

Abstract— Path planning for a mobile robot is a difficult

task and has been widely studied in robotics. The objective of

recent researches is not just to find feasible paths but to find

paths that are optimal with respect to distance covered and

safety of the robot. Techniques based on optimization have

been proposed to solve this problem but some of them used

techniques that may converge to local minimum. In this paper,

we present a global path planning algorithm for a mobile robot

in a known environment with static obstacles. This algorithm

finds the optimal path with respect to distance covered. It uses

particle swarm optimization (PSO) technique for convergence

to global minimum and a customized algorithm which

generates the coordinates of the search space. Our customized

algorithm generates the coordinates of the search space and

passes the result to the PSO algorithm which then uses the

coordinate values to determine the optimal path from start to

finish. We perform our experiments using four different

environments with population size 100 each in a 10 x 10 grid

terrain and our results are favorable.

Index Terms— Robotics, Motion Planning, Optimization,

Particle Swarm Optimization.

I. INTRODUCTION

URING the last century, automation has become an

extremely fast growing phenomenon, impacting almost

all facets of life. Therefore, autonomously navigating

robots have become increasingly important (Farritor and

Dubowsky [5] and are required in many fields (Willeke and

Kunz [15]). Motion planning is one of the important tasks in

intelligent control of an autonomous mobile robot (Fogel,

[6]). It involves the planning of a collision-free path for a

mobile robot as it moves from an initial position to a final

position in an environment with obstacles. This problem

finds application not only in robotics, but in medicine,

virtual reality (Lien, [8]) and bioinformatics (Song and

Amato [11]) to mention a few.

Motion planning algorithms finds sequence of valid

configurations from the free space to form a path, which the

mobile robot takes while avoiding collisions. Finding these

configurations deterministically becomes a difficult task as

the dimensions of the configuration space increases (Reif

Manuscript received February 27, 2018; revised March 27, 2018. This

work was sponsored by Covenant University, Ota, Nigeria.

 P. I. Adamu, H. I. Okagbue and P. E. Oguntunde are with the

Department of Mathematics, Covenant University, Ota, Nigeria.

patience.adamu@covenantuniversity.edu.ng

 hilary.okagbue@covenantuniversity.edu.ng

pelumi.oguntunde@covenantuniversity.edu.ng

J.T. Jegede is with the Department of Electrical/Electronic Engineering,

University of Maiduguri, Maiduguri, Nigeria.

[10]). Recently though, variants of optimization based

methods have been proposed to solve this problem but some

of them used techniques that may converge to local

minimum. Examples are of Zhang et al. [16], Deng et al.

([4]), Kim and Lee [7] and Barraquand and Latombe [1]

which can be seen especially for complex constraints and

different degrees of freedom.

Hence, we present an algorithm that uses particle swarm

optimization (PSO) technique as the base optimization

algorithm and a customized algorithm which generates the

coordinates of the search space. PSO is a stochastic global

optimization technique which is population based and

inspired by group behaviors in animals.

Recently PSO technique has been applied for optimal pose

selection in movement of robotic arm (Wang et al. [13]),

detumble and control of space robot (Wang et al. [14]),

reducing friction during robotic machining (Chen and

Zhang [3]) and their references therein.

Essentially, our path-planning algorithm is used to find a

feasible path around an obstacle. Assuming there are no

obstacles in the navigation area, the shortest path between

the start point and the end point is a straight line (Fig.1).

The robot proceeds along this path until an obstacle is

detected. At this point, our path-planning algorithm is used

to find a feasible path around the obstacle. After avoiding

the obstacle, the robot continues to navigate towards the

end-point along a straight line until the robot detects another

obstacle or the desired destination is reached. The search

space is viewed as a grid which can be described by the

Cartesian plane. In order to avoid ambiguous solutions, we

assume that the robot moves along the mid-points of the

cells from one cell to another. Ordinarily, Particle Swarm

Optimization can be used to determine the optimal path

between the start point and finish point of the robot motion.

But, this can only be possible if the coordinates of the

search space are known. Hence, our customized algorithm

generates 100 coordinates of the search space and passes the

result to the PSO algorithm which then uses the best 10

coordinate values to determine the optimal path from start

position to the final position.

We use four environments to perform our experiments in a

10 x 10 grid terrain: without obstacle (Figures 1(a-b)), with

one obstacle (Figures 2(a-c)), with two obstacles (Figures

3(a-c)) and with three obstacles (Figures 4(a-c)). In each of

the environments we calculated the distance covered.

 The results show that the optimal distance is approximately

the diagonal of the 10 x10 grid in all the environments

(Figures 2c, 3c and 4c). This confirms the mathematical

assertion that, the shortest distance between two non-

adjacent vertices in a quadrilateral is its diagonal.

Shortest Path Planning Algorithm – A Particle

Swarm Optimization (PSO) Approach

Patience I. Adamu, IAENG, Member, Joshua T. Jegede, Hilary I. Okagbue and Pelumi E. Oguntunde

D

Proceedings of the World Congress on Engineering 2018 Vol I
WCE 2018, July 4-6, 2018, London, U.K.

ISBN: 978-988-14047-9-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2018

The contribution of this paper is the introduction of a global

optimization technique to find the optimal path of a robot in

a known environment.

II. PRELIMINARIES AND RELATED AREA

A Distance Metrics

A distance metric is a function, (,) ,s t R which

calculates the Euclidean distance between two

configurations 1 2(, ,...)ns s s s and 1 2(, ,...)nt t t t in

the Euclidean space.

Mathematically,

2 2 2

1 1 2 2(,) ... n ns t t s t s t s

This work uses this metric to calculate the distances

covered by the mobile robot from the initial position to the

end position in the different environments shown in Fig. 1

(environment without any obstacle) and Figs. 2b, 3b and 4b

(environments with one (two) (three) obstacle(s) after

algorithm has been used to get the configurations). The

essence of doing this is to be able to compare the distances

covered in Figs. 2b, 3b and 4b with Fig. 1 separately and to

ascertain to what extent our algorithm is able to minimize

the distance covered in environments with obstacles.

B. Local and Optimal Points of a Function

Some functions have “hills and valleys”, where they get to

maximum or minimum (optimal) value. It may not be for the

whole function but for a particular interval. That is local

optimal point. The point that is optimal for the whole

function is a global optimal point. There is only one global

maximum (and one global minimum) but there can be more

than one local maximum or minimum. The function

cos3 /x x in Fig.5 has its global maximum at point (0.1,

5.9) local maximum at point (0.6, 1.35), global minimum at

point (0.3, -3.2) local minimum at point (1.0, -1.0).

C. Global and Local Path-Planning

 Global path planning requires the environment to be

completely known and the terrain should be static. In this

approach the algorithm generates a complete path from the

start point to the destination point before the robots starts

motion. On the other hand, local path planning means that

path planning is done while the robot is moving; in other

words, the algorithm is capable of producing a new path in

response to environmental changes. Assuming that there are

no obstacles in the navigation area, the shortest path

between the start point and the end point is a straight line

between the points. The robot will proceed along this path

until an obstacle is detected. At this point, our path-planning

algorithm is utilized to find a feasible path around the

obstacle. After avoiding the obstacle, the robot continues to

navigate towards the end-point along a straight line until the

robot detects another obstacle or the desired destination is

reached.

D. Particle Swarm Optimization (PSO)

 Particle swarm optimization (PSO) is a stochastic global

optimization method based on population. It is inspired by

group behaviors in wildlife. It is an optimization technique

which provides an evolutionary based search. The term PSO

refers to a relatively new family of algorithms that may be

used to find optimal or near to optimal solutions to

numerical and qualitative problems. It is implemented easily

in most of the programming languages since the core of the

program can be written in a single line of code and has

proven both very effective and quick when applied to a

diverse set of optimization problems. PSO algorithms are

especially useful for parameter optimization in continuous,

multi-dimensional search spaces. PSO is mainly inspired by

social behavior patterns of organisms that live and interact

within large groups. In particular, PSO incorporates

swarming behaviors observed in flocks of birds, schools of

fish, or swarms of bees.

E. Particle Swarm Optimization Algorithm

Set iteration counter i = 0

 Initialize the parameters ,ω c1 and c2

 Initialize N random particles p1, p2 … pN (also

called positions) and their velocities v1, v2, … vN.

The velocities indicate the amount of change that is

applied to a current position (i.e. particle or

solution) to arrive at the updated particle (position).

The subscripts indicate the particle number in the

swarm.

 Evaluate the fitness of each particle from the

objective function)(
n

i

n
pFf , where)(F

is the

objective function to be optimized.

 Update
i

n
f and

i

n
p

pair as in (1), where

i

n
f

is

the pbest and
i

n
p the pbest-yielding particle in the

i-th generation.

1 1 1

1

[] if is better than

[] if is better than

i i i i

i i n n n n

n n i i i i

n n n n

p f f f
p f

p f f f

 (1)

That is, compare the current and the previous pbest values

and retain whichever is better; also retain the corresponding

position (or particle) that yielded the pbest.

 Update the global best gbest with best fitness
i

gf .

The particle that yields gbest is called the global

best particle (or position)
i

gp . The pair can be

obtained from (2)

 1 1 2 2
 best [], [], ... , []

i i i i i i i i

g g n np f p f p f p f

 (2)

 Update velocities and positions of each particle

according to (6) and (7)

1

1 1 (i i i

n nv v c r
i

n
p 2 2) (i i

np c r
i

gp)i

np

Proceedings of the World Congress on Engineering 2018 Vol I
WCE 2018, July 4-6, 2018, London, U.K.

ISBN: 978-988-14047-9-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2018

 (3)

1 1i i i

n n np p v (4)

For the PSO implemented in this paper, the global best

particle
i

gp is slightly perturbed to explore positions in its

vicinity using (5). This guarantees faster convergence

(Bergh [2]) and reduces the chances of the algorithm getting

stuck in a local minimum (or local maxima).

1i

gv
i

gp
3

i i i

g gp v r (5)

 Set i = i + 1 (6)

 Terminate on convergence (ε is the convergence

measure) or when the iteration limit is reached.

 Go to the fourth step.

 In (3), r1, r2 and r3 are unit random numbers, c1 and c2 are

scaling coefficients such that 2,0
21
 cc (Paquet and

Engelbrecht [9]), α and β are constants while ω is an inertia

weight which may be adjusted dynamically to control the

fineness of the search at different stages of the iteration

process (Venu and Ganesh [12]). Availability of an expert

input in step three increases the convergence speed of the

algorithm.

III. PATH-PLANNING PROCESS

 The search space is viewed as a grid which can be

described by the Cartesian plane. This search space contains

small square-shaped cells whose reference point is at the

center. Hence, the coordinate of each cell can be described

with the x and y points on the Cartesian plane.

In order to avoid ambiguous solutions, we assume that the

robot moves along the mid-points of the cells from one cell

to another, Also, we assume that the obstacles are placed

along the optimal path of the robot motion, that is, the path

the robot will take if the search space in free of obstacles

(Figure 1(a-c)).

The starting point is (0.5, 0.5) and the finishing point is

(9.5,9.5) for a 10 x 10 search space or the starting point is

(0.5,0.5) and the finishing point is (99.5,99.5) for 100 x 100

search space. The algorithm is developed in such a way as

to handle any square shaped search space.

The algorithm we developed using PSO as the base

optimization algorithm requires that a valid number, for

example 10 for 10 x 10 or 100 for 100 x 100 search space is

specified along with a valid integer 1, 2 or 3 for the number

of obstacles to be introduced. Thereafter, the algorithm

requires that we specify the coordinates of the obstacles

corresponding to the number of obstacles specified earlier.

Once this is done, the algorithm generates the coordinates of

the search space and then uses PSO to determine the optimal

path taking into consideration the obstacles introduced

earlier.

Ordinarily, Particle Swarm Optimization can be used to

determine the optimal path between the start point and finish

point of the robot motion. But, this can only be possible if

the coordinates of the search space are known. Practically, it

is easier to know the coordinate of the obstacles than the

coordinates of the search space with obstacles introduced.

Hence, our customized algorithm generates the coordinates

of the search space and passes the result to the PSO

algorithm which then uses the coordinate values to

determine the optimal path from start to finish.

IV. EXPERIMENTS

Experimental Set up

We use our algorithm in four different experiments: a 10

x10 grid environment without any obstacle Fig. 1a, with one

obstacle at point (3.5, 3.5) (Fig. 2a), with two obstacles at

points (3.5, 3.5) and (5.5, 5.5) (Fig. 3a) and three obstacles

at points (3.5, 3.5), (5.5, 5.5) and (6.5, 6.5) (Fig. 4a). We

use the algorithm: which generates the Cartesian coordinates

for different population sizes 100, 50, 20 and 10 in the 10

x10 grid environment (Table 1 – Table 3), and then uses

PSO to determine the optimal path from the start point to the

finish point. Using the distance metric, we calculate the

distance covered and compare if it is the minimum distance

in all the environments.

Results and Discussions

The results shown in Table 1 – Table 3 are the Cartesian

coordinates generated by the algorithm. The coordinate

points of population size 100 in Table 1 gave the graphs of

Figs. 2(a-c), the coordinate points of population size 100 in

Table 2 gave the graphs of Figs. 3(a-c) and the coordinate

points of population size 100 in Table 3 gave the graphs of

Figs. 4(a-c).

A. Experiment 1: Environment without Any Obstacle:

We first of all run our algorithm in an enviroment without

obstacle to know the optimal path if there is no obstacle in

that enviroment (Fig, 1).

Fig. 1a: Shows the optimal path without obstacle

Fig. 1b: Shows the optimal path of Fig. 1a in 3D

Proceedings of the World Congress on Engineering 2018 Vol I
WCE 2018, July 4-6, 2018, London, U.K.

ISBN: 978-988-14047-9-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2018

Length of Path:

Using the Euclidean distance metric, we have

2 2(,) (9.5 5.0) (9.5 5) 12.73start end

 This is approximately the diagonal of this environment

and mathematically is the shortest distance from the start

point to the end point in the diagram. In a 3D environment

(Fig. 1b), this can be seen clearly.

B. Experiment 2: Environment with One Obstacle:

We use Table 1 to draw the graphs in Figs, 2(a-c). Fig. 2a

shows the enviroment with the obstacle positioned at point

(3.5, 3.5). Fig. 2c is the 3D representation.

 Table 1: One Obstacle at point (3.5, 3.5)

 Population Size-100

Points xi-

cords.

yi-

cords.

1 0.5021 0.4988

2 1.5025 1.5016

3 2.5009 2.4999

4 4.4976 2.4991

5 4.4972 4.5001

6 5.5006 5.4996

7 6.5005 6.5004

8 7.5003 7.4986

9 8.5066 8.4994

10 9.4980 9.4994

Fig. 2a: shows the path with one obstacle

 Fig. 2b: Shows the optimal path (without showing

the obstacle) in 2D

 Fig. 2c: Shows the optimal path in 3D.

 Length of Path:

 The distance covered when the population size is 100:

2 2(,) (2.5009 0.5021) (2.4999 0.4988)start end

 (4.4976 2.5009) (4.5001 2.4991)

2 2(9.4980 4.4972) (9.4994 4.5001)

 13.87 units

 We see that after encountering the obstacle at point (3.5,

3.5) the algorithm comes back to the optimal path. This can

be seen clearly in Fig. 2c. The percentage difference

between the distance covered here and the optimal path in

no obstacle environment is 0.0114 %. This is negligible;

hence, this is the minimum path in this environment

C. Experiment 2: Environment with Two Obstacles:

We run our algorithm in an enviroment with two obstacles.

Figs. 3a, 3b, and 3c corresponds to the optimal path of

Table 2 the population size of 100 both in 2D and 3D. Fig

3a shows the position of the obstacles.

Proceedings of the World Congress on Engineering 2018 Vol I
WCE 2018, July 4-6, 2018, London, U.K.

ISBN: 978-988-14047-9-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2018

Table 2: two Obstacles at points (3.5, 3.5) and (5.5, 5.5)

Population Size-100

Points xi-cords. yi-
cords.

1 0.4996 0.5009

2 1.5003 1.5034

3 2.4999 2.4992

4 4.5008 2.5004

5 4.5014 4.5003

6 6.5005 4.5031

7 6.5007 6.4963

8 7.4996 7.5034

9 8.4995 8.4977

10 9.4990 9.4993

 Fig. 3a: shows the optimal path with two obstacles.

Fig. 3b: Shows the optimal path of Fig. 3a.

Fig. 3c: Shows the optimal path of Fig. 3a in 3D.

Path Distance

The distance covered when the population size is 100

 (Fig. 4):

2 2(,) (2.4999 0.4996) (2.4992 0.5009)start end

(4.5008 2.4999) (4.5003 2.5004)

(6.5005 4.5014) (6.4963 4.5031)

2 2(9.4990 6.5007) (9.4993 6.4963)

 15.06
 Here, again the algorithm forces itself back to the optimal

path after encountering the two obstacles. Approximately,

the path is the diagonal of the figure. This can be clearly

seen in Fig. 3c. Hence it is the optimal path.

D. Experiment 3: Environment with Three Obstacles:

We run our algorithm in an enviroment with three obstacles.

Figs. 4a, 4b, and 4c corresponds to the charts of Table 3 the

population size of 100. Fig 4a shows the position of the

obstacles, Fig. 4b shows the optimal path from start to finish

configurations. Fig. 4c is the extension to 3D.

Table 3: Environment with three Obstacles at point (3.5,

3.5), (5.5, 5.5) and (6.5, 6.5)

Population Size-100

Points xi-cords. yi-
cords.

1 0.4993 0.5008

2 1.5002 1.5030

3 2.5031 2.4970

4 4.5024 2.5024

5 4.5003 4.4972

6 6.5010 4.5028

7 7.5037 5.499

8 7.5010 7.5012

9 8.4984 8.5004

 10 9.4990 9.5022

 Fig. 4a: shows the possible path with three obstacles.

 Fig. 4b: Shows the optimal of Fig. 4a in 2D

Proceedings of the World Congress on Engineering 2018 Vol I
WCE 2018, July 4-6, 2018, London, U.K.

ISBN: 978-988-14047-9-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2018

Fig. 4c: Shows the optimal path of Fig. 4a in 3D.

 Path Distance:

 The distance covered when the population size is 100

2 2(,) (2.5031 0.4993) (2.4970 0.5008)sttart end

(4.5024 2.5031) (4.4972 2.5024)

2 2

(6.5010 4.5003)

(7.5037 6.5010) (5.4990 4.5028)

2 2

(7.5012 5.4990)

(9.4990 7.5010) (9.5022 7.5012)

 15.07

 Clearly, this path is optimal in this environment.

Discussions:

 In Figs. 2a, 3a, and 4a, it shows that the PSO navigated

below the obstacles to get the optimal paths in the different

environments. The other path the robot could take, is

navigating above the obstacles. Mathematically, the distance

covered in both routes are the same. Hence, these paths are

the optimal paths in their environments. If the PSO had

navigated above the obstacles the path will still be optimal

because mathematically the distance covered in both routes

is the same. As much as possible we see that the Algorithm

try to make the optimal path the diagonal of the 10 x 10 grid

environment which is right mathematically. This can be

seen, clearly in the 3D environment (Figs. 1c, 2c, 3c and

4c).

V. CONCLUDING REMARKS

In this paper, we present a new optimization- based

algorithm to find the shortest global path for a robot in a

known environment. The algorithm uses Particle Swarm

Optimization approach to avoid convergence into a local

minimum. With different experiments we show that the

algorithm finds the shortest path in any known environment.

VI. FURTHER WORK

In this work, we used the algorithm first on an environment

without obstacles to get the optimal path. Then we now put

the obstacles in the optimal path. In each of the

environments: with one obstacle, two obstacles and three

obstacles separately, the algorithm try as much as possible

to come back to the optimal path if it is not encountering

any obstacle. So, our future work will be to put the obstacles

scattered in the environments to see how the algorithm gets

the optimal path.

ACKNOWLEDGMENT

This research benefited from sponsorship from the

Statistics sub-cluster of the Industrial Mathematics

Research Group (TIMREG) of Covenant University and

Centre for Research, Innovation and Discovery (CUCRID),

Covenant University, Ota, Nigeria.

REFERENCES

[1] J. Barraquand, and J. C. Latombe, A Monte-Carlo algorithm for path

planning with many degrees of freedom. In Robotics and Automation,

1990. Proceedings., IEEE International Conference on pp. 1712-1717,

1990.

[2] F. Bergh van den, “An Analysis of Particle Swarm Optimizers”. PhD

Thesis. Department of Computer Science, University of Pretoria, pp

15 – 30, 2002.

[3] S. Chen and T. Zhang, (2018). Force control approaches research for

robotic machining based on particle swarm optimization and adaptive

iteration algorithms. Industrial Robot: An International Journal, 45(1),

141-151.

[4] L. Deng, X. Ma, J. Gu, Y. Li, Z. Xu and Y. Wang, Artificial immune

network-based multi-robot formation path planning with obstacle

avoidance. International Journal of Robotics and Automation, 31(3),

233-242, 2016.

[5] S. Farritor, and S. Dubowsky, “A Genetic Algorithm Based

Navigation and Planning Methodology for Planetary Robot

Exploration”, Proceeding of the 7th American Nuclear Society

Conference on Robotics and Remote Systems, Augusta, GA, 1997.

[6] D. B. Fogel, “What is evolutionary computation?” , IEEE Spectrum,

pp. 26-32, 2000

[7] J. J. Kim and J.J. Lee, Trajectory optimization with particle swarm

optimization for manipulator motion planning. IEEE Transactions on

Industrial Informatics, 11(3), 620-631, 2015.

[8] J.-M. Lien, O. B. Bayazit, R.-T. Sowell, S. Rodriguez, and N. M.

Amato. Shepherding behaviors. In Proc. IEEE Int. Conf. Robot.

Autom. (ICRA), pp. 4159-4164, 2004.

[9] U. Paquet, and A. P. Engelbrecht,” Training Support Vector Machines

with Particle Swarms”. In Proceedings of International Joint

Conference on Neural Networks (IJCNN) Conference, pp 1593 –

1598, 2003.

[10] J. H. Reif. “Complexity of the mover’s problem and generalizations”.

In Proc. IEEE Symp. Foundations of Computer Science (FOCS), pp.

421–427, 1979.

[11] G. Song and N. M. Amato. Using motion planning to study protein

folding pathways. In Proc. Int. Conf. Comput. Molecular Biology, pp.

287–296, 2001.

[12] G. G. Venu, and K. V. Ganesh, “Evolving Digital Circuits Using

Particle Swarm”, In Proceedings oInternational Joint Conference on

Neural Networks, pp. 468-471, 2003.

[13] W. Wang, H. Song, Z. Yan, L. Sun and Z. Du, A universal index and

an improved PSO algorithm for optimal pose selection in kinematic

calibration of a novel surgical robot. Robotics and Computer-

Integrated Manufacturing, 50, pp. 90-101, 2018.

[14] M. Wang, J. Luo, J. Yuan and U.Walter, Detumbling strategy and

coordination control of kinematically redundant space robot after

capturing a tumbling target. Nonlinear Dynamics, Article in press,

2018.

[15] T. Willeke, C. Kunz and I. Nourbakhsh, The Personal Rover Project:

The Comprehensive Design of a Domestic Personal Robot, Robotics

and Autonomous Systems, Elsevier Science, pp.245-258, 2003.

[16] Y. Zhang, C. Chen and Q. Liu, Mobile Robot Path Planning Using

Ant Colony Algorithm. International Journal of Control and

Automation, 9(9), 19-28, 2016.

Proceedings of the World Congress on Engineering 2018 Vol I
WCE 2018, July 4-6, 2018, London, U.K.

ISBN: 978-988-14047-9-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2018

