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Abstract—The present study deals with problem of the
residual stresses calculations in human blood vessel under
pathological growth processes. The vessels are simulated by the
thin-walled long circular cylinder. The boundary value problem
of the surface growth of an elastic thin-walled vessels is solved.
The analytical solution is obtained in terms of velocities of stress
strain state parameters. The condition of thinness allows us to
study finite displacements of cylinder surfaces by means of in-
finitesimal deformations. The stress-strain state characteristics
are numerically computed and graphically analysed by various
mechanical parameters of the pathological growth processes.

Index Terms—blood vessel, elasticity, growth, residual stress.

I. INTRODUCTION

ORGANS in the human body and animals morphologi-
cally discriminate in two types: tubular and stromal.

The first ones are a cavity with walls such as vessels,
bronchial tubes, bile ducts, gastrointestinal tract, etc. There
are a number of pathological processes leading to obturation
of the lumen of tubular organs due to the surface deposition
of particles. The present study deals with the two patho-
logical processes atherosclerotic lesions of the arteries and
thrombosis of the veins. First process is characterized by
infiltration of proteins and lipids into a thin layer of the
artery. Second one do by subsidence of blood and plasma
proteins on the wall of the vessel. Also the process of
artery stenting is separately considered. The wall of a large
vessel, both arteries and veins, structurally consists of three
shells: outer, middle and inner. The outer shell is a loose
connective tissue rich in blood vessels. The middle shell
is represented by smooth muscle cells and the arteries also
have elastic membranes. The inner membrane is thin and is
represented by a flat single-layered epithelium lying on the
basal membrane [1], [2].

Infiltration of the inner membrane with lipids, proteins
and blood cells (macrophages, leukocytes) occurs during
atherosclerotic lesions of the artery resulting in the deposition
of atherosclerotic masses in the thin layer, which gradually
accumulate form an atherosclerotic plaque that grows pre-
dominantly in the lumen of the vessel in virtue of elastic
forces acting at the muscular membrane [3]–[6]. The outer
diameter of the vessel during an atherosclerotic lesion does
not generally increase.
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The thrombus formation is caused by a change in the
vascular wall in response to which the platelets adhere to
the site of injury. Further, the formation of fibrin with the
participation of platelets and consolidation of the protein
content of the growing thrombus. At the next stage, there
is a seizure and adherence of leukocytes, erythrocytes. The
final formation of the thrombus is completed by the settling
of the plasma proteins of the blood on the formed convolution
and its compaction [7]. As a result of the above-described
processes, the thrombus has a non-uniform layered structure.
The above processes are characterized mainly by surface
growth of the artery wall in a thin layer. On vessels with
an atherosclerotic lesion for the resumption of normal blood
flow stenting is performed. A stent is a thin metal tube,
consisting of wire cells, inflated with a special balloon [8],
[9]. It is introduced into the affected vessel and is pressed by
expansion into the walls of the vessel increasing its lumen.

Another pathological process is the remodeling of the
vessel wall as a result of which a volumetric thickening
of the wall occurs. With persistent high blood pressure in
the arteries of large and medium diameter elastosis and
elastofibrosis is revealed. Elastosis and elastofibrosis are
sequential stages of the process and represent hyperplasia and
cleavage of the internal elastic membrane, which develops
compensatory in response to a persistent increase in blood
pressure. In the future, the destruction of elastic fibers occurs
and their replacement by collagen fibers, i.e. sclerosis. Thus,
the wall of the vessels thickens, the lumen tapers [10], [11].
On Figure 1 changes in the vessel wall (thickness, outer and
inner radius) are shown in the first approximation for various
pathological processes.

The pathological growth of blood vessel wall can be
described in some cases by surface growth mechanics tech-
nique. At present study we will focused on the processes
of surface growth of thin-walled vessels. We use the ideas
of the mechanics of growing solids [12]–[21]. Some one-
dimensional problems in frameworks of the thermoelasto-
plasticity are studied under conditions of axial or central
symmetries in [22]–[30]. The principal variables of the
boundary value problem for a growing body are the stress
rate tensor, the strain rate tensor and the velocity vector. On
the surface of growth we set a specific boundary condition
depending on the curvature tensor of the growth surface and
the tension and inflow rates of the incremented elements.

Some problems for an elastic thin-walled surface-growing
cylinder are considered at present work. The condition of
thinness allows us to study finite displacements of cylinder
points under the condition of small deformations. This, in
particular, makes it possible to solve the problem with exact
boundary conditions on a moving surface. The behaviour
features of the strain–stress state characteristics depending on
the pressure on the inner and outer surfaces of the cylinder
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Fig. 1. Abnormal processes in blood vessels wall

is investigated.

II. CONSTITUTIVE EQUATIONS AND BOUNDARY VALUE
PROBLEMS STATEMENT AND SOLUTION

Throughout the paper we will use the conventional linear
elastic model [1] generalized on growing body mechanics
effects. Consider an infinitely long hollow elastic cylinder
with internal and external radii R1 and R2, respectively. The
relations between the stress tensor σij and the infinitesimal
deformations eij for the isotropic elastic material are fur-
nished by the Hooke rule

σij = λekkδij + 2µeij , (1)

where λ, µ are the Lame parameters.
Equation (1) in case of cylindrical coordinate system can

be rewritten in following form

σrr = (λ+ 2µ)err + λ(eϕϕ + ezz),

σϕϕ = (λ+ 2µ)eϕϕ + λ(err + ezz),

σzz = (λ+ 2µ)ezz + λ(eϕϕ + err).

(2)

The following components of the infinitesimal strain tensor
are not vanished by virtue of the hypothesis of a plane strain
state and cylindrical symmetry

err =
∂ur
∂r

, eϕϕ =
ur
r
, ezz = 0, (3)

where ur is the radial component of the displacement vector.
The components of the stress tensor satisfy the equation

of equilibrium
∂σrr
∂r

+
σrr − σϕϕ

r
= 0. (4)

One can transform the equilibrium equation (4) by deter-
mining the deformations from equation (2) in terms of the
stresses by

∂

∂r

(
2σrr + r

∂σrr
∂r

)
= 0. (5)

A general solution of the equation (5) constitutes the radial
stress depending on radius and undefined functions A,B

σrr = A+
B

r2
. (6)

The angular stress σϕϕ, axis one σzz and radial displacement
ur define according to (2)–(6)

σϕϕ = A− B

r2
,

σzz =
λA

(λ+ µ)
,

ur =
Ar

2(λ+ µ)
− B

2µr
.

(7)

The lateral surface of the cylinder is subjected to a stationary
loading pressure

σrr(R1) = p1,

σrr(R2) = −p2.
(8)

The relations for an undefined functions A and B are derived
by the solution of the boundary conditions system (8) in
forms

A = −p1R
2
1 + p2R

2
2

R2
2 −R2

1

,

B =
R2

1R
2
2(p1 + p2)

R2
2 −R2

1

.
(9)

The equations (6)–(9) determine the stress-strain state pa-
rameters before the growth. Suppose at time t = 0 on the
inner surface of the cylinder the new material is adding with
the velocity v = v(t)

σ̇rr(R1(t)) = −v(t)τ(t)
R1(t)

,

R1(t) = R1 − v(t)t,

σ̇rr(R2) = 0.

(10)

Herein the dot denotes the speed of the considered vari-
able, which can be determined as a partial derivative with
respect to time within the frameworks of the infinitesimal
deformations approach; τ(t) is the circumferential tension
of the adding layer at the moment of joining to the cylinder
surface. For a correct description of the stress-strain state
evolution under the conditions of continuous growth t > 0 it
is necessary to transform governing equations by replacing
all variables on its velocities (2)–(4). After that we obtain
following solution in terms of the velocities

σ̇rr = X(t) +
Y (t)

r2
,

σ̇ϕϕ = X(t)− Y (t)

r2
,

σ̇zz =
λX(t)

(λ+ µ)
,

u̇r =
X(t)r

2(λ+ µ)
− Y (t)

2µr
.

(11)

Unknown functions X(t) and Y (t) can be computed by
the solution of the system (10) in following form

X(t) =
R1(t)v(t)τ(t)

R2
2 −R2

1(t)
,

Y (t) = −R1(t)v(t)τ(t)R
2
2

R2
2 −R2

1(t)
.

(12)
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The relations for stresses

σrr = A+
B

r2
+

t∫
0

(
X(s) +

Y (s)

r2

)
ds,

σϕϕ = A− B

r2
+

t∫
0

(
X(s)− Y (s)

r2

)
ds,

σzz =
λ

(λ+ µ)

(
A+

t∫
0

X(s)ds

)
,

(13)

and displacements after integrating on time the equations (11)
taking into account the boundary conditions (6)–(7) read by

ur =
Ar

2(λ+ µ)
− B

2µr
+

( t∫
0

X(s)r

2(λ+ µ)
− Y (s)

2µr

)
ds.

(14)

III. NUMERICAL RESULTS DISCUSSION

The calculations were carried out for various values of the
growing layer size R1(t) and the growth layer tension level
τ(t). For the case of v(t) = const and τ(t) = const it is
established that the growth tension level τ level has a key
influence on the formation of the final stress-strain state of
the material. Figure 2 and 4 illustrate the radial stress field.
On Figure 6 and 7 the circumferential one is shown during
the growth. The stresses are vanished on the inner surface
R1(t) for a certain value of growth layer tension τ during
the inner cylinder wall growth. On Figure 3 and 5 the radial
displacement in the process of the inner cylinder wall growth
is shown.

The stresses concentration caused by the influence of
internal pressure can be computed in the absence of initial
growth tension in the adding layer by formulae (6) and (9).
The stresses concentration caused by the high level of the
initial growth tension during the narrowing of the vessel
lumen are calculated. Thus, it is possible to conclude, that on
the one hand, with correct initial parameters of the growing
process, it is possible to achieve a minimum effect of the
internal pressure in the vessel on its walls deformation. To
another hand, a certain growth regime is capable of causing
irreversible deformation and fracture vessel wall.

CONCLUSIONS

• The constitutive equations of the linear elasticity have
been furnished as a tool for mathematical modelling of
pathological growth of a blood vessel.

• The boundary value problem of the surface growth
of an elastic thin-walled cylinder has been stated and
analytically solved.

• The residual stresses caused by the different levels of the
initial growth tension in virtue of the narrowing vessel
lumen have been calculated.

• The stress-strain state characteristics depending on the
mechanical parameters of the biological processes, are
numerically computed and graphically analysed.
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Fig. 2. Radial stress σrr in the growth cylinder at different times. Line
denoted by number i corresponds to the growth time ti. Material and process
dimensionless parameters: τ = 6, λ = 4, µ = 2, v = 0.1, p1 = 1,
p2 = 0.1, R1 = 0.9, R2 = 1.
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Fig. 3. Radial stress σrr in the growth cylinder at different times. Line
denoted by number i corresponds to the growth time ti. Material and process
dimensionless parameters: τ = 3, λ = 4, µ = 2, v = 0.1, p1 = 1,
p2 = 0.1, R1 = 0.9, R2 = 1.
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Fig. 4. Radial displacement ur in the growth cylinder at different times.
Line denoted by number i corresponds to the growth time ti. Material and
process dimensionless parameters: τ = 6, λ = 4, µ = 2, v = 0.1, p1 = 1,
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Line denoted by number i corresponds to the growth time ti. Material and
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