
models could also be developed further to include TD
covariates in the presence of DIC data. This research only
focused on Wald and jackknife CI estimation methods while
other CI estimation methods that depend on the asymptotic
normality of the MLE method like LR and other alternative
CI estimation methods such as the bootstrap could be studied
in the future.

TABLE V
PERFORMANCE OF WALD METHOD FOR THE EDICTD MODEL
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