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Abstract—In this paper a survival model with doubly interval
censored (DIC) data and time dependent covariate is discussed.
DIC data usually arise in follow-up studies where the lifetime,
T = W − V is the elapsed time between two related events,
the first event, V and the second event, W where both events
are interval censored (IC). The work starts by describing an
algorithm that can be used to simulate doubly interval censored
data. Following that the parameter estimates of the model are
studied via a comprehensive simulation study. Finally the Wald
and jackknife confidence interval estimation procedures are
explored for the parameters of this model thorough coverage
probability study.

Index Terms—doubly censored, time dependent covariate,
Wald, jackknife.

I. INTRODUCTION

THe analysis of doubly interval censored data begins
when De Gruttola and Lagakos [9] proposed a non-

parametric estimation procedure based on the Turnbulls
self-consistency algorithm. Following that, the analysis of
DIC data has been studied extensively using nonparametric
and semiparametric regression approaches. Reich et al. [13]
proposed the likelihood contribution for a doubly interval
censored lifetime. In this research we adapted Reich et al.s
idea and proposed a parametric model by assuming both
initial event time and lifetime follow exponential distribution.

It is rather common in any analysis to find time dependent
covariates, for example, blood pressure, cholesterol level and
age. These covariates that do not remain at a fixed value
over time. A time dependent covariate, x(t) may take values
that follow a step function thus remaining constant within
an interval but changes from one interval to another. Most
literature on time varying covariates involve the extension of
the semi parametric Cox proportional hazards model because
it easily accommodates time varying covariates. This is due
to the partial likelihood function, which is determined by the
ordered survival times and not by the actual survival times.
Authors who have made a contribution include Crowley and
Hu [7],Wulfsohn and Tsiatis [20], Murphy and Sen [16],
Marzec and Marzec [15], Cai and Sun [5], Zucker and
Karr [21], Martinussen et al.[14], Goggins[8] and Hastie and
Tibshirani [11].

Apart from the Cox model, there has also been work on
time varying covariates with discrete-time using the logistic
regression model by authors such as Brown [4], Hankey and
Mantel [10] and Pons [18]. Other works involve the acceler-
ated failure time model with time varying covariates which
was discussed by Cox and Oakes [6], Nelson [17], Robins
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and Tsiatis [19] and Bagdonavicius and Nikulin [3]. Arasan
and Lunn ([1],[2]) has discussed the bivariate exponential
model with time varying covariate. Kiani and Arasan [12]
discussed the Gompertz model with time dependent covariate
for mixed case interval censored data.

II. THE MODEL

DIC data often arise in the follow-up studies where the
survival time of interest is time between two events where
both events are IC. For instance, infection by a virus as the
first event and onset of the disease as the second event.
DIC data include right censored(RC) and IC survival time
data as special cases. In order to formulate the censoring
scheme let V and W be two non-negative continuous random
variables representing the times of two related consecutive
events where both of them are IC and V ≤ W . Then, the
survival time of interest could be defined as, T = W − V .
Also, T is a non-negative continuous random variable. Let
survivor functions of V , T and W be S(v), S(t) and S(w).
Here it is assumed that V and T follow the exponential
distribution.

Any value that V takes is IC when its exact value is
unknown and only an interval (VL, VR] is observed where
V ∈ (VL, VR] and VL ≤ VR with probability 1. Similarly,
any value that W takes is IC when the exact value of W is
unknown and only an interval (WL,WR] is observed where
W ∈ (WL,WR] and WL ≤ WR with probability 1. Finally,
an observation on T is DIC when the exact value of T is
unknown and only one interval (WL − VR,WR − VL] is
observed where T ∈ (WL−VR,WR−VL] and WL−VR ≤
WR − VL with probability 1. Let fV (v) and fT (t) be the
probability density functions of V and T and fW (w) be
the undefined probability density function of W . Following
Reich et al. [13], if fT (t) is known and v is given and
t = w − v then the joint p.d.f. of V and W would be

f(v, w) = fV (v)fT (w − v).

So, the likelihood function for a DIC data is

L(λ, γ) =

∫ vR

vL

∫ wR

wL

f(v, w)dwdv

=

∫ vR

vL

∫ wR

wL

fV (v)fT (w − v)dwdv.

Distributional assumptions on V and T will allow us to
obtain the above likelihood function of the observations. Here
it is assumed time to first event, V , and survival time, T ,
follow the exponential distribution.

III. TECHNIQUE FOR SIMULATING DOUBLY
INTERVAL-CENSORED DATA

This section looks at the simulation of DIC data when
the survivor functions of the T and V are known and the
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attendance probability of the subjects for follow-ups can take
any number between 0 to 1. To simulate n subjects, firstly the
vectors (ti, vi, wi, vLi , vRi , wLi , wRi) are produced. Here ti,
vi and as a result wi can be easily generated via simulation
because S(v) and S(t) are known and also, W = V + T .
However, the same is not the case with the simulation of
(vLi , vRi , wLi , wRi).

In real life, vLi , vRi , wLi and wRi may only be certain
predetermined points on the time axis or discrete follow-
up times, because it is impossible to observe subjects
continuously.. In order to simulate these times, we con-
sider a sequence of potential inspection times or PO =
(po1, po2, ..., poh) and assume that the subjects should be
inspected or examined at these times. The subject’s atten-
dance probability at each of the poj’s is indicated by p where
0 ≤ p ≤ 1 and j = 1, 2, ..., h. There are three possible cases
for the subject’s attendance probability.

1) p = 1, subjects attend all of the poj’s.
2) p = 0, subjects miss all of the poj’s.
3) 0 < p < 1, subjects will attend to some of the poj’s

and will miss others.
Depending on the value of p each subject will

have a sequence of actual inspection times or
ACi=(aci1, aci2, ..., aciki) where 0 ≤ ki ≤ h. The
following assumptions are made before moving on to the
simulation algorithm.
• There are h potential inspection times which are known

by design.
• All subjects are observed in the first potential inspection

time or po1.
• Subjects will attend potential inspection times with

probability p.
• Times for the first event are generated from a known
S(v).

• Survival times are generated from a known S(t).
• For each i, vi and wi could not be in the same interval.
• V can be only IC or observed exactly (OE).
• W cannot be left censored (LC).
In order to generate DIC data for the first subject or

(vL1
, vR1

] and (wL1
, wR1

] where attendance probability is
p, the following algorithm is used:

1) Generate v1 from S(v) and t1 from S(t) and calculate
w1 = v1 + t1.

2) Generate uj ∼ U(0, 1), where j = 2, 3, ..., k and
assume u1 = 0.

3) Define an indicator variable for poj’s,

Ij =

{
1 if subject attend poj (uj ≤ p);
0 if subject miss poj (uj > p).

4) Create the sequence of actual inspection times or AC1

where k1 =
h∑
j=1

Ij .

5) Select the largest member of AC1 which is less than
v1 as a vL1 and smallest member of AC1 which is
more than or equal v1 as a vR1 . Define a time-window
[E11, E21] then if

v1 ∈ [E11, E21]⇒ V is OE.

6) Select the largest member of AC1 which is less than
w1 as a wL1

and smallest member of AC1 which is

more than or equal w1 as a wR1 . Define a time-window
[E31, E41] then if

w1 ∈ [E31, E41]⇒ W is OE.

Thus, if

w1 > ac1k1 ⇒ W is RC⇒ (wL1 , wR1 ] = (ac1k1 ,+∞).

7) If vL1 = wL1 and vR1 = wR1 , then generate two new
values for v1 and t1 and calculate w1 then go to step
(5).

IV. EXPONENTIAL MODEL WITH DOUBLY
INTERVAL-CENSORED DATA AND TIME-DEPENDENT

COVARIATES (EDICTD MODEL)

In this section it is assumed that the time to first event, V ,
and survival time, T , both follow the exponential distribution
with parameters λ and θ respectively. In addition, one vector
of TD covariates are incorporated into the proposed model,
Y , where it affects T .

In the model with TD covariates we are dealing with
covariates whose values change over time and not fixed
throughout the study. Let Y1, Y2, ..., Yq represent q TD
covariates. Suppose that for the ith subject, the mth

covariate has updated at a sequence of update times
τim0, τim1, ..., τimkim , where m = 1, 2, ..., q. τim0 is the time
origin, 0, and we consider it to be start of the study.
{τimj} represents the set of the update times, where j =

0, 1, ..., kim. If kim = 0, this simply means that the covariate
was not updated during the subject’s follow-up.

In order to accommodate covariate effects to the hazard
function letyim=(yim0, yim1, ..., yimkim) represents the full
history of the mth covariate for the ith subject which is
updated at {τimj}. It is clear that yim0 is the covariate’s
baseline value, yim1 is the covariate’s value after first update
and yimkim is the covariate’s value after kthim update.

We can easily detect whether a subject’s covariate has
updated during the follow-up because subject is monitored
continuously. We could observe the occurrence of the update
at time τimj and record yimj .

We consider the case where covariate values follow a step
function which means it stays constant at yimj within the
interval

[
τimj , τim(j+1)

)
, and changes to yim(j+1) in the

following interval. An example of this kind of covariate could
be a change in a patient’s condition from one level to another
level during the study period.

For the ith subject let Yi[(ti)] denote the com-
plete history of the covariate values up to time ti.
Yi[(ti)]=(yi1[(ti)],yi2[(ti)], ...,yiq[(ti)]) where yim[(ti)] is
the vector of the mth covariate values up to time ti.

For the ith subject let Yi[ti] denote vector of covariate
values at time ti.
Y ′
i[ti]

=(yi1[ti], yi2[ti], ..., yiq[ti]) where yim[ti] is the mth

covariate’s value at time ti.

For the ith subject the hazard function of the V is

hλ(vi) = eλ,

the survivor function is

Sλ(vi) = exp(−vieλ),
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and the probability density function is

fλ(vi) = exp(λ− vieλ).

The hazard function for the ith subject conditional on the
given vector Yi[ti]

can be expressed as

hθ(ti|Yi[ti]) = exp(λi[ti]) = exp(β0 + βYi[ti]),

where β=(β1, β2, ..., βq) and the vector of the parameters is
θ=(β0,β).

Let us consider this model with a single TD covariate and
at most one covariate update time τi1. For the ith subject,
the hazard function before and after update time is

hθ(ti|yi0) = eβ0+β1yi0 = h0(ti),

hθ(ti|yi1) = eβ0+β1yi1 = h1(ti).

The likelihood function involving both censored and un-
censored subjects is given by

L =
n∏
i=1

[ ∫ vRi

vLi

∫ wRi−v

wLi−v
fλ(v)fθ(t|Yi[(t+v)])dtdv

]δDIi
×
[ ∫ vRi

vLi

∫ ∞
wLi−v

fλ(v)fθ(t|Yi[(t+v)])dtdv

]δIRi
×
[
Sθ

(
tLi |Yi[(tLi

)]

)
− Sθ

(
tRi |Yi[(tRi

)]

)]δSIi
×
[
fθ
(
ti|Yi[(ti)]

) ]δDEi[
Sθ

(
tEi |Yi[(tEi

)]

)]δERi
.

The likelihood contributions for the ith subject can be
any of the following cases:

• T is DIC (both V and W are IC) and covariate is
updated

• T is DIC (both V and W are IC) and covariate is not
updated.

• V is IC, W is RC and covariate is updated.
• V is IC, W is RC and covariate is not updated.
• T is IC (either V or W is IC) and covariate is updated
• T is IC (either V or W is IC) and covariate is not

updated.
• T is OE (both V and W are OE) and covariate is

updated.
• T is OE (both V and W are OE) and covariate is not

updated.
• T is RC (V is OE and W is RC) and covariate is

updated.
• T is RC (V is OE and W is RC) and covariate is not

updated.

A. Simulation Study

A simulation study using 1000 samples each with n=50,
100, 150, 200, 250, 300 and 350 was conducted for this
model. The values of 2, 0.4 and 0.08 were chosen as the
parameters of λ, β0 and β1.

The update time or τi1 was generated from the exponential
distribution with parameter ν. The value of ν can be adjusted
to obtain larger or smaller values of τi1.

Random numbers from the uniform distribution on the
interval (0,1), u1i, were generated to produce vi,

vi =
− ln (u1i)

eλ
.

Random numbers from the uniform distribution on the
interval (0,1), u2i, were generated to produce ti,

ti =

{
− ln(u2i)+τi1(e

γi1−eγi0 )
eγi1 , u2i < exp(−τi1eγi1);

− ln(u2i)
eγi0 , otherwise.

Two time-windows are defined in order to randomly select
some subjects that are OE on V or W . The time-window for
OE on V is
[E1i, E2i] = [vLi+(vRi−vLi)u3i−ε, vLi+(vRi−vLi)u3i+
ε],
and for OE on W is
[E3i, E4i] = [wLi + (wRi − wLi)u4i − ε, wLi + (wRi −
wLi)u4i + ε],
where ε = 0.004 and u3i and u4i are random numbers
generated from the uniform distribution, U(0, 1).

B. Simulation Results

The simulation study was conducted to assess the bias,
SE and RMSE of the estimates at different study periods,
attendance probabilities and sample sizes. From Table I, we
can see that the 30 months study period generates more DIC
data compared to the 20 months study period. Twenty months
study period generates more RC data on W .

From Tables II, II and IV we can clearly see that the bias,
SE and RMSE values of the λ̂, β̂0 and β̂1 decrease with the
increase in p, sample size and study period. RMSE’s of the
all three parameters are relatively small indicating that the
estimation procedures works well for the model.

V. WALD AND JACKKNIFE CONFIDENCE INTERVAL
ESTIMATES

In this section the performance of two CI estimates when
applied to the parameters of the model are compared and
analyzed. The first method is the asymptotic normality CI
or Wald and the second is the alternative computer based
technique known as the jackknife method. For discussions
in the following sections we will use β1 as our example
and similar procedures would then apply for the rest of the
parameters.

TABLE I
AVERAGE PERCENTAGES OF DIFFERENT DATA TYPES FOR EDICTD

MODEL

p 1 0.8 0.6
Updated covariates (%) 43 45 48
Study periods 20 30 20 30 20 30
T is DIC (%) 76.60 82.36 78.41 84.51 80.12 86.79
V is IC and W is RC (%) 8.43 2.26 8.76 2.39 9.47 2.58
T is IC (%) 12.93 13.81 10.80 11.75 8.64 9.46
T is OE (%) 0.34 0.36 0.18 0.21 0.09 0.11
T is RC (%) 0.46 0.09 0.30 0.07 0.23 0.06
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TABLE II
BIAS, SE AND RMSE OF λ̂ FOR THE EDICTD MODEL

Study periods 30 20
p 1 0.8 0.6 1 0.8 0.6

Bias -0.0087 -0.0209 -0.0397 -0.0204 -0.0312 -0.0506
50 SE 0.1552 0.1573 0.1576 0.1567 0.1527 0.1549

RMSE 0.1555 0.1587 0.1625 0.1580 0.1559 0.1630
Bias -0.0049 -0.0186 -0.0404 -0.0196 -0.0307 -0.0509

100 SE 0.1113 0.1148 0.1136 0.1095 0.1080 0.1096
RMSE 0.1114 0.1163 0.1206 0.1112 0.1123 0.1208
Bias -0.0097 -0.0235 -0.0461 -0.0231 -0.0347 -0.0546

150 SE 0.0879 0.0896 0.0892 0.0870 0.0849 0.0866
RMSE 0.0884 0.0926 0.1004 0.0900 0.0917 0.1024
Bias -0.0145 -0.0283 -0.0501 -0.0258 -0.0372 -0.0546

200 SE 0.0753 0.0762 0.0751 0.0753 0.0739 0.0866
RMSE 0.0767 0.0813 0.0903 0.0796 0.0828 0.1024
Bias -0.0138 -0.0286 -0.0506 -0.0255 -0.0368 -0.0584

250 SE 0.0669 0.0665 0.0668 0.0676 0.0658 0.0671
RMSE 0.0683 0.0724 0.0838 0.0723 0.0754 0.0890
Bias -0.0137 -0.0285 -0.0512 -0.0262 -0.0370 -0.0587

300 SE 0.0637 0.0642 0.0643 0.0630 0.0621 0.0626
RMSE 0.0652 0.0702 0.0821 0.0682 0.0723 0.0858
Bias -0.0152 -0.0292 -0.0514 -0.0266 -0.0378 -0.0590

350 SE 0.0572 0.0578 0.0577 0.0576 0.0570 0.0567
RMSE 0.0592 0.0648 0.0773 0.0635 0.0684 0.0818

TABLE III
BIAS, SE AND RMSE OF β̂0 FOR THE EDICTD MODEL

Study periods 30 20
p 1 0.8 0.6 1 0.8 0.6

Bias 0.0073 -0.0058 -0.0325 0.0022 -0.0270 0.0193
50 SE 0.1381 0.1363 0.1330 0.1357 0.1312 0.1398

RMSE 0.1383 0.1364 0.1369 0.1357 0.1339 0.1412
Bias 0.0066 -0.0060 -0.0326 0.0072 -0.0215 0.0231

100 SE 0.0983 0.0972 0.0943 0.0971 0.0929 0.0987
RMSE 0.0985 0.0973 0.0998 0.0973 0.0953 0.1014
Bias 0.0032 -0.0100 -0.0361 0.0050 -0.0237 0.0206

150 SE 0.0767 0.0757 0.0736 0.0765 0.0745 0.0776
RMSE 0.0768 0.0764 0.0820 0.0767 0.0781 0.0803
Bias 0.0001 -0.0127 -0.0391 0.0030 -0.0251 0.0180

200 SE 0.0677 0.0670 0.0651 0.0680 0.0659 0.0694
RMSE 0.0677 0.0682 0.0760 0.0680 0.0705 0.0717
Bias -0.0002 -0.0132 -0.0397 0.0032 -0.0253 0.0183

250 SE 0.0602 0.0594 0.0575 0.0611 0.0591 0.0619
RMSE 0.0602 0.0608 0.0699 0.0612 0.0643 0.0646
Bias -0.0001 -0.0131 -0.0395 0.0033 -0.0253 0.0184

300 SE 0.0557 0.0552 0.0529 0.0562 0.0547 0.0573
RMSE 0.0557 0.0568 0.0660 0.0563 0.0603 0.0602
Bias -0.0010 -0.0137 -0.0403 0.0030 -0.0258 0.0182

350 SE 0.0510 0.0504 0.0483 0.0512 0.0498 0.0523
RMSE 0.0510 0.0523 0.0629 0.0513 0.0560 0.0553

TABLE IV
BIAS, SE AND RMSE OF β̂1 FOR THE EDICTD MODEL

Study periods 30 20
p 1 0.8 0.6 1 0.8 0.6

Bias -0.0397 -0.0418 -0.0492 -0.0373 -0.0401 -0.0438
50 SE 0.2000 0.2038 0.2103 0.2095 0.2063 0.2139

RMSE 0.2039 0.2081 0.2160 0.2128 0.2102 0.2184
Bias -0.0317 -0.0323 -0.0335 -0.0286 -0.0321 -0.0320

100 SE 0.1343 0.1358 0.1409 0.1359 0.1396 0.1405
RMSE 0.1380 0.1396 0.1449 0.1389 0.1432 0.1441
Bias -0.0309 -0.0324 -0.0383 -0.0316 -0.0340 -0.0378

150 SE 0.1129 0.1151 0.1181 0.1171 0.1204 0.1205
RMSE 0.1171 0.1196 0.1241 0.1213 0.1251 0.1263
Bias -0.0379 -0.0382 -0.0414 -0.0360 -0.0373 -0.0373

200 SE 0.0957 0.0975 0.0989 0.0978 0.0985 0.1002
RMSE 0.1029 0.1047 0.1072 0.1043 0.1053 0.1069
Bias -0.0348 -0.0389 -0.0407 -0.0317 -0.0346 -0.0388

250 SE 0.0850 0.0863 0.0852 0.0879 0.0888 0.0895
RMSE 0.0919 0.0947 0.0944 0.0934 0.0953 0.0975
Bias -0.0307 -0.0336 -0.0379 -0.0292 -0.0337 -0.0365

300 SE 0.0795 0.0802 0.0795 0.0812 0.0811 0.0807
RMSE 0.0852 0.0869 0.0880 0.0863 0.0879 0.0886
Bias -0.0278 -0.0308 -0.0342 -0.0269 -0.0284 -0.0309

350 SE 0.0723 0.0739 0.0729 0.0739 0.0747 0.0749
RMSE 0.0774 0.0801 0.0806 0.0787 0.0800 0.0810

A. Wald Confidence Interval Estimates

Let θ̂ be the maximum likelihood estimator for the vector
of parameters θ and l(θ) the log-likelihood function of θ.
Following Cox and Hinkley (1974), under mild regularity
conditions, θ̂ is asymptotically normally distributed with
mean θ and covariance matrix I−1(θ), where I(θ) is the

Fisher information matrix evaluated at the true value of the θ.
The matrix I(θ) can be estimated by the observed information
matrix I(θ̂). The v̂ar(β̂1) is the (2, 2)th element of matrix
I−1(θ̂). The 100(1− α)% CI for β1 is

β̂1 − z1−α2

√
v̂ar(β̂1) < β1 < β̂1 + z1−α2

√
v̂ar(β̂1).

B. Jackknife Confidence Interval Estimates

For a data set with n observation, the ith jackknife sample
is defined to be x with the ith observation removed. So, the
ith jackknife sample would consist of (n− 1) observations,
all except the ith subject.

x(i) = (x1, x2, ..., xi−1, xi+1, ..., xn).

The jackknife estimate of bias and SEs are computed from
the jackknife samples. Let β̂1(i) be the MLE of the parameter
β1 based on the jackknife sample x(i). Then, the new
estimate, β̂1(jack) is defined by

β̂1(jack) = β̂1 − (n− 1)(β̂1(.) − β̂1),

where

β̂1(.) =
n∑
i=1

β̂1(i)

n
,

and β̂1 is the MLE of the parameter β1 obtained from the
full sample x= (x1, x2, ..., xn). The jackknife estimate of
the SE is

ŜEjack(β̂1) =

√√√√n− 1

n

n∑
i=1

(β̂1(i) − β̂1(.))2.

If t(1−α2 ,n−1) is the (1 − α
2 ) quantile of the student’s t

distribution at (n-1) degrees of freedom, the 100(1 − α)%
CI for β1 is

β̂1(jack) ± t(1−α2 ,n−1)ŜEjack(β̂1).

C. Coverage Probability Study

The coverage probability of a CI is the probability that the
interval contains the true parameter value and should prefer-
ably be equal or close to the nominal coverage probability,
1− α.

A coverage probability studies was conducted using N =
1500 samples of sizes n = 50, 100, 150, 200, 250, 300 and
350 to compare the performance of the CI estimates at α =
0.05 and α = 0.1 where α is the nominal error probability.
Values of the parameters were chosen are the same as those
chosen for the simulation study.

The study period was assumed 20 months with monthly
follow-ups and p = 1, for all patients. Following that, we
calculated the estimated total error probabilities by adding
the number of times in which an interval did not contain the
true parameter value divided by the total number of samples.

Following Doganaksoy and Schmee (1993), if the total
error probability is greater than α + 2.58 × SE(α̂), then
the method is termed anti-conservative; if the total error
probability is less than α−2.58×SE(α̂), then the method is
termed conservative and if the larger error probability is more
than 1.5 times the smaller one, then the method is termed
asymmetrical.
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Standard error of estimated error probability is approxi-
mately

SE(α̂) =

√
α(1− α)

N
.

D. Coverage Probability Results and Discussion

Tables V and VI show number of conservative, anti-
conservative and asymmetrical intervals for parameters λ and
β0 and β1 at two levels of the nominal error probabilities,
α = 0.05 and 0.1 for both Wald and jackknife methods. Fig-
ure I illustrates the estimated left and right error probabilities
for parameters λ and β0 and β1 at two levels of the nominal
error probabilities for both methods. Finally, Table

Both the Wald and jackknife methods produce asymmet-
rical intervals for almost all sample sizes and all parameters
at both α = 0.05 or 0.1, see Tables V and VI. There were
only 1 conservative interval and 2 anti-conservative intervals
(when α = 0.1) produced by the Wald method. However,
there was no conservative interval produced by the jackknife
method, but many anti-conservative intervals were produced
for parameters λ and β1.

From Figure I and Tables V and VI we can observe
that both the Wald and jackknife methods perform only
moderately for all parameters. However the low number
of conservative and anti-conservative intervals and also the
simplicity of the Wald method as compared to the jackknife,
does provide a motivation for its use. Increasing the sample
size does improve the performance slightly but caution
should be exercised due to the high number of asymmetrical
intervals produced.

Fig. 1. Estimated Error Probabilities of Wald and Jackknife Methods for
the EDICTD model

VI. CONCLUSION

In this research the MLE for the parameters of a sur-
vival model with doubly interval-censored data and time-
dependent covariates was analyzed. It was shown that the
bias, SE and RMSE values decrease when the study period,
attendance probability and sample size increase. We also
evaluated two CI estimation methods for the parameters of
the models. Both the Wald and jackknife performed only
moderately for the parameters of the EDICTD model.

The discussion in this research was restricted to two
covariate levels. Thus, it would be possible to carry out
further work to include more covariate levels. Other survival
models could also be developed further to include TD
covariates in the presence of DIC data. This research only
focused on Wald and jackknife CI estimation methods while
other CI estimation methods that depend on the asymptotic
normality of the MLE method like LR and other alternative
CI estimation methods such as the bootstrap could be studied
in the future.

TABLE V
PERFORMANCE OF WALD METHOD FOR THE EDICTD MODEL

α = 0.05 α = 0.1
C AC Asy C AC Asy

n λ β0 β1 λ β0 β1 λ β0 β1 λ β0 β1 λ β0 β1 λ β0 β1
50 * * * *
100 * * * * * *
150 * * * * * * *
200 * * * * * *
250 * * * * * *
300 * * * * * * *
350 * * * * * * *
subtotal 0 0 0 0 0 0 6 7 7 0 1 0 2 0 0 6 7 7
total 0 0 20 1 2 20

C: Conservative, AC: Anti-conservative, Asy: Asymmetrical

TABLE VI
PERFORMANCE OF JACKKNIFE METHOD FOR THE EDICTD MODEL

α = 0.05 α = 0.1
C AC Asy C AC Asy

n λ β0 β1 λ β0 β1 λ β0 β1 λ β0 β1 λ β0 β1 λ β0 β1
50 * * * * * *
100 * * * * * *
150 * * * * * * *
200 * * * * * * *
250 * * * * * * * * * * *
300 * * * * * * * * *
350 * * * * * * * * * *
subtotal 0 0 0 3 1 2 7 7 7 0 0 0 4 0 4 7 7 7
total 0 6 21 0 8 21

C: Conservative, AC: Anti-conservative, Asy: Asymmetrical
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