
 

 

Abstract— Path planning for a mobile robot is a difficult 

task and has been widely studied in robotics. The objective of 

recent researches is not just to find feasible paths but to find 

paths that are optimal with respect to distance covered and 

safety of the robot. Techniques based on optimization have 

been proposed to solve this problem but some of them used 

techniques that may converge to local minimum. In this paper, 

we present a global path planning algorithm for a mobile robot 

in a known environment with static obstacles. This algorithm 

finds the optimal path with respect to distance covered. It uses 

particle swarm optimization (PSO) technique for convergence 

to global minimum and a customized algorithm which 

generates the coordinates of the search space. Our customized 

algorithm generates the coordinates of the search space and 

passes the result to the PSO algorithm which then uses the 

coordinate values to determine the optimal path from start to 

finish. We perform our experiments using four different 

environments with population size 100 each in a 10 x 10 grid 

terrain and our results are favorable.  

   

              

Index Terms— Robotics, Motion Planning, Optimization, 

Particle Swarm Optimization. 

 

I. INTRODUCTION 

URING the last century, automation has become an 

extremely fast growing phenomenon, impacting almost 

all facets of life. Therefore, autonomously navigating 

robots have become increasingly important (Farritor and 

Dubowsky [5] and are required in many fields (Willeke and 

Kunz [15]). Motion planning is one of the important tasks in 

intelligent control of an autonomous mobile robot (Fogel, 

[6]). It involves the planning of a collision-free path for a 

mobile robot as it moves from an initial position to a final 

position in an environment with obstacles. This problem 

finds application not only in robotics, but in medicine, 

virtual reality (Lien, [8]) and bioinformatics (Song and 

Amato [11]) to mention a few.  

Motion planning algorithms finds sequence of valid 

configurations from the free space to form a path, which the 

mobile robot takes while avoiding collisions.  Finding these 

configurations deterministically becomes a difficult task as 

the dimensions of the configuration space increases (Reif 

 
Manuscript received February 27, 2018; revised March 27, 2018.    This 

work was sponsored by Covenant University, Ota, Nigeria. 

 P. I. Adamu, H. I. Okagbue and P. E. Oguntunde are with the 

Department of Mathematics, Covenant University, Ota, Nigeria. 

patience.adamu@covenantuniversity.edu.ng     

 hilary.okagbue@covenantuniversity.edu.ng            

pelumi.oguntunde@covenantuniversity.edu.ng                                            

J.T. Jegede is with the Department of  Electrical/Electronic Engineering, 

University of Maiduguri, Maiduguri, Nigeria.                                        

[10]). Recently though, variants of optimization based 

methods have been proposed to solve this problem but some 

of them used techniques that may converge to local 

minimum. Examples are of Zhang et al. [16], Deng et al. 

([4]), Kim and Lee [7] and Barraquand and Latombe [1] 

which can be seen especially for complex constraints and 

different degrees of freedom. 

Hence, we present an algorithm that uses particle swarm 

optimization (PSO) technique as the base optimization 

algorithm and a customized algorithm which generates the 

coordinates of the search space. PSO is a stochastic global 

optimization technique which is population based and 

inspired by group behaviors in animals. 

Recently PSO technique has been applied for optimal pose 

selection in movement of robotic arm (Wang et al. [13]), 

detumble and control of space robot (Wang et al. [14]), 

reducing friction during robotic machining (Chen and 

Zhang [3]) and their references therein.  

Essentially, our path-planning algorithm is used to find a 

feasible path around an obstacle. Assuming there are no 

obstacles in the navigation area, the shortest path between 

the start point and the end point is a straight line (Fig.1). 

The robot proceeds along this path until an obstacle is 

detected. At this point, our path-planning algorithm is used 

to find a feasible path around the obstacle. After avoiding 

the obstacle, the robot continues to navigate towards the 

end-point along a straight line until the robot detects another 

obstacle or the desired destination is reached. The search 

space is viewed as a grid which can be described by the 

Cartesian plane. In order to avoid ambiguous solutions, we 

assume that the robot moves along the mid-points of the 

cells from one cell to another. Ordinarily, Particle Swarm 

Optimization can be used to determine the optimal path 

between the start point and finish point of the robot motion. 

But, this can only be possible if the coordinates of the 

search space are known. Hence, our customized algorithm 

generates 100 coordinates of the search space and passes the 

result to the PSO algorithm which then uses the best 10 

coordinate values to determine the optimal path from start 

position to the final position. 

We use four environments to perform our experiments in a 

10 x 10 grid terrain: without obstacle (Figures 1(a-b)), with 

one obstacle (Figures 2(a-c)), with two obstacles (Figures 

3(a-c)) and with three obstacles (Figures 4(a-c)). In each of 

the environments we calculated the distance covered. 

 The results show that the optimal distance is approximately 

the diagonal of the 10 x10 grid in all the environments 

(Figures 2c, 3c and 4c). This confirms the mathematical 

assertion that, the shortest distance between two non-

adjacent vertices in a quadrilateral is its diagonal.  
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The contribution of this paper is the introduction of a global 

optimization technique to find the optimal path of a robot in 

a known environment.  

 

II. PRELIMINARIES AND RELATED AREA 

A Distance Metrics                                                                                  

A distance metric is a function, ( , ) ,s t R   which 

calculates the Euclidean distance between two 

configurations 1 2( , ,... )ns s s s  and 1 2( , ,... )nt t t t  in 

the Euclidean space.  

Mathematically, 

     
2 2 2

1 1 2 2( , ) ... n ns t t s t s t s         

This work uses this metric to calculate the distances 

covered by the mobile robot from the initial position to the 

end position in the different environments shown in Fig. 1 

(environment without any obstacle) and Figs. 2b, 3b and 4b 

(environments with one (two) (three) obstacle(s) after 

algorithm has been used to get the configurations). The 

essence of doing this is to be able to compare the distances 

covered in Figs. 2b, 3b and 4b with Fig. 1 separately and to 

ascertain to what extent our algorithm is able to minimize 

the distance covered in environments with obstacles. 

 

B. Local and Optimal Points of a Function 

Some functions have “hills and valleys”, where they get to 

maximum or minimum (optimal) value. It may not be for the 

whole function but for a particular interval. That is local 

optimal point. The point that is optimal for the whole 

function is a global optimal point. There is only one global 

maximum (and one global minimum) but there can be more 

than one local maximum or minimum. The function   

cos3 /x x  in Fig.5 has its global maximum at point (0.1, 

5.9) local maximum at point (0.6, 1.35), global minimum at 

point (0.3, -3.2) local minimum at point (1.0, -1.0). 

                          

C. Global and Local Path-Planning         

 Global path planning requires the environment to be 

completely known and the terrain should be static. In this 

approach the algorithm generates a complete path from the 

start point to the destination point before the robots starts 

motion. On the other hand, local path planning means that 

path planning is done while the robot is moving; in other 

words, the algorithm is capable of producing a new path in 

response to environmental changes. Assuming that there are 

no obstacles in the navigation area, the shortest path 

between the start point and the end point is a straight line 

between the points. The robot will proceed along this path 

until an obstacle is detected. At this point, our path-planning 

algorithm is utilized to find a feasible path around the 

obstacle. After avoiding the obstacle, the robot continues to 

navigate towards the end-point along a straight line until the 

robot detects another obstacle or the desired destination is 

reached.                                   

 

                              

D. Particle Swarm Optimization (PSO)        

 Particle swarm optimization (PSO) is a stochastic global 

optimization method based on population. It is inspired   by 

group behaviors in wildlife. It is an optimization technique 

which provides an evolutionary based search. The term PSO 

refers to a relatively new family of algorithms that may be 

used to find optimal or near to optimal solutions to 

numerical and qualitative problems. It is implemented easily 

in most of the programming languages since the core of the 

program can be written in a single line of code and has 

proven both very effective and quick when applied to a 

diverse set of optimization problems. PSO algorithms are 

especially useful for parameter optimization in continuous, 

multi-dimensional search spaces. PSO is mainly inspired by 

social behavior patterns of organisms that live and interact 

within large groups. In particular, PSO incorporates 

swarming behaviors observed in flocks of birds, schools of 

fish, or swarms of bees.   

E. Particle Swarm Optimization Algorithm        

Set iteration counter i = 0 

 Initialize the parameters ,ω c1 and c2  

 Initialize N random particles p1, p2 … pN (also 

called positions) and their velocities v1, v2, … vN. 

The velocities indicate the amount of change that is 

applied to a current position (i.e. particle or 

solution) to arrive at the updated particle (position). 

The subscripts indicate the particle number in the 

swarm.  

 Evaluate the fitness of each particle from the 

objective function )(
n

i

n
pFf  , where )(F

 
is the 

objective function to be optimized. 

 Update 
i

n
f  and 

i

n
p

 
pair as in (1), where 

i

n
f

 
is 

the pbest and 
i

n
p  the pbest-yielding particle in the 

i-th generation.  

 

1 1 1

1

[  ] if  is better than 
 

[  ] if  is better than 

i i i i

i i n n n n

n n i i i i

n n n n

p f f f
p f

p f f f

  



 
       
  

  

                                                                                        (1) 

That is, compare the current and the previous pbest values 

and retain whichever is better; also retain the corresponding 

position (or particle) that yielded the pbest. 

 Update the global best gbest with best fitness 
i

gf . 

The particle that yields gbest is called the global 

best particle (or position) 
i

gp . The pair can be 

obtained from (2) 

  1 1 2 2
 best [  ],  [  ],  ... ,  [  ]

i i i i i i i i

g g n np f p f p f p f  
  

         

                                                                                 (2) 

 Update velocities and positions of each particle 

according to (6) and (7) 

                           

 
1

1 1 (i i i

n nv v c r     
i

n
p  2 2) (i i

np c r   
i

gp )i

np   
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                                                                            (3) 

 
1 1i i i

n n np p v                            (4) 

                     

   

For the PSO implemented in this paper, the global best 

particle 
i

gp  is slightly perturbed to explore positions in its 

vicinity using (5). This guarantees faster convergence 

(Bergh [2]) and reduces the chances of the algorithm getting 

stuck in a local minimum (or local maxima). 

1i

gv  
i

gp  
3

i i i

g gp v r                                          (5) 

              Set i = i + 1                                      (6) 

 Terminate on convergence (ε is the convergence 

measure) or when the iteration limit is reached. 

 Go to the fourth step. 

                       

 In (3), r1, r2 and r3 are unit random numbers, c1 and c2 are 

scaling coefficients such that 2,0
21
 cc  (Paquet and 

Engelbrecht [9]), α and β are constants while ω is an inertia 

weight which may be adjusted dynamically to control the 

fineness of the search at different stages of the iteration 

process (Venu and Ganesh [12]). Availability of an expert 

input in step three increases the convergence speed of the 

algorithm.                     

     

III. PATH-PLANNING PROCESS 

 The search space is viewed as a grid which can be 

described by the Cartesian plane. This search space contains 

small square-shaped cells whose reference point is at the 

center. Hence, the coordinate of each cell can be described 

with the x and y points on the Cartesian plane.  

In order to avoid ambiguous solutions, we assume that the 

robot moves along the mid-points of the cells from one cell 

to another, Also, we assume that the obstacles are placed 

along the optimal path of the robot motion, that is, the path 

the robot will take if the search space in free of obstacles 

(Figure 1(a-c)). 

The starting point is (0.5, 0.5) and the finishing point is 

(9.5,9.5) for a 10 x 10 search space or the starting point is 

(0.5,0.5) and the finishing point is (99.5,99.5) for 100 x 100 

search space. The algorithm is developed in such a way as 

to handle any square shaped search space.  

The algorithm we developed using PSO as the base 

optimization algorithm requires that a valid number, for 

example 10 for 10 x 10 or 100 for 100 x 100 search space is 

specified along with a valid integer 1, 2 or 3 for the number 

of obstacles to be introduced. Thereafter, the algorithm 

requires that we specify the coordinates of the obstacles 

corresponding to the number of obstacles specified earlier. 

Once this is done, the algorithm generates the coordinates of 

the search space and then uses PSO to determine the optimal 

path taking into consideration the obstacles introduced 

earlier.  

Ordinarily, Particle Swarm Optimization can be used to 

determine the optimal path between the start point and finish 

point of the robot motion. But, this can only be possible if 

the coordinates of the search space are known. Practically, it 

is easier to know the coordinate of the obstacles than the 

coordinates of the search space with obstacles introduced. 

Hence, our customized algorithm generates the coordinates 

of the search space and passes the result to the PSO 

algorithm which then uses the coordinate values to 

determine the optimal path from start to finish.      

  

IV.  EXPERIMENTS 

                                                                                               

Experimental Set up 

We use our algorithm in four different experiments: a 10 

x10 grid environment without any obstacle Fig. 1a, with one 

obstacle at point (3.5, 3.5) (Fig. 2a), with two obstacles at 

points (3.5, 3.5) and (5.5, 5.5) (Fig. 3a) and three obstacles 

at points (3.5, 3.5), (5.5, 5.5) and (6.5, 6.5) (Fig. 4a). We 

use the algorithm: which generates the Cartesian coordinates 

for different population sizes 100, 50, 20 and 10 in the 10 

x10 grid environment (Table 1 – Table 3), and then uses 

PSO to determine the optimal path from the start point to the 

finish point. Using the distance metric, we calculate the 

distance covered and compare if it is the minimum distance 

in all the environments. 

 

Results and Discussions 

The results shown in Table 1 – Table 3 are the Cartesian 

coordinates generated by the algorithm. The coordinate 

points of population size 100 in Table 1 gave the graphs of 

Figs. 2(a-c), the coordinate points of population size 100 in 

Table 2 gave the graphs of Figs. 3(a-c) and the coordinate 

points of population size 100 in Table 3 gave the graphs of 

Figs. 4(a-c).  

 

A. Experiment 1: Environment without Any Obstacle: 

 

We first of all run our algorithm  in an enviroment without 

obstacle to know the optimal path if there is no obstacle in 

that enviroment (Fig, 1).  

 

 
Fig. 1a: Shows the optimal path without obstacle 

 

 
Fig. 1b: Shows the optimal path of Fig. 1a in 3D 
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Length of Path:  

Using the Euclidean distance metric, we have 

                       

 
2 2( , ) (9.5 5.0) (9.5 5) 12.73start end       

 This is approximately the diagonal of this environment 

and mathematically is the shortest distance from the start 

point to the end point in the diagram. In a 3D environment 

(Fig. 1b), this can be seen clearly. 

 

B. Experiment 2: Environment with One Obstacle: 

 

We use Table 1 to draw the graphs in Figs, 2(a-c). Fig. 2a 

shows the enviroment with the obstacle positioned at point 

(3.5, 3.5). Fig. 2c is the 3D representation.        

 

             Table 1: One Obstacle at point (3.5, 3.5) 

       

  Population Size-100 

Points xi-

cords. 

yi-

cords. 

1 0.5021 0.4988 

2 1.5025 1.5016 

3 2.5009 2.4999 

4 4.4976 2.4991 

5 4.4972 4.5001 

6 5.5006 5.4996 

7 6.5005 6.5004 

8 7.5003 7.4986 

9 8.5066 8.4994 

10 9.4980 9.4994 

 

                      

                            
Fig. 2a: shows the path with one obstacle  

 

        
 

                
           Fig. 2b: Shows the optimal path (without showing 

the                              obstacle) in 2D        

                        

      

         

                      
                          Fig. 2c: Shows the optimal path in 3D.  

      

           Length of Path: 

          The distance covered when the population size is 100: 

 

2 2( , ) (2.5009 0.5021) (2.4999 0.4988)start end       

  (4.4976 2.5009) (4.5001 2.4991)      

  
2 2(9.4980 4.4972) (9.4994 4.5001)     

 13.87 units   

                       

 We see that after encountering the obstacle at point (3.5, 

3.5) the algorithm comes back to the optimal path. This can 

be seen clearly in Fig. 2c. The percentage difference 

between the distance covered here and the optimal path in 

no obstacle environment is 0.0114 %. This is negligible; 

hence, this is the minimum path in this environment 

C. Experiment 2: Environment with Two Obstacles:  

                                                                                                     

We run our algorithm in an enviroment with two obstacles. 

Figs. 3a, 3b, and 3c corresponds to the optimal path of 

Table 2 the population size of 100 both in 2D and 3D. Fig 

3a shows the position of the obstacles. 
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Table 2: two Obstacles at points (3.5, 3.5) and (5.5, 5.5) 

Population Size-100 

Points xi-cords. yi-
cords. 

1 0.4996 0.5009 

2 1.5003 1.5034 

3 2.4999 2.4992 

4 4.5008 2.5004 

5 4.5014 4.5003 

6 6.5005 4.5031 

7 6.5007 6.4963 

8 7.4996 7.5034 

9 8.4995 8.4977 

10 9.4990 9.4993 

 

           Fig. 3a: shows the optimal path with two obstacles. 

 

 
Fig. 3b: Shows the optimal path of Fig. 3a. 

 

 
Fig. 3c: Shows the optimal path of Fig. 3a in 3D. 

                                      

Path Distance  

The distance covered when the population size is 100 

 (Fig. 4):                     

 

2 2( , ) (2.4999 0.4996) (2.4992 0.5009)start end       

(4.5008 2.4999) (4.5003 2.5004)      

(6.5005 4.5014) (6.4963 4.5031)      

2 2(9.4990 6.5007) (9.4993 6.4963)      

  15.06   
    Here, again the algorithm forces itself back to the optimal     

path after encountering the two obstacles. Approximately, 

the path is the diagonal of the figure. This can be clearly 

seen in Fig. 3c. Hence it is the optimal path. 

                        

D. Experiment 3: Environment with Three Obstacles: 

We run our algorithm in an enviroment with three obstacles. 

Figs. 4a, 4b, and 4c corresponds to the charts of  Table 3 the 

population size of 100. Fig 4a shows the position of the      

obstacles, Fig. 4b shows the optimal path from start to finish 

configurations. Fig. 4c is the extension to 3D.      

                       

 

Table 3: Environment with three Obstacles at point (3.5, 

3.5), (5.5, 5.5) and (6.5, 6.5)                  

 

Population Size-100 

Points xi-cords. yi-
cords. 

1 0.4993 0.5008 

2 1.5002 1.5030 

3 2.5031 2.4970 

4 4.5024 2.5024 

5 4.5003 4.4972 

6 6.5010 4.5028 

7 7.5037 5.499 

8 7.5010 7.5012 

9 8.4984 8.5004 

   10  9.4990   9.5022 

 

                   

                       

  
  

     Fig. 4a: shows the possible path with   three obstacles. 

       

                      
     Fig. 4b: Shows the optimal of Fig. 4a in 2D 
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Fig. 4c: Shows the optimal path of Fig. 4a in 3D. 

 

    Path Distance:  

    The distance covered when the population size is 100    

             

 

2 2( , ) (2.5031 0.4993) (2.4970 0.5008)sttart end       

(4.5024 2.5031) (4.4972 2.5024)      

2 2

(6.5010 4.5003)

(7.5037 6.5010) (5.4990 4.5028)

 

   
  

2 2

(7.5012 5.4990)

(9.4990 7.5010) (9.5022 7.5012)

 

   
 

   15.07   
                       

 Clearly, this path is optimal in this environment. 

 

Discussions: 

  In Figs. 2a, 3a, and 4a, it shows that the PSO navigated 

below the obstacles to get the optimal paths in the different 

environments. The other path the robot could take, is 

navigating above the obstacles. Mathematically, the distance 

covered in both routes are the same. Hence, these paths are 

the optimal paths in their environments.  If the PSO had 

navigated above the obstacles the path will still be optimal 

because mathematically the distance covered in both routes 

is the same.  As much as possible we see that the Algorithm 

try to make the optimal path the diagonal of the 10 x 10 grid 

environment which is right mathematically. This can be 

seen, clearly in the 3D environment (Figs. 1c, 2c, 3c and 

4c).  

V. CONCLUDING REMARKS 

In this paper, we present a new optimization- based 

algorithm to find the shortest global path for a robot in a 

known environment.  The algorithm uses Particle Swarm 

Optimization approach to avoid convergence into a local 

minimum.  With different experiments we show that the 

algorithm finds the shortest path in any known environment. 

 

VI. FURTHER WORK 

In this work, we used the algorithm first on an environment 

without obstacles to get the optimal path. Then we now put 

the obstacles in the optimal path. In each of the 

environments: with one obstacle, two obstacles and three 

obstacles separately, the algorithm try as much as possible 

to come back to the optimal path if it is not encountering 

any obstacle. So, our future work will be to put the obstacles 

scattered in the environments to see how the algorithm gets 

the optimal path. 
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