
 

  

Abstract— In this work, the effect of number of interacting 

(influential) agents, as an add-on parameter to the population 

size, market temperature and time lag, on price-change in 

stock market was investigated using agent-based spin-1 Ising 

model and Monte Carlo simulation. The average decision (to 

perform trading activity), was used to extract excess 

demand/supply for determination of the asset’s market price. 

From the results, though population size is not significant, 

other parameters have significant effects on the average 

trading decision resulting in different characteristic of market 

price value and fluctuation. Specifically, the high- and low-

temperature phases of the average trading decision is evident, 

where the transition point shifts to higher market temperature 

with increasing number of interacting agents. This is due to 

having more consensuses requires more market stimulation to 

lessen the investing agreement bound by trustworthiness. For 

the price-return distribution, higher market temperature, 

more number of interest agents, and longer time lag, were 

found to broaden the distribution. This is as more market 

liquidity and less influence from other investors help 

alleviating the price stiffness and allow more price fluctuation. 

Consequently, the distribution can be ranged to farther 

regimes. However, for the time lag, as the correlation usually 

decays at longer time, the consecutive prices used in price-

return calculation then become less dependent as expected. 

With this greater level of randomness, it then shapes the 

distribution to become more uniform (broaden out). As seen, 

apart from the usual investigating parameters, the number of 

interacting agents also prove its importance as significant add-

on parameters when modeling the behavior of price changes in 

stock market, emphasizing that herding effect should be taken 

with profound consideration. 

 
Index Terms— Econophysics; Monte Carlo Simulation;  

Price-return Distribution; Spin-1 Ising model; Stock-price; 

Stock market 

I. INTRODUCTION 

HE stock market is financial market for investors to 

trade/exchange their ownership (stock) in companies 
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and make profits (or losses) from their trading/exchanging 
[1]. It is therefore a ‘place’ where a large number of 

investors interact among themselves as well as external 

sources of information (news that have influences on trading 

decision) to determine the market price of a given stock 

[1]−[2]. Since the stock-price changes according to demand 

and supply, the excess demand or excess supply then result 

the growth or suppression of the stock-price and associated 

price-return [3]. Generally, the excess demand/supply is 

caused by un-matched decision of each individual investor’s 

in trading the stock. In addition, as one’s trading decision 

can be interfered by the others, the stock-price does not only 

depend on the companies’ performance but also collective 

obsessional behavior arisen from interaction among 

investors [2], e.g. panic sell or panic buy. Therefore, how 

one agent interacts with other is one of the key factor to 

understand the price dynamics of an asset in stock market. 

Recently, one aspect that can be used to investigate the 

investors’ behavior in stock market is the econophysics, 

where the dependence of stock-price and market situation, 

such as market temperature and companies’ turnover, were 

suggested [4].  

 Econophysics in a branch of sociophysics, which 

syndicates the knowledge in economics with mathematical 

tools in physics to pursue for fundamental understanding 

about market dynamics, investor behaviors, and wealth 

distribution in the community [4]−[5]. There were many 

recent studies proposed on the stock-price using 

econophysics techniques to investigate the stock-price 

dynamics either directly, such as continuous-time random 

walk [6], Monte Carlo technique and Fokker-Planck 

equation [7], or indirectly via the distribution of the price-

return (e.g. consider [8]−[9] for reviews). However, most 

previous works did not emphasize the collective effect of 

interacting investors on one in the way how many of other 

investors should have influences on one’s decision. Some 

pervious works imitated square lattice type model where 

number of interacting investors is locally fixed depending 

on how many neighboring are considered [10]−[11], and 

some considered all other investors in the population [12]. 

However, with the rise of social network, one can interact 

with many via wireless channels and internet. The number 

of interacting agents should then be a free parameter to be 

tuned for modeling a stock market. In addition, with help of 

borderless internet communication, the interaction range 

among investors should not be limited the agents’ real-space 

addresses. Therefore, this work aims to honor this current 
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investor-investor relationship in modeling stock-price and 

its price-return distribution with concurrent varying the 

population size (system size), the market temperature, and 

number of interacting agents using Monte Carlo simulation 

and agent-based spin-1 Ising model in econophysics.  

II. THEORY AND METHODOLOGY 

A. Spin-1 Ising Hamiltonian and Econophysic 

In this work, the model considered is of an agent-based 

type, where member or the investing agent of the system is 

considered individually. Since each investor can perform 3 

different kinds of trading action, i.e. sell, hold, and buy, on a 

stock, an equivalent spin model derived from statistical 

physics was chosen for implementation. Specifically, the 

spin-1 Ising model was employed as it contains 3 possible 

discrete states, i.e. −1, 0, and 1. These 3 different states can 

be applied to economics by referencing to decision states of 

an individual investor to perform in stock market. 

Specifically, “−1” is for decision to “sell or bid”, “0” is for 

decision to hold, and “+1” is for decision to “buy or ask” the 

stock.  Then, the average of the all spin states (called 

magnetization in Physics) or the net decision to perform 

trading action, can be related to average decision to sell, to 

hold, or to sell the stock that each individual holds. For 

instance, if the magnetization is negative, the investor may 

want to sell his stock and the price of the stock may drop. 

However, if the magnetization is positive, the investor may 

want to buy and the price may increase. Nevertheless, for 

zero magnetization, the current price is hold due to demand-

supply agreement.   

In nature, all systems tend to minimize their energies for 

equilibration. To employ this in economics, the state of 

investors’ decision on preforming trading actions can be 

investigated by adopting the Ising energy (or Ising 

Hamiltonian H), e.g. see Ref. [5],[13]. This Hamiltonian 

could be assigned as the level of ‘disagreement’ [10]−[11], 

where it needs to be minimized unless the market may fail 

to form due to the failure to meet between demand and 

supply. 

However, as the spin-1 was considered, where the option 

of holding is also allowed, we then designed the 

Hamiltonian to take the form 

 
,

i j i

i j i

H J h  = − −  , (1) 

where Kronecker delta function is responsible for herding 

(interacting) behavior among agents with multi-state 

decision. As is seen, the Hamiltonian H in (1) is the sum of 

2 terms. The first term (
, i ji j nn

J  


−  ) is due to the 

interactions among spins (investors) with a strength J. Here, 

the spin i = {−1,0,+1} is the spin-1 Ising with states −1, 0, 

and +1 referring to decision to sell, to hold, and to buy the 

considered asset, respectively. Also, in (1), the Kronecker 

delta function  is 1 for i = j and 0 otherwise. With this 

Kronecker delta function, the spins (agents, investors) will 

trade under the influence of other interacting spins in 

minimizing the Hamiltonian H. The notation “<i,j>” implies 

that the sum considers only interaction from pairs of 

investors that have strong enough relationship/interaction. 

This is the same in real stock market as the influence on 

making trading decision of an investor usually comes from 

individuals that have strong investing influences on that 

investor. Note that, due to the internet and social media, the 

influential people or the interacting agents do not need so be 

spatially closed, and they (the influential people and the 

investor himself) do not have to be friends in real life. This 

is the case for influential people who are investment experts, 

where the relationship is one-way like. Specifically, agent j 

may have some influences on agent i but not in the opposite 

direction. Note that when all spins are in the same state (−1, 

0, or 1), H is minimized (most negative as J is positive) 

which is the case for ground state in nature. In economics, 

this state can be referred to extreme conditions where 

system is truly guided by herding consensus. This can be 

represented by depression state in economics where no one 

performs any trading actions. Particularly, all investors may 

stay doing nothing, so the price maintains (for 0 state), or 

the set price may insanely go up (for +1 state) and drops 

down (for −1 state) as no supply or demand to match, 

respectively. 

However, for the second term (
ii

h −   ) in (1), it refers 

to the external influence, which could come from the 

company’s financial situation, market trends, economic 

cycle, etc. The positive h refers to the period of economic 

prosperity, where people have purchasing power leading to 

decision to buy. Meanwhile, the negative h is for economic 

recession, where the purchasing power declines and induces 

the excess supply. Note that the sign of i is to follow the 

sign of h to minimize H.   

 The observables to (1) can be defined from the average 

magnetization per spin (the average decision in perform 

trading per investor), i.e. [10], 

 ( ) ( ) ( )
max

1 1
; ii

t

m m t m t t
t N

= =   (2) 

and the magnetization variance (the fluctuation level of the 

investors’ decision), i.e. 

 
22 2

m m m = −  (3) 

In (2) and (3), N is the total number of investors in the 

system, tmax is the total number of measurements, and   

refers to the expectation (average) of the considered 

parameter. Note that, for zero external influence field (h = 

0), there is a symmetry of m, i.e. +|m| and −|m|, when being 

considered on the market temperature T domain. 

Nevertheless, for h > 0, this symmetry breaking influence 

field yield m > 0 at the stable state. In addition, m usually 

depends on T. Therefore, at high market temperatures, the 

energy (money in economics) is abundant, so each spin 

(investor) has sufficient power to break the bond specified 

by the interaction strength J. Therefore, all spins arrange in 

a random fashion and m → 0. This is when demand and 

supply equivalently match in stock market. Whenever there 

is a demand, there is always a supply to close the deal, or 

vice versa, without creating any limit orders. This reflects 

high liquidity level of that stock. Nevertheless, for low 

market temperatures, the system arrives in its extreme 

economic states which causes to price to either maintains 
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(for m → 0) or dramatically changes (for m → +1 or m → 

−1). In details, at low temperatures, the set price of a stock 

is determined by the value of h. If the considered company 

has profitable sales (h > 0), its stock may have the associate 

set price to go up. However, if the company is with some 

loss (h < 0), the set price may be plunged. Typically, when h 

→ {0−,0+}, which is the case that the company has just come 

to its turning point, it usually takes time for the set price to 

change (stock-price maintained) at low market temperatures 

since there is less demand and supply in matching. This 

economical recovering period could be shortened by the 

increasing the magnitude of the influence field.   

Nonetheless, at high temperatures or when liquidity 

comes in, there occur more frequent trading activities that 

demand and supply meet. Therefore, with influence field 

being introduced, the set price will change to match with the 

direction of the influence field. Nevertheless, the change 

occurs in a more continuous fashion compared to that of the 

extreme state, as there is real trading and real money 

associated.  In this work, since there is a symmetrical 

behavior for negative and positive h (as i needs to follow 

the direction of h) in (1), only the case h > 0 was considered 

as its behavior would be the same as that for h < 0 (but just 

opposite implication). The case h = 0 was dropped here, as 

this study aims to investigate the economic situations when 

both interaction among agents comes into the play with the 

external influential field.   

B. Stock-price and Magnetization Relationship 

In a stock market, there generally consists of 2 types of 

the investors, i.e. fundamental and interacting investor. The 

fundamental investor knows reasonable price pfund(t) of the 

stock. They tend to buy the stock when the current price p(t) 

is less than pfund(t), and sell otherwise. The amount of orders 

issued by a fundamentalist depends on the differences 

between the current and fundamental prices as  

 ( ) ( ) ( )( )fund fund fund fundln lnx t a N p t p t= − , (4) 

where xfund is the amount of the fundamental orders, Nfund is 

the number of fundamental investors, and afund is a constant.  

Apart from fundamental orders, the interacting orders are 

also important to determine the market price. The 

interacting orders are supplied by interacting investors, 

where their excess demand/supply can be estimated from 

[11],[14] 

 ( ) ( )inter inter interx t a N m t= , (5) 

In (5), xinter is the amount of the interacting orders, Ninter is 

the number of interacting investors, and ainter is another 

constant. In general, the market price can be determined 

from the demand and supply being in balance, i.e. 

( ) ( ) 0fund interx t x t+ =   or 

 ( ) ( ) ( ) ( ) ( ) ( )
ln ln ; e

km t
fund fundp t p t km t p t p t= + = , (6) 

where 0inter inter

fund fund

a N
k

a N
=  . Considering the price equation 

in (6), the market can be categorized in several situations. 

For instance, for m(t) = 0, the market price p(t) stay at the 

fundamental price pfund(t). However, for m(t) > 0, there are 

excess demand which pushes p(t) to surpass the pfund(t),  

whereas for m(t) < 0, the price p(t) drops below the pfund(t).  

In addition, it is also of interest to investigate the 

characteristic of the proposed model via the price-return 

 ( )
( ) ( )

( ) ( )
ln lnp t p t

r t m t m t
k






− −
 = − − , (7) 

where  is the time lag, and the fundamental price is 

assumed unchanged during the course of stock-price 

variation, i.e. pfund(t) = pfund(0). Then, by performing 

histogram analysis between the price-return r and its count 

N (r), the relationship in the form [8] 

 ( )
b

N r a r  = , (8) 

is usually found. In (8), a is a constant and b = −(1+) is the 

exponent to the scaling, which specifies the characteristic of 

an individual stock market or model [8]. 

C. Monte Carlo simulation 

In the simulation, the population of the considered system 

was arrayed in computer memory as two-dimensional array 

of sizes N = LL, where each element of the array contains a 

single investor (Ising spin). The investor-investor 

interaction strength J was set a unit parameter, i.e. J = 1. 

Each investor had I other interacting investors for 

constructing interaction pairs <ij> in (1), and these I 

investors were chosen at random. The varying parameters 

were the market temperature T (ranging from 0.1 to 15.0 J), 

the system size L (ranging from 10 to 50), and number of 

interacting agents I or number of other investors who have 

influence on the current considered investor (ranging from 2 

to 10). As mentioned, the economic-field strength h was 

fixed at 1.00 J. For each simulation, the investors/spins’ 

decisions to perform trading action were randomly 

initialized, i.e. −1 (for to sell), 0 (for to hold), and +1 (for to 

buy). Then, the investors could interact among themselves 

and their decisions got updated via the heat bath probability  

 
( )

( ) ( )

exp / 2

exp / 2 exp / 2

H T
P

H T H T

−
=

 + −
, (9) 

where H is the Hamiltonian difference due to the update. 

Note that, as seen in (9), the market temperature T was set to 

have the same unit of Hamiltonian by absorbing relevant 

constant parameter into itself. The unit time step used in the 

simulation was defined from one full trial update (either 

successful or unsuccessful) of all N investors in the system, 

i.e. 1 Monte Carlo step (mcs). In performing the Monte 

Carlo update, the procedure can be detailed as follows. 

Firstly, a random investor is picked, and a new random 

trading state is assigned to that investor. Then, the H due 

to this update is calculated using (1) as well as the 

probability in (9). After that, a uniform random number r in 

the range 0 to 1, is drawn from random number generator 

and compared with the probability P. If r is less than or 

equal to P, the new state is accepted, unless the state turns 

back to original state. Then, another new investor is chosen 

for repeating this trial update. With these trials taken up to N 

times, i.e. 1 mcs, the magnetization or the average decision 

per investor is recorded as a function of time t. For the 

Monte Carlo simulation in this work, each setting condition 

was simulated up to 1000 independent runs and up to 5000 

mcs in each run. The magnetization as a function of time 
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m(t) was collected, where its expectation average m  and 

the associated variance 
2

m  were extracted using (2) and (3) 

at the end of the simulation After that, the price function 

was calculated from (6), and the price-return distribution 

was constructed from (7) and (8) for the time-lag  ranging 

from 1 to 100 mcs. Then, the exponent to the scaling, in (8), 

was extracted for each considered condition. This whole 

Monte Carlo procedure was repeated for each {L,I,T} set.  

III. RESULT AND DISCUSSION 

In this work, the average decision in performing trading 

action (to sell, to hold, and to buy) per agent m(t) was 

investigated as a function of time t using (2). With the initial 

decision of all agent setting at random, i.e. m(0) → 0, and 

the time step of 1 mcs, the simulation was carried out in 

updating the decision configurations, where the m(t) and 

p(t) were recorded. Then, at the end of the simulation, the 

variance of the magnetization 
2

m  was also calculated to 

retrieve the fluctuation level in agents’ decision. Example of 

the results, for magnetization average or the average 

decision per agent and variance of net-decision per agent as 

function of temperature with varying number of interacting 

agents can be found in Fig. 1. Note that, in this 

investigation, the system size L in the considered range was 

not found to yield significant effect on the results (not 

shown), so only results for L = 30 were presented.  

As seen in Fig. 1, both number of interacting agents I and 

temperature T have significant on the <m> and 
2

m . For 

instance, with increasing the market temperature T, <m> 

drops (see Fig. 1a) but the variance results in peak (see Fig. 

1b). This is expected as when the market is with high 

liquidity (as T can be referred to average wealth per agent 

[15]), the investors then trade somewhat more frequent so 

the excess demand (supply) decrease. As is seen, there 

appears low- and high-temperature for the average decision 

<m>, which can be separated by defining a transition point, 

similar to the Curie point in ferromagnetic materials. This 

transition can be found from the market temperature that the 

greatest slope of <m> presents or where 
2

m  results in peak. 

Note that, the variation is greatest at the transition point due 

to interaction among members of the system is about to get 

compromised (on the average) with the temperature 

influences. Therefore, switch between binding and 

unbinding states occurs all the time which cause even a 

small fluctuation to develop to large fluctuation, 

corresponding to the divergence of correlation length in 

phase transition and critical phenomena topic. Note that the 

transition points obtained Fig. 1b are from curve smoothing 

as there appears to be somewhat large fluctuation between 

adjacent data, and this could be the cause that the transition 

points obtained from both subfigures in Fig. 1 are slightly 

different. To improve the quality of the data, more runs and 

longer simulations may be needed. However, the fine 

extraction of the transition point lies beyond the scope of 

this work, which will be investigated in the future. 

Apart from the average decision results, it is also of 

interest to investigate the price-return distribution of the 

conditions considered to realize how wealth distributes in 

the system. As is seen in Fig. 2, market temperature, number 

of interacting agents and time lag all have significant effect 

on the price-return distribution broadness. Specifically, the 

distribution peaks become broader with increasing the 

market temperature, reducing the number of interest agents, 

and widening the lagging time frame. To explain point by 

point, the enhancement in market temperature brings more 

market liquidity, which allows greater oscillation to price 

change giving rise to more count at high return magnitudes. 

On the other hand, the increase of interacting agents brings 

more strength in bonding the considered investor to other 

investor, giving him less freedom in making his own trading 

decision. Consequently, the price becomes less in variation 

with more influential people considered, and hence the 

price-return distribution becomes less broad. Finally, with 

enlarging the lagging time frame, it is typical that the 

correlation between pair of data decays at longer time, so 

they become less dependent. As a result, it allows more 

spreading out of the price differences so the price-return 

distribution to become broaden out (more uniform). 

 

 

 
Fig. 1. (a) The average decision per agent and (b) its variance per agent as a 

function of temperature T. Shown as examples, the number of interacting 

agents I were varied from 2 to 10, where L was fixed at 30. 
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 Since the two sides of the price-return distribution is 

symmetrical (e.g. see Fig. 2), the power law scaling in (8) 

was considered as a function of the return magnitude to 

increase number of data points in regression analysis. For 

simplicity, the data was transformed into more linear scale 

by taking logarithmic operation on both sides of the (8), and 

lease square linear fit (with library provided in Ref. [16]) 

was taken on log(N) and log(r). Results of the fit, i.e. the 

parameters a and b = −(1+), were extracted and plotted 

out, e.g. see Fig. 3. As suggested in Fig. 3, the exponent 

(1+) reduces with increasing , increasing T, and 

decreasing I. In addition, there could be some non-linear 

relationship between the time lag  and the exponent (1+), 

e.g. in the form ( )1 ba 
+ = . Therefore, least square 

linear fit was performed, where the coefficients to the fits 

can be found in TABLE I. 

 As being evident in TABLE I, due to the poor R2, instead 

of quantitative discussion, it is more appropriate to discuss 

the relationships among parameters qualitatively. To 

improve the quality of these statistical results, more lengthy 

 

 

 
Fig. 2. Histograms presenting the price-return distribution with (a) varying T 

at fixed I = 10 and  = 100, (b) varying I at fixed T = 4 and  = 100, and (c) 

varying  at fixed T = 10 and I = 10. 

 

 
Fig. 3. The exponent to the price-return distribution (1+) as a function of 

time lag  with (a) varying T at fixed I = 10 and (b) varying I at fixed T = 6. 

The linear lines are from the lease square linear fits (with coefficients 

presented in TABLE I), and should be used only for visual aids due to poor 

R2. 
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simulation as well as finite size scaling to extend to work to 

very large or national scale may be considered [17]. 

However, on the average, it is found that the scaling 

exponents (1+) tend to decrease with increasing T, 

reducing I, and enhancing. This agrees with price-return 

characteristics suggested in Fig. 2. Therefore, according to 

the results reported, it can be suggested that to make more 

profit/loss or get involved in the “high risk high return” (to 

allow one with greater |r|), one should depend less on the 

other, trade less frequent, and avoid trading in economic 

recession period. Nevertheless, if one prefers the less 

overwhelmed style, i.e. small loss and small gain, one 

should avoid the above-mentioned situations. 

 

IV. CONCLUSION 

In this work, the collective effect of other influential 

investor on one’s trading decision was investigated. The 

excess demand/supply from trading mismatch and its 

associated price dynamics were modeled using spin-1 Ising 

model and Monte Carlo simulation. Both interaction with 

other investors and the external influenced field were 

considered, where the stock-price variation as a function of 

time, system size (of population), number of interacting 

agent, and market temperature, was measured. The low- and 

high-phase of trading decision was evident, where the phase 

transition points move to higher market temperature with 

increasing number of interacting agents. The price-return 

distribution results agree well with this enhanced transition 

point as the distribution broadness enhances with increasing 

market temperature but reducing number of interacting 

agents. The enhancement of distribution broadness was also 

evident with increasing time lag, yielding qualitative 

agreement with real stock making, which confirms the 

validity of this work. The distribution characteristic also 

suggests transformation possibilities from “high risk high 

return” type investor to “low risk low return” type investor 

by trading more frequent, concentrate during economic 

recession, and listen to more people in shaving one own 

decision in trading. As seen, this work highlights 

significance of herding interaction, as an add-on to the usual 

investigated parameters, which may lie another fruitful step 

in model the stock-price variation across various economic 

situations. 
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TABLE I 

RESULTS OF THE POWER LAW FITTING TAKEN ON ( )1 ba 
+ =  FOR 

VARIOUS INTERACTING AGENTS I  AND MARKET TEMPERATURE T. 

#Interacting 

agents I 

Temperature 

T 
a b  R2 

2 

2 1.231284 -0.060797 0.342887 

4 0.971361 -0.043204 0.234128 

6 0.847147 -0.005278 0.004865 

8 0.864739 -0.012002 0.028749 

10 0.898136 -0.004246 0.002966 

12 0.962452 -0.027796 0.148492 

14 0.891737 -0.009079 0.011048 

4 

2 1.782212 -0.036909 0.220097 

4 1.130337 -0.087444 0.549237 

6 0.983840 -0.061120 0.392694 

8 0.965836 -0.041116 0.306585 

10 0.972020 -0.045839 0.340783 

12 0.918773 -0.026921 0.154957 

14 0.981026 -0.031339 0.157888 

6 

2 1.768609 -0.011118 0.007424 

4 1.356009 -0.048950 0.298597 

6 1.055984 -0.080956 0.452052 

8 1.009687 -0.067896 0.459004 

10 0.946035 -0.037945 0.161221 

12 0.971569 -0.048496 0.295376 

14 0.878648 -0.022567 0.080288 

8 

2 1.897941 0.0322610 0.013922 

4 1.673193 -0.086526 0.497307 

6 1.226271 -0.085891 0.637506 

8 0.955498 -0.065062 0.440811 

10 0.909611 -0.054120 0.259940 

12 0.935323 -0.037514 0.230689 

14 0.882644 -0.029338 0.131774 

10 

2 2.040638 -0.126175 0.448583 

4 1.834120 -0.033881 0.086479 

6 1.386549 -0.069305 0.472366 

8 1.142981 -0.119874 0.687743 

10 0.988638 -0.069858 0.475533 

12 1.025700 -0.095637 0.610767 

14 0.909230 -0.043529 0.438393 
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