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Abstract—In this work, the authors present a new formal-
ization of stationary 1D-membrane MEMS in terms of profile
of the membrane in which the electric field magnitude E is
considered proportional to the curvature of the membrane
achieving results of existence by fixed point approach and, after,
establishing conditions of uniqueness. At the end, the obtained
results have been confirmed by some numerical tests.

Index Terms—MEMS, NEMS, electrostatic actuation, bound-
ary semi-linear elliptic problems, fixed-point approach.

I. INTRODUCTION TO THE PROBLEM

IN the last few years, micro dimensional engineering
applications are more and more oriented towards low cost

solutions where actuators/sensors play a key role because
representing the link between the physical nature of the
problem and the machine language. In such a context, static
and dynamic Micro-Electro-Mechanical-Systems (MEMSs)
represents a real conquest of micro engineering supported by
analytical-numerical modeling that is increasingly closer to
reality [1], [2]. However, a lot of theoretical models does not
allow to get explicit solutions so that one is content to find
conditions ensuring existence and uniqueness of the solution
or to solve the problem numerically [3]. From a theoretical
point of view, Scientific Community is busily engaged in
the study of coupled systems (such as magnetically actuated
systems, thermal-elastic systems [4], [5]) while, from the
application point of view, research has even gone into micro
applications of biomedical interest [6], wave propagation in
micro-domains with fixed and moving boundary and so on
[7]. Recently, regarding stationary and dynamical MEMS,
existence/uniqueness/regularity results have been carried out
by near operator theory even in presence of nonlinear singu-
larities [8], [9], [10]. There, a dimensionless MEMS device is
considered composed by two metallic plates (one fixed, one
deformable but clumped at its boundary), and after voltage
application, the deformable plate deflect towards the fixed
plate. The model os the above mentioned MEMS can be
written as follows:

ν∆2v =
(
%
∫

Ω
|∇v|2dξ + ς

)
∆v+

+λ1g1(ξ))((1− v)ϑ
(

1 + α
∫

Ω
dξ

(1−v)ϑ−1

)−1)
v = ∆v − dvν = 0, ξ ∈ ∂Ω, d ≥ 0

0 < v < 1, ξ ∈ Ω

where: 1) g1 is a bounded function which carries dielectric
properties of the material; 2) λ1 is the applied voltage; 3) the
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positive parameters ν, %, ς, α are related to the electric and
mechanic properties of the material and 4) ϑ takes into ac-
count more general electrostatic potentials. In the case of zero
deformable plate thickness and neglecting inertial effects as
well as non-local effects (ϑ = 21, ν = 1, % = 0, ς = 0, and
α = 0) (1) is simplified as follows [11]:

∆2v(ξ) = λ1g1(ξ)([1− v(ξ)]2)−1

0 < v(ξ) < 1 in Ω,

v = ∆v − dvν , on ∂Ω, d ≥ 0

(1)

In this paper, starting from (1), a new 1D model in which the
bottom plate is replaced by a thin membrane attached to the
edge, so that (1) is particularized as the following elliptical
semi-linear model:{

v′′ = −g2(ξ)λ1((1− v(ξ)2)−1 in Ω = [−A,A]

v = 0 on ∂Ω
(2)

in which λ1 (related to the applied voltage) can be also
expressed in terms of |E| and, since E on the membrane
is locally normal to the tangent of the membrane, |E|
can be considered proportional to the curvature C of the
membrane in order to carry out a model in which the
singularity 1 − v(ξ) is not directly involved. The paper is
organized as follows. Some engineering preliminary results
about the models related to membrane MEMS are presented
in Section II so that, in Section III, the authors propose the
new approach structured in the Dirichlet’s form, written in its
integral formulation, taking into account the safety distance
τ 2 achieving existence and uniqueness conditions for it
(Sections IV and V). Finally, some numerical considerations
complete the work supporting the proposed approach (Sec-
tion VI).

II. THE STARTING ELECTROSTATIC 1D MEMBRANE
MEMS MODEL

To get the well-known dimensionless 1D membrane
MEMS model, in R3 we consider a system of Cartesian
axes O′ξ′η′ζ ′ in which an electrostatic-elastic system whose
length is 2A, formed by a pair of parallel plates, of which
one fixed and the other one elastic (but fixed at the edges),
placed at a mutual distance h orthogonally to the axis ζ ′ takes
place. An electrostatic voltage V is applied on it3 so that
the electrostatic potential φ satisfies the Lapalce’s equation
∆φ = 0 inside the zone bounded by the plates4. In these

1Usually, ϑ ≥ 2.
2Distance of the top of the membrane profile from the upper plate.
3V on the elastic plate and V = 0 on the fixed plate.
4φ = V on the elastic plate while φ = 0 on the fixed one.
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conditions the deflection w′ of the elastic plate satisfies the
equation [1]5:

−ϑ∆⊥w
′ +D∆2

⊥w
′ = −0.5ε0|∇φ|2 (3)

in which: a) ϑ is the mechanical tension in the plate; b) D is
its the flexural rigidity and, finally, 3) εo is the permittivity
of free space. Taking into account the scaling factors u =
w′/h, Φ = φ/V , ξ = ξ′/2A, η = η′/2A and ζ = ζ ′/h and
denoting by δ = D/((2A)2ϑ) as the relative importance of
tension and rigidity and ε = h/(2A) as the aspect ration of
the system, Eq. (3) becomes a system of nonlinear coupled
partial differential equations as follows6:

ε2∆⊥Φ + Φζζ = 0

−∆⊥u+ δ∆2
⊥u = −λ2(ε2|∇⊥Φ|2 + (Φζ)

2)

Φ = 1 on elastic plate; Φ = 0 on fixed plate

(4)

where the ratio of a reference electrostatic force to a refer-
ence elastic force, is evaluable by:

λ1 = λ2 = ε0V
2(2A)2(2h3ϑ)−1 = %V 2 (5)

while

% = ε0(2A)2(2h3ϑ)−1 (6)

takes into account the electro-mechanical properties of the
membrane material7. Since both thickness and width of the
device are negligible with respect to its length 2A, (4) can
be simplified when ε → 0 reducing the first equation of (4)
to ∂2Φ

∂ζ2 = 0 whose solution Φ = ζ
u can be substituted into the

second equation of (4) obtaining the non-linear equation8:

−∆⊥u+ δ∆2
⊥u = −λ2u−2 (8)

solvable for only cases with simple geometries. If the
deformable plate is replaced by a deformable membrane
anchored along the edge of the lower face of a fixed plate
supporting the deformable membrane so that (8) is still
valid9. In addition, modern technologies allow us to exploit
very performant materials whose flexural rigidity D can be
considered negligible, getting a further simplification of (8)
(δ = 0) obtaining, in stationary deflection conditions and
reversing the orientation of ζ so that the membrane in the
rest position lies on ζ = 0, the following semi-linear elliptic
form [1], [12]:{

v′′ = −λ2(1− v)−2 in Ω = [−A1, A1]

v(−A1) = v(−0.5) = v(A1) = v(0.5) = 0
(9)

where u = 1 + v and A1 is the dimensionless quantity A.

5∆⊥ denotes the laplacian operator with respect to ξ′ and η′.
6Φζ and Φζζ represent the first and second order partial derivative of Φ

with respect to ζ respectively.
7Experimentally and in dimensionless conditions

%1 = ε0(2ϑ)−1 > 1012. (7)

8Decoupled from the equation of the potential.
9But with different values of the electro-mechanical parameters.

III. THE NEW PROPOSED APPROACH: |E| IN TERMS OF
CURVATURE OF THE MEMBRANE

Taking into account that λ2 in (9), by means of (5), is
proportional to V 2, then λ2(1 − v)−2 ∝ |E|2 and we can
rewrite (9) as:{

−v′′ = %|E|2 in Ω = [−A1, A1]

v(−A1) = v(A1) = 0
(10)

|E|2 in (10) represents the square of the electric field
magnitude and since the lines of force of E are orthogonal
[13], point by point, to the tangent to the surface of the
membrane, we can expressed |E

¯
| as the product between the

curvature C of the membrane deflection and a coefficient of
proportionality κ. Testing this approach on an hemispherical
benchmark well-known in literature [13] it was highlighted
the following functional dependence:

|E(ξ)| = κ(ξ, v(ξ), λ)C(ξ, v(ξ)) (11)

where
κ(ξ, u(ξ), λ) = λ(1− u(ξ)− τ)−1 (12)

with κ(ξ, u(ξ), λ) ∈ C0([−A1, A1] × [0, 1) × [λ, T ]) 10,
and τ critical distance equal to λ(εt)

−1 with εt dielectric
strength of the material constituting the membrane, even
when the deflection v assumes its maximum deformation
(we choice to exploit τ because in this wa the deflection
of the membrane touches the upper plate of the device
(situation mathematically representable by a singularity)11.
In conclusion, problem (10) can be structured as below:
−v′′ = %1κ

2(ξ, v(ξ), λ)C2(ξ, v(ξ)) =

= %1λ
2C2(ξ, v(ξ))(1− v(ξ)− τ)−2 in Ω

v(−A1) = v(A1) = 0; 0 < v(ξ) < 1− τ.

(13)

Substituting C(ξ, v(ξ)) = |v′′(ξ)|(1+|v′(ξ)|2)−3/2, the well-
known 1D formulation of curvature C [14], in (13) we can
write the following interesting equation:

v′′(ξ) + %κ2(ξ, v(ξ), λ)|v′′(ξ)|2(1 + (v′(ξ))2)−3 = 0 (14)

from which, since v(ξ) > 0, we obtain12:

1 + %1κ
2(ξ, v(ξ), λ)(v′′(ξ))(1 + (v′(ξ))2)−3 = 0 (15)

so that (13) assumes the final expression:
v′′(ξ) = −(1 + (v′(ξ))2)3(%1κ

2(ξ, v(ξ), λ))−1 in Ω

v(−A1) = v(A1) = 0

0 < v(ξ) < 1− τ.
(16)

However, problem (16) can be consider it as a particular case
of the following Dirichlet’s problem:

v′′(ξ) + f(x, v(ξ), v′(ξ)) = 0 in Ω = [A1,−A1]

v(−A1) = v(A1) = 0

0 < v < ν v ∈ C2(Ω)

(17)

10Where λ
2

is the minimum voltage to apply to the device to win the
inertia of the membrane and T 2 is the maximum admissible voltage.

11It is clear that, if εt →∞, model (9) is restored.
12v′′(ξ) = 0 represents a physical impossible occurrence because its

solution is v(ξ) = mx + b with m arbitrary constant giving us a linear
defection of the membrane when |E| = 0
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where f ∈ C0(Ω × R × R) and ν = 1 − τ . Consider-
ing f(ξ, v(ξ), v′(ξ)) = (1 + (v′(ξ))2)3(%1κ

2(ξ, v(ξ), λ))−1,
problem (17) can be written as follows:

v′′ = −(1 + (v′(ξ))2)3)(%1κ
2(ξ, v(ξ), λ)−1 =

= −(1 + (v′(ξ))2)3(ν − v(ξ))2)(%1λ
2)−1 in Ω

v(−A1) = v(A1) = 0; 0 < v < ν
(18)

with v ∈ C2(Ω) (13), κ = κ(ξ, v(ξ), λ) ∈ C0(Ω ×
[0, 1], [λ, T ]) and κ = λ(ν−v(ξ))−1. It seems that (18) has
not the singularity shown in (9) (or in (13) when v = 1−τ ).
In this case, from (18), we would achieved the condition
v′′(ξ) = 0 producing the impossible condition that |E| = 0
that is linear deflection.

IV. A RESULT OF EXISTENCE FOR Problem I

We start premising the definitions of two particular func-
tional spaces useful for the following of the paper for both
formulating the problem under study in terms of integral
equations and achieving results of existence and uniqueness
of solution.

Definition 1. Let S and S1 be the functional spaces so
defined in Ω = [−A1, A1]:

S = {C2
0 (Ω) : 0 < v(ξ) < ν, |v′(ξ)| < M < +∞} (19)

S1 = {C1
0 (Ω) : 0 < v(ξ) < ν, |v′(ξ)| < M < +∞} 14 (20)

Problem (17), by differentiation procedure, can be translated
in its integral formulation exploiting a Green’s function
Ξ(ξ, ι) [14]. That means:

v(ξ) =

∫ A1

−A1

Ξ(ξ, ι)f(ι, v(ι), v′(ι))dι, 0 < v < ν (21)

from which it is permissible we can write:

v′(ξ) =

∫ A1

−A1

Ξx(ξ, ι)f(ι, v(ι), v′(ι))dι (22)

so that (18) can be rewritten as:

v(ξ) =

∫ A1

−A1

Ξ(ξ, ι)(1 + (v′(ι))2)3)(%1κ
2(ι, v(ι), λ))−1dι.

(23)
In this paper the existence of the solution of the equation
Π(v) = s, with v ∈ S1, is proved by means of a procedure
based on Schauder-Tychonoff fixed point approach on the
operator s = Π(v) from S to S. In fact, we define the positive
operator Π as:

Π(v(ξ)) =

∫ A1

−A1

Ξ(ξ, ι)((1+(v′(ι))2)3(%1κ
2(ι, v(ι), λ)−1dι

(24)
from which it makes sense to write:

Π′(v(ξ)) =

∫ A1

−A1

Ξx(ξ, ι)((1 + (v′(ι))2)3(%1κ
2(ι, v(ι), λ))−1dι.

(25)

13As well-known, this assumption is physically plausible because mem-
brane tears are not allowed and slopes vary continuously.

For our purposes, we exploit the following Green’s function
defined as follows [15]:

Ξ(ξ, ι) =

(ι+A1)(A1 − ξ)(2A1)−1 −A1 ≤ ι ≤ ξ

(A1 − ι)(ξ +A1)(2A1)−1 ξ ≤ ι ≤ A1

(26)
allowing us to write:

Ξx(ξ, ι) =

−(ι+A1)(2A1)−1 −A1 ≤ ι ≤ ξ

(A1 − ι)(2A1)−1 ξ ≤ ι ≤ A1.
(27)

We underline the following properties of the function Ξ(ξ, ι)
of which we take into account in our proof:

a. Ξ(ξ, ι) ≥ 0 and continuous;
b. max(Ξ(ξ, ι)) = Ξ(ξ = ι, ι = 0) = A1/2 so that

0 ≤ Ξ(ξ, ι) ≤ 0.5A1 ∀ξ, ι ∈ Ω; (28)

c.
∫ A1

−A1
Ξ(ξ, ι)dι = 0.5(A1 − ξ)(ξ +A1) ≤ 0.5(A2

1);

d.
∣∣∣ ∫ A1

−A1
Ξx(ξ, ι)dι

∣∣∣ ≤ ∫ A1

−A1
|Ξx(ξ, ι)|dι ≤ A1;

e. ∀ξ, ι ∈ (Ω× Ω) the following limitation holds:

Ξx(ξ, ι) ≤ 0.5. (29)

In order to demonstrate the existence of at least a solution
for problem (18) and its uniqueness as well, we start by
to present the following Lemma which demonstration is
reported in appendix A.

Lemma IV.1. Consider the operator Π(v) defined by (24).
It is an operator from S to S.

This lemma, that we use to prove our existence results, gives
us the following important inequality that proves the fact that
M depends on % (properties of the material of the membrane)

1 +M6 < (M%1λ
2
)(4νA1)

−1 (30)

By exploiting the results achieved by this Lemma, we are
ready to prove the existence of at least a solution for problem
(18).

Theorem IV.2. Problem (18) admits at least one solution in
S.

The proof is reported in appendix B.

V. ON THE UNIQUENESS OF THE SOLUTION FOR
PROBLEM (18)

This theorem, whose proof is reported in appendix C,
proves that problem (18), ∀M > 0 and then for each kind of
material constituting the membrane, admits unique solution.
Morover, we can prove:

Theorem V.1. The solution v of the problem (18) is unique
∀M > 0; moreover v ∈ C∞(Ω), it is is symmetric with
respect to the origin and

∀ξ ∈ Ω, |v′(ξ)| ≤ |v′(A1)| = |v′(−A1)|. (31)
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VI. SOME NUMERICAL VERIFICATIONS

Algebraic system (40), as above proved, can be reduced to
the inequality (30) and this reduction is confirmed by means
of some numerical evaluations reported in this section also
confirming that (40) admits numerical solutions overlapping
with the analytical ones. Specifically, from the orders of
amplitude point of view, we can say that, setting λ = 1 and
A1 = 0.5 in (39), H is smaller than a quantity whose order
of amplitude is at least 102 so that it is correct to consider
the following algebraic system of inequalities:1 +M6 < (H%1λ

2
)(4νA1)−1 < (1021012λ

2
)(2ν)−1

1 +M6 < (%1λ
2
)(4A2

1)−1 < 1012λ
2
.

(32)
In addition, since ν < 1 and (%1λ

2
)(4A2

1)−1 <

(H%1λ
2
)(4νA1)−1 we can write that (40) is equivalent to

(30). And again, reformulating (32) as the following system:f1(M) = (M1012λ
2
)(2ν)−1 − (M6 + 1) > 0

f2(M) = 1012λ
2
(1− τ)− (M6 + 1) > 0

(33)

where f1(M) and f2(M) are two artificial function defined
for our purposes. In particular, since (33) must be verified,
by means of the Newton-Raphson’s procedure (tolerance
10−3) we firstly seek their zeros values (f1(M∗) = 0 and
f2(M∗) = 0) and then, consider them as the sup of the set of
the value of M that verifies the inequalities in (33). Table I
show the results of the tests demonstrating that, in dimension-
less conditions, numerical results are comparable with the
analytical ones (in particular numerical results are lower than
the analytical ones). For example, for λ = 1.01, we choice a
range of values of M in which the Newton-Raphson’s algo-
rithm is applicable for both f1(M) and f2(M) (in this case
we consider [230, 250] and [90, 110]) obtaining then their M∗

(labeled by M∗1 and M∗2 respectively) so that, to guarantee
the existence of the solution of the problem, we must choice
sup|M | = min(M∗1 ,M

∗
2 ) and, for safety advantage, we can

conclude that sup|M | = min(M∗1 ,M
∗
2 )numerical = 98.2

corresponding, in dimensionless point of view, just a bit
higher to 86 degrees.

TABLE I: Comparison between numerical and analytical
results. The exploited Newton-Raphson procedures has been
applied wit a tolerance equal to 103.

M∗1 M∗2 M∗1 M∗2
λ numerical numerical analytical analytical

1 229.3 98.2 229.4 98.6
1.01 241.1 102.1 241.4 101.7
1.02 243.6 108 243.8 108.1
1.03 249.1 1123 249.4 112.7
1.04 252.8 116.3 253.6 116.7
1.05 254.9 117.1 255.5 118.1

VII. APPENDIX A

Proof of Lemma IV.1
Let be Ω = [−A1, A1]. To prove our existence result,
firstly we propose to consider the norm of the operator

||Π(v(ξ))||C2(Ω):

||Π(v(ξ))||C2(Ω) = supξ∈Ω|Π(v(ξ))|+
+supξ∈Ω|Π′(v(ξ))|+ +supξ∈Ω|Π′′(v(ξ))| < +∞.

(34)

By the structure of Ξ(ξ, ι), Π(v) ≥ 0 and, in particular,
Π(v(−A1)) = Π(v(A1)) = 0. In addition, since (12) holds,
we can write κ(ξ, v(ξ), λ) > 1 in [−A1, A1]. This condition
is physically true because |E|, to deform the membrane, must
win its inertia of deformation and then the coefficient of
proportionality κ(ξ, v(ξ), λ) must be greater than 1. Now
we can assume λ > 0, a minimum voltage necessary to win
the inertia of the membrane for which we have λ < λ <
sup{λ} < +∞ and 1/λ2 < +∞. So, considering (28), the
following chain of inequalities can be considered:

0 ≤ |Π(v(ξ))| ≤ supξ∈Ω|Π(v(ξ))| =

= supξ∈Ω

∣∣∣ ∫
Ω

Ξ(ξ, ι)(%1κ
2)−1(1 + (v′(ι))2)3)dι

∣∣∣ =

≤ (%1λ
2)−1supξ∈Ω

∣∣∣ ∫ ξ

−A1

(2A1)−1(ι+A1)(A1 − ξ)

(1 + (v′(ι))2)3(ν − v(ι))2dι
∣∣∣+

+(%1λ
2)−1supξ∈Ω

∣∣∣ ∫ A1

ξ

(2A1)−1(A1 − ι)(ξ +A1)

(1 + (v′(ι))2)3(ν − v(ι))2dι
∣∣∣ =

= ν(%1λ
2)−1

{
supξ∈Ω

∣∣∣ ∫ ξ

−A1

(2A1)−1(ι+A1)(A1 − ξ)

(1 + (v′(ι))2)3dι+

+

∫ A1

ξ

(2A1)−1(A1 − ι)(ξ +A1)(1 + (v′(ι))2)3dι
∣∣∣} ≤

≤ 4ν(%1λ
2)−1(1 +M6)

supξ∈Ω

{∫ ξ

−A1

(2A1)−1(ι+A1)(A1 − ξ)dι+

+

∫ A1

ξ

(2A1)−1(A1 − ι)(ξ +A1)dι
}
≤

≤ 4ν(%1λ
2)−1(1 +M6)A2

1 < +∞.
(35)

And again, we can write:

supξ∈Ω|Π′(v(ξ))| =

supξ∈Ω

∣∣∣ ∫
Ω

Ξx(ξ, ι)(%1κ
2)−1(1 + (v′(ι))2)3)dι

∣∣∣ =

= (%1λ
2)−1supξ∈Ω

∣∣∣ ∫ x

−A1

−(2A1)−1(ι+A1)(1 + (v′(ι))2)3

(ν − v(ι))2dι+

∫ A1

x

−(2A1)−1(A1 − ι)

(1 + (v′(ι))2)3(ν − v(ι))2dι
∣∣∣ ≤

≤ 4ν(%1λ
2)−1(1 +M6)supξ∈Ω

∣∣∣ ∫ x

−A1

−(2A1)−1(ι+A1)dι+∫ A1

x

(2A1)−1(A1 − ι)dι
∣∣∣ ≤ 4ν(%1λ

2)−1(1 +M6)A1 < +∞.

(36)

Moreover if we consider supξ∈Ω|Π′′(v(ξ))|, taking into
account (25), (27), (29), and that |v′| ≤ M and, |1/κ2| < 1
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are verified, the following chain of inequalities hold:

supξ∈Ω|Π′′(v(ξ))| =

supξ∈Ω

∣∣∣∣∣ ddξ
∫

Ω

Ξx(ξ, ι)(%1κ
2)−1(1 + (v′(ι))2)3dι

∣∣∣∣∣ =

≤ (2%1λ
2)−1

[
supξ∈Ω

∣∣∣∣∣ ddξ
∫ ξ

−A1

(1 + (v′(ι))2)3)dι

∣∣∣∣∣+
+supξ∈Ω

∣∣∣∣∣ ddξ
∫ A1

ξ

(1 + (v′(ι))2)3)dι

∣∣∣∣∣
]

=

= (2%1λ
2)−1

[
2supξ∈Ω(1 + (v′(ι)2)3

]
≤

≤ (2%1λ
2)−12(1 +M2)3 =

= (%1λ
2)−1(1 +M2)3 < +∞.

(37)

Finally, putting (35), (36) and (37) into (34), it so easy to
conclude that:

||Π(v(ξ))||C2(Ω) ≤ 4ν(%1λ
2)−1(1 +M6)A2

1+
(38)

+4ν(%1λ
2)−1(1 +M6)A1 + (%1λ

2)−1(1 +M2)3 < +∞.

Then to prove that Π(u) ∈ S, we observe that by (37),
4ν(%1λ

2)−1(1 + M)A2
1 < ν then

1 +M6 < (4A2
1)−1%1λ2 ⇒M < (4A2

1)−1(%1λ2 − 1)1/6

(39)
and, since both (36) and (39) are verified, it allows us to
write: {

1 +M6 < M(4νA1)−1%1λ2

1 +M6 < (4A2
1)−1%1λ2.

(40)

In this system we can observe that, if by contradiction
(4A2

1)−1%1λ2 < M(4νA1)−1%1λ2, then M > ν
A1

= 2ν

and, since M = ζ
ξ and M ′ = ζ′

ξ′ , it makes sense to write 15:

M =
ζ

ξ
=
ζ ′

h

2A

ξ′
= H ′

2A

h
> 2ν. (41)

However, ν = ν′

h then, considering (41), M ′ > ν′

A and, if
A → 0, then ν′

A → +∞ so that M ′ = sup|v′| = +∞
(absurd). Then, (4A2

1)−1%1λ2 > M(4νA1)−1%1λ2 so (40)
is rewritable as:

1 +M6 < (4νA1)−1M%1λ2 (42)

and this imply that Π(v) : S → S.

VIII. APPENDIX B

Proof of Theorem IV.2
If Ω = [−A1, A1],taking into account the previous results
(Theorem IV.1) and compact immersions C2

0 (Ω) ↪→ C1
0 (Ω)

and then that S1 ↪→ S are verified, we apply the fixed-point
theorem (Schauder-Tychonoff) to conclude that the problem
v = Π(s) admits at least a fixed point v = Π(v) in S1. In
other terms, problem (18) admits at least a solution.

15See the scaling operations.

IX. APPENDIX C

Proof of Theorem V
To prove (31), from problem (18), we preliminarily observe
that v”(ξ) ≤ 0 with ξ ∈ Ω = [−A1, A1] (membrane concave
with first derivative decreasing) and, again, we can write:

v”(ξ)([1 + (v′(ξ))2]3)−1 = −(%1λ2)−1[1− τ − v(ξ)]2 (43)

from which, multiplying by v′ both member, it makes sens
write:

v”(ξ) v′(ξ)([1 + (v′(ξ))2]3)−1 =

= −(%1λ2)−1[1− τ − v(ξ)]2 v′(ξ) =

= −(%1λ2)−1(1− τ)2v′(ξ)+

+(%1λ2)−1(1− τ)
d

dξ
[v(ξ)]2 − (3%1λ2)−1 d

dξ
[v(ξ)]3

(44)

but since

v”(ξ) v′(ξ)([1 + (v′(ξ))2]2)−1 =

= −1

4

d

dξ
(1 + [v′(ξ)]3)2)−1 (45)

integrating (44), we obtain:

−1

4
(1+[v′(A1)]2)2)−1 +

1

4
(1+[v′(−A1)]2)2)−1 = 0, (46)

from which |v′(−A1)| = |v′(A1)|. And again, integrat-
ing (44) form −A1 to t, and considering that v(−A1) = 0,
we can write:

−1

4
(1 + [v′(t)]2)2)−1 +

1

4
(1 + [v′(−A1)]2)2)−1 =

= −(%1λ
2
)−1(1− τ)2v′(t)+

+(%1λ
2
)−1(1− τ)

d

dt
[v(t)]2 − (3%1λ

2
)−1 d

dt
[v(t)]3

(47)

and then ∀t ∈ [−A1, A1]:

−(%1λ
2
)−1(1− τ)2v(t)+

+(%1λ
2
)−1(1− τ)[v(t)]2 − (3%1λ

2
)−1[v(t)]3 =

= (%1λ
2
)−1v(t)

{
(1− τ)[v(t)− (1− τ)]− 1

3
[v(t)]2

}
< 0

from which:

−1

4
(1 + [v′(t)]2)3)−1 +

1

4
(1 + [v′(−A1)]2)3)−1 < 0 (48)

so that ∀t ∈ Ω, |v′(t)| < |v′(−A1)|.
To prove that problem (18) admits just one solution, we
suppose by contradiction that, in S1, it has two different
solutions labeled by v1 and v2. From problem (18), by
integration, we can write (∀t ∈ Ω):

v′1(t) ≤M−(%1λ
2
)−1

∫ t

−A1

[1+(v′1(ξ))2]3[1−τ−v1(ξ)]2dξ

v′2(t) ≤M−(%1λ
2
)−1

∫ t

−A1

[1+(v′2(ξ))2]3[1−τ−v2(ξ)]2dξ.

And integrating and subtracting on both members, we obtain
∀t ∈ Ω:

v′1(t)− v′2(t) =

= (%1λ
2
)−1

∫ t

−A1

{[1 + (v′2(ξ)2]3[1− τ − v2(ξ)]2−

−[1 + (v′1(ξ))2]3[1− τ − v1(ξ)]2}dξ.

(49)
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Now, needing to evaluate the term inside the integral, we
construct two auxiliary functions F and g made as follows:

F (w, v) = [1 + w2]3(1− τ − v)2,

g(t) = F (wt, vt) =

= F (tw1 + (1− t)w2, tv1 + (1− t)v2)

(50)

in order that we can write:

g′(t) = Fw(wt, vt)(w1 − w2) + Fv(wt, vt)(v1 − v2)

and
g(1) = F (w1, v1)

g(0) = F (w2, v2)

g(1)− g(0) = g′(ξ), ξ ∈ (0, 1).

However, it is correct to write:

Fw(wξ, vξ) = 6[1 + w2
ξ ]

2wξ(1− τ − vξ)2 =

= 6{1 + [ξw1 + (1− ξ)w2]2}2[ξw1+

+(1− ξ)w2](1− τ − vξ)2 ≤
≤ 6{ξ[1 + w2

1]2 + (1− ξ)[1 + w2
2]2}[ξw1+

+(1− ξ)w2](1− τ − vξ)2.

Considering, in addition, that w1 ≤ M , w2 ≤ M , vξ ≤ 1,
the following inequality holds:

|Fw(wξ, vξ)| ≤ 24(1 +M2)2M (51)

so that we obtain the important inequality:

|Fv(wξ, vξ)| = | − 2[1 + (wξ)
2]3(1− τ − vξ)| ≤

≤ 2|ξ(1 + w2
1)3 + (1− ξ)(1 + w2

2)3| ≤ 4(1 +M2)3

that, considering both (49) and the Poincaré’s inequality the
following chain of inequalities holds

|v′1(t)− v′2(t)| ≤

≤ 24(%1λ
2
)−1(1 +M2)2M

∫ t

−A1

|v′1(ξ)− v′2(ξ)|dξ+

+4(%1λ
2
)−1(1 +M2)3

∫ t

−A1

|v1(ξ)− v2(ξ)|dξ ≤

≤ 24(%1λ
2
)−1(1 +M2)2M

∫ t

−A1

|v′1(ξ)− v′2(ξ)|dξ+

8A1(%1λ
2
)−1(1 +M2)3

∫ t

−A1

|v′1(ξ)− v′2(ξ)|dξ =

≤ c(M,λ,A1, %1)

∫ t

−A1

|v′1(ξ)− v′2(ξ)|dξ.

from which, by means of Gronwall’s lemma [14], we can
write that, ∀t ∈ Ω, |v′1(t) − v′2(t)| ≤ 0. In other words,
∀t ∈ Ω, v′1(t)−v′2(t) = 0 from which v1−v2 = r ∈ R. But,
since v1(−A1) = v2(−A1) = v1(A1) = v2(A1) = 0, then
v1 = v2 holds.
To prove that v is symmetric with respect to the origin, we
consider a solution v of the problem (18), and ∀t ∈ Ω we
set u(t) = v(−t) in order to make another solution of the
problem (18) labeled by u). This is possible because u′(t) =
−v′(−t) and u”(t) = v”(−t) that substituted in

v”(−t) = −(%1λ
2
)−1([1 + (v′(−t))2]3)(1− τ − v(−t))

and taking into account that u′(−A1) = −v′(A1) =
v′(−A1) ≤ M and, because from unicity above proved,

v(t) = u(t), ∀t ∈ Ω so that we have u(t) = u(−t) over
Ω.
To prove that v ∈ C∞(Ω) is quite easy because v ∈ C2(Ω)
so that the second member of the equation belongs to C1(Ω)
and, by means of induction procedure, v ∈ C∞(Ω) holds.
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