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Abstract— The inertial continuously variable transmissions 

are mechanical transmissions that are based on the principle 

of inertia. These transmissions have a lot of advantages. 

Usually, the design of the inertial continuously variable 

transmissions consists of inertia pulsed mechanism with 

unbalanced inertial elements and two overrunning clutches. 

Dynamics of the transmissions is described by systems of 

substantial nonlinear differential equations. In general, 

precise methods of solution for such equations do not exist. 

Therefore, in practice, approximate analytical and numerical 

methods must be employed. The main analytical methods 

employ successive approximation, a small parameter, or 

power series expansion. Each approach has its advantages and 

disadvantages. Therefore, we need to compare them in order 

to select the best method for dynamic study of such kind of 

transmissions. In this paper a comparative analysis of 

approximate methods of solving of differential equations for 

the inertial continuously variable transmissions is done. The 

object of the investigation is structural dynamics of the 

continuously variable automatic inertial mechanical 

transmissions. Approximate methods of solving the nonlinear 

differential equations of motion of inertial transmissions based 

on a pulsed mechanism are compared. These methods take 

account of the no uniform driveshaft rotation and the dynamic 

characteristics of the motor. Analysis of the solutions reveals 

the best method for dynamic study of the given transmissions. 

The comparative analysis showed that the best method of 

approximate solution is the method of a small parameter.  

Index Terms— Continuously variable transmissions, 

differential equations, dynamics, methods of solution. 

I. INTRODUCTION 

 HE inertial continuously variable transmission (CVT) 

is based on the principle of inertia [1-3]. This 

transmission has a lot of advantages [4,5], namely: 

compactness, minimum friction losses and high efficiency 

as a result of the relatively small number of rotating 

components, a wide range of transformation of the torque. 

It does not need any conventional friction clutches. This 

transmission protects the engine from overload when output 

shaft is braked. This drive guarantees optimum conditions 
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of work for the engine regardless of the changing of load, 

and smoothly changes output speed according to the load.  

In spite of relative simplicity of design of the inertial 

transmissions, their dynamics is described by complex 

systems of substantial nonlinear differential equations [6-

8]. To solve the equations there are no any exact methods. 

It is possible to obtain solutions any with help of 

approximate analytical and numerical methods. To chose 

the best method with the smallest error we need to do a 

comparative analysis of exist methods.  

II. THE PHYSICAL MODEL OF THE CONTINUOUSLY 

VARIABLE TRANSMISSION 

 

The general scheme of the inertial continuously variable 

transmission contains the pulsed mechanism with 

unbalanced inertial elements, for example, planetary gear 

with unbalanced satellites, and two overrunning clutches 

[9-11]. The scheme of such a transmission is shown in 

Fig.1. Here 1 is the drive shaft of the transmission, which is 

the input shaft of the pulsed mechanism in the same time, 2 

─ the pulsed mechanism with unbalanced inertial elements, 

3 ─ the output shaft (the reactor) of the pulsed mechanism, 

4 ─ the body overrunning clutch, 5 ─ the output 

overrunning clutch, 6 ─ the driven shaft of the 

transmission. 

 

 
 Fig.1. Kinematic scheme of the inertial continuously variable transmission 

 
The main purpose of the pulsed mechanism 2 is to 

create alternative-sign impulses of torque. One of the 

overrunning clutches (the output overrunning clutch 5) 

transmits direct impulses of the torque to the driven shaft 6, 

the other one (the body overrunning clutch 4) transmits the 

reverse impulse of the torque on the frame of the 

transmission [12-15]. 

The mathematical model of inertia-pulsed transmission 

may be based on Lagrangian equations of the second kind. 
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As the generalized coordinates we take the angle  of 

rotation of the driving shaft 1, the angle   of rotation of 

the output shaft 2 of the pulsed mechanism, and the angle 

 of the driven shaft 6.  

Using these equations, we obtain a mathematical model 

of an inertia-pulsed drive in the form of fifth-order system 

of nonlinear equations [8]: 
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Mc  is the reduced drag torque on the driven shaft of the 

pulsed mechanism,  

21 , JJ  are the moments of inertia of the elements; 
3nJ  is the 

total moment of inertia of the unbalanced elements relative 

to the geometric center;  

nm  is the total mass of the unbalanced elements;  

h  is the distance between the geometric center and the 

center of mass of the unbalanced elements;  

qba ,,  are parameters of the pulsed mechanism. 

To determine the torque 
ДМ  acting on the driveshaft of 

the pulsed mechanism, we use the dynamics characteristic 

of an asynchronous electric motor, taking the influence of 

electromagnetic transient processes into account  
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where 
НM  is the rated moment of motor rotor; 

НХ  ,  are 

the angular velocity in ideal idling and the rated angular 

velocity; Т  is the electromagnetic time constant of the 

motor;    is the slope of the static characteristic.  

For the sake of comparison, we solve (1) by several 

approximate analytical methods [16-21]. 

 

 

III. METHOD OF SMALL PARAMETER 

 

We rewrite (1) in the form 
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The coefficients 
321 ,, BBB  contain the moments of 

inertia 
321 ,, JJJ  of the elements of the inertial-pulsed 

transmission and are considerably larger than the other 

coefficients. This permits the introduction of the small 

parameter   in (2). The system then takes the form  
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On the basis of the fundamental principle of the method 

of small parameter, we look for the solution in serial form 
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Assuming that 0  in (3) and (4), we obtain the 

generating system 
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Retaining only term where   is of first order and 

taking account of the series expansion of the trigonometric 

functions, we obtain a system of equations for 
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Solving (5) with null initial conditions, we obtain 
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Retaining only the first two terms in (4) and assuming 

that 1 , we write the final solution of (1) by the method 

of small parameter  
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IV. SUCCESSIVE-APPROXIMATION METHOD 

The first approximation is obtained on the basis of the 

initial conditions 
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In particular, taking account of the first approximation 

and the conditions 011 


 , we obtain the system of 

differential equations for the second approximation  
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Solving (6) with the specified initial conditions, we 

obtain the second approximation of the solution (1). For the 

motor torque, the second approximation takes the form 
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Confining our attention to the second approximation for 
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V. EXPANSION IN POWER SERIES 

By this method, the solution of the equation (1) is 

sought in the form 
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To determine the second derivatives of  , and  , and 

the first derivative of the motor torque when 0t , we 

solve (1) for higher derivatives  
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By differentiating Eq. (1), we find the third derivatives, 

when 0t  
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Differentiating the equation for the motor torque again, 

we obtain the third derivative of this torque when  t = 0 
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Substituting the derivatives in (7), we obtain the final 

solution of (1). 

VI. COMPARISON OF THE METHODS 

The analytical solutions obtained are approximate. 

Therefore, we must consider the accuracy of the 

approximation. The use of analytical estimates to this end is 

extremely difficult, since the theory of such estimates is 

commonly based on majorant series and as a result 

overestimates the errors (often considerably). In practice, 

therefore, other options are used to assess the accuracy of 

the method: for example, the comparison of successive 

approximations. The comparison of the zero, first, and 

second approximations will generally give a good idea of 

the quality of the method. The error of this method may 

also be estimated by comparing the solution with that 

obtained by another method or with experimental results. 

Such comparisons do not completely determine the 

accuracy of a particular method, but permit sufficient 

confidence regarding the results in practice.  

We now compare the results obtained by the analytical 

methods and by numerical solution of the nonlinear 

differential equations. Numerical methods permit the 

determination of practically accurate solutions, since the 

error is specified initially and may be as small as is desired. 

The iterative process is continued until the specified 

accuracy has been obtained. For purposes of comparison, 

we adopt the well known fourth order Runge–Kutta 

method.  

In Fig. 2, we plot the solutions of (1) obtained by 

approximate analytical methods and by the Runge–Kutta 

method using MathCAD Professional software, with the 

following parameters of the inertial transmission:  

The numerical solution of the system (5) was received by 

using the Runge-Kutta method in MathCAD software. The 

transmission parameters were taken as follows: 
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The thick continuous curves in Fig. 2 correspond to the 

Runge-Kutta solution; the thin continuous curves 

correspond to power series expansion; the dotted curves to 

the small parameter method; and the dashed curves to 

successive approximation. In Figs. 2a and 2d, we plot the 

angle α of driveshaft rotation, after subtraction of the trend 

component, as a function of t. The trend component must 

be eliminated or otherwise the plots of α for different 

methods will practically coalesce, since the drive shaft 

rotates at high speed, with little nonuniformity. In Figs. 2b 

and 1e, we plot the angle β of driven shaft rotation. In Figs.  

 

 

 
 

Fig. 2. Dependence of the angles of drive shaft rotation (a, d), and driven 

shat rotation (b, e), and motor torque (c, f) on the time t 

 

 

2c and 2f, we plot the motor torque as a function of the 

time t. 

The thick continuous curves in Fig. 2 correspond to the 

Runge-Kutta solution; the thin continuous curves 

correspond to power series expansion; the dotted curves to 

the small parameter method; and the dashed curves to 

successive approximation. In Figs. 2a and 2d, we plot the 

angle α of driveshaft rotation, after subtraction of the trend 

component, as a function of t. The trend component must 

be eliminated or otherwise the plots of α for different 

methods will practically coalesce, since the drive shaft 

rotates at high speed, with little nonuniformity. In Figs. 2b 

and 1e, we plot the angle β of driven shaft rotation. In Figs. 

2c and 2f, we plot the motor torque as a function of the 

time t. 

Analysis shows that power series expansion is of 

acceptable accuracy only within a short initial interval 

(Figs. 1a–1c). Given that this method is no simpler than 

other analytical methods in terms of the structure of the 

coefficients in solving Eq. (2), we regard this method as the 

least acceptable for the investigation of mathematical 

models of inertial transmissions. To improve its accuracy, 

we could determine additional terms in the expansion, but 

this entails intolerable complexity. 

The solutions obtained by the small parameter method 

and by successive approximation are similar and are in 

good agreement with the accurate solution. As follows from 

Figs. 1a–1c, the small parameter method is somewhat 

preferable. It is difficult to identify clear differences 

between these methods in Figs. 1a–1c, on account of the 

interfering effect of the curves corresponding to power 

series expansion. 

Accordingly, in Figs. 1d–f, we retain only the curves 

corresponding to the Runge–Kutta method, the small 

parameter method, and successive approximation. Having 

excluded the results obtained by power series expansion, 

we may consider a much larger time interval. It follows 

from Fig. 1f that, for the motor torque, the results given by 
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the small parameter method are much closer to the accurate 

solution. For the angle α of driveshaft rotation, the 

difference is not so great, but again favors the small 

parameter method. For the angle β of driven shaft rotation, 

the results given by successive approximation are more 

accurate in some time intervals, but the opposite is true in 

other intervals. In this situation, it is difficult to clearly 

establish which method is best, although for a brief initial 

period the small parameter method is indubitably 

preferable. 

VII. CONCLUSIONS 

Overall, we may conclude that the small parameter 

method is best for analytical solution and investigation of 

the nonlinear equations of motion of inertial pulsed 

transmissions based on a pulsed mechanism with two 

degrees of freedom. Successive approximation gives fair 

results and even outstrips the small parameter method in 

some circumstances, but overall the small parameter 

method is unquestionably superior. To obtain the accuracy 

provided by the other methods, power series expansion 

proves much more laborious and unwieldy. Thus, in the 

future, there is no need to use different methods to solve the 

differential equations of motion of inertial transmissions. 

Attention may be confined to the small parameter method. 
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