
 

 
Abstract—In this paper, a study of the boundary restrictions 

at corner's plates for the analysis by the Boundary Element 
Method (BEM) is presented. It is shown that the plate corner 
reaction only occurs for a simply supported corner with an 
internal angle equal to π / 2 and 3π / 2. It can also be observed 
that the bending moment is null for all the corners studied. 
With the imposition of these boundary conditions, the results 
obtained for the boundary tractions, equivalent shear force 
and bending moments, are in excellent agreement with those 
obtained by the Finite Element Method (FEM) with  refined 
meshes 
 

Index Terms—boundary element method, plate bending 
analysis, plate corner reaction 

 

I. INTRODUCTION 

WITH respect to the application of the BEM to the 

plate analysis, the development of the method is based on 
the works of Jaswon,Maiti,&Symm [1] who proposed the 
solution, via the integral equations, of biharmonic equations 
and later applying it to the bending plate analysis. Other 
studies that can be cited are Hansen, [2], Stern [3], Bezini 
[4], [5], Oliveira Neto & Paiva [6],[7], Paiva & Mendoça, 
[8], Paiva  & Aliabad [9] and Paiva & Venturini [10],[11]. 

In the application of the BEM for plate bending analysis, 
the boundary is divided into segments called boundary 
elements and approximation functions are adopted for the 
displacements and tractions in the domain of each element. 
The first option is to use the constant element, that is, the 
displacements and tractions on the boundary of the plate are 
assumed to be constant in the domain of each element and a 
single node is located on its midpoint. As in the boundary  
integral equations for plate bending analysis the plate corner 
reactions appears, there are additional equations for each 
plate corner that are usually located at the end of the system 
of equations obtained for the variables associated to the 
element nodes. The second option is to use the linear 
boundary element, with linear approximation for 
displacements and tractions in the domain of each element. 
In this case two nodes are associated, usually at the ends of 
each element and in the corners appear double nodes, with 
same coordinates but at different sides of the corner. Here 
also appear difficulties to deal with the corner reaction, 
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since now associated with the nodes of the corner we have 
besides the displacements and their respective derivatives, 
the equivalent shear forces and bending moments, the 
corner reaction of the plate that is also associated to the 
displacements of this same corner, and thus we have a 
further unknown without an extra equation, since the 
equations of the displacements and their derivatives are 
already naturally written. A solution that is usually adopted 
is to use the discontinuous element for the corner elements, 
bringing the corner nodes into the elements' domain and 
then an extra equation associated with an extra variable, the 
corner nodes equations can now be written. However, this 
formulation does not provide good results. The main reason 
is the fact that not every plate corner has a reaction. 

In this paper, based on the hypothesis of uniqueness of 
the stress tensor and using algebraic manipulations, a study 
is presented on the plate corner, showing which conditions 
the corner reaction is null. In this study, the same result was 
obtained as Marcus H. [12] but with a different approach 
and it is extended to plate corners with other boundary 
conditions. It was assumed that the sides of the plate corner 
are not subject to a distributed moment, which would lead to 
different results from herein. 

It is also presented how to write additional equations for 
each plate corner when the traction and its respective 
displacement are zero avoiding the singularity of the system 
of equations. 

Plates with different combinations of corner restriction 
are analyzed and the results compared with those obtained 
with the finite element method and results show excellent 
agreement 

II.  INTEGRAL EQUATIONS 

For a plate in bending, the following boundary integral 
equations can be written, using the alternative formulation 
of the boundary element method with three nodal 
displacement parameters [6]: 
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where w, mn and Vn are, respectively, the transverse 
displacement, the bending moment and the equivalent shear 
force along the boundary; g(q) and Ωg are the transverse 
load and the surface where it is applied. The symbol * is 
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used here to indicate the fundamental solution. In this 

equation K(s) = 1 for internal points  s; K(S) = /2 for a 
point  S  at a boundary corner, with internal angle  ; K(S) = 

½ for a point  S  on a smooth boundary; ci ns nsR m m   is 

the corner reaction. 
From (1) the integral representation of the derivative of 

the displacement with respect to a direction ms, of a system 
of coordinates (ms,us) can be derived as follows: 
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in which, 
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where    is the angle between the coordinate systems (n,s), 
at the displacement points, and (ms,us), at the source points 
(Fig 1). 

In the numerical application of the BEM, the plate 
boundary is discretized into segments, called boundary 
elements, where tractions and displacements are 
approximated by interpolation functions. In this study, these 
functions are the same as [6].    

 
Fig. 1. Coordinate systems (n,s) and (ms,us) 

 
Let us consider a generic plate corner and the coordinate 

systems (n1, s1) and n2, s2) immediately before and after the 
corner 

 

  
Fig. 2. Plate corner 

 
The bending moments mn1, mn2 and the twisting moments, 

mn1s1 and mn2s2 can be written as a function of the moments 
in relation to the coordinate system (x, y) as follows: 
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By rewriting the above expressions in matrix form, the 

following system of equations is obtained: 
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In order for this system of equations to have a solution,   
the determinant of the matrix of the increased system of the 
column of independent terms should be equal to zero, that 
is: 
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As:  

c                                                                             (7) 

 
the determinant expression can be written as: 
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The relation between the derivatives of the transverse 

displacement w in the coordinate systems (n1, s1) and (n2, s2) 
located on the sides of the corner is given by: 
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By considering the relationship among  ,   and c : 
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The relationships between the curvatures calculated in 

relation to these coordinate systems are given by: 
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By considering the relationship among ,   and c : 
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The relations between the third derivatives of the 

displacement can be obtained in a similar way: 
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III.  SUPPORTED-SUPPORTED CORNER 

 

 
Fig. 3 – Supported-supported plate corner 

 
From the boundary conditions of this corner, the 

following can be written: 
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Using (14-a) and (10) the following can be obtained: 
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 As mn1= mn2=0 the following also can be obtained that  
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Substituting (14-b) and (15) in (12) the following 

equation can be obtained: 
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Evaluating the matrix product, the following relationships 
are obtained: 
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 and then the corner reaction exists and is 

nonzero. Thus, for this corner, the displacements, their 
derivatives, the corner reaction and the bending moments mn 
are equal to zero.  

By substituting the third derivatives given by (14-c) and 
(16) in the relation given by (13) we obtain: 
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the following equations can then be obtained: 
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Equations.(19-b) and (19-d) can be written as: 
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IV. CLAMPED-CLAMPED CORNER 

                                                                               
Fig. 4 – Plate corner with two sides clamped 

 
From the boundary conditions of this corner, the 

following  can be written: 
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2 2 3 3
1 2 1 2 1 2

2 2 2 2

1 1 2 2 1 1 1 2 2 2
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       (22) 

 

As 
2

(1 )ns

w
m D

n s
 

 
 

  from (22) results that the 

corner reaction is equal to zero, that is:  

1 1 2 2
0ci n s n sR m m                                                  (23) 

Substituting the curvature relations given by (22) in the 
matrix given by (12) results in: 

2 2

2 22 2
2 1c c c c

2 2
c c c c c c

2 2
c c c c

w w

n ncos 2 sin cos sin
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(24) 

From (24) the following equations can be obtained: 
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                                   (25) 

From (25) results that for c  other than 0 and π: 

 
2 2

2 2
1 2

w w
0 and 0

n n

 
 

 
                                                           (26) 

 
Since the curvatures are equal to zero, the bending 

moments are also equal to zero. 

  
1 1 2 2

0n s n sm m m m                                        (27)  

Thus, at a clamped-clamped plate corner the displacement 
and their derivatives, bending moments and corner reactions 
are zero. These results verify (8). 
 

V. CLAMPED-SIMPLE SUPPORTED CORNER 

From the boundary conditions of this corner, the 
following  can be written: 
 

 
 

Fig.5 – Plate corner with one side clamped and the other 
simple supported 
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For the simple supported side of the plate, the following 
equation can also be written: 
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                                           (29) 

From (28) and (29) results: 
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Substituting the curvature relations given by (28) and 

(30) in the matrix given by (12) results in: 
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     (31) 

Evaluating the matrix product, the following relationships 
are obtained: 
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Adding (32-a) and (32-b) results in: 

 
2

2 2

c c

2

1

w
(sin cos ) 0     

n


   


                                                   (33) 
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Substituting the above result into (32-c) results in: 
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From these results, it can be concluded that the 
displacements and their derivatives, the bending moments in 
the normal direction and the twist moments, and therefore 
the corner reaction, are zero.  
 

From the presented results, the following conclusions can 
be drawn: 
 

a) The corner reaction only exists for the corner simply 

supported on both sides and with 
c c

3
 or  

2 2

 
    .  

b) The equivalent shear forces are zero for supported-
supported  plate corners.  

c) The bending moments in the normal direction to the 
sides of the corner are equal to zero for all the plate corners 
studied. 

In imposing the boundary conditions on the resulting 
system of equations it often happens the case that both the 
displacement and the corresponding traction are equal to 
zero. In this case one of them is imposed equal to zero 
resulting in an exchange of the columns of the system of 
equations and then the condition of the resultant unknown is 
imposed equal to zero. This is done by replacing the 
corresponding equation with a new equation.  

For each plate corner, we know the boundary conditions, 
that is, if the sides are free, simply supported or clamped. 
Part of the code can analyze each corner and decide what 
kind of corner it is. From this result establish codes that 
inform which additional equations should be written. 
Instructions of how to program these equations for a simply 
supported corner are present4e below. 

Consider a simply supported corner with internal angle β 
and with double nodes i and j. Without taking into account, 
the results presented in this work, the equation of the 
displacement on the doubles node variables would have the 
following form 

* *... .....vi ni nsi i vj nj nsi jK V m w K V m w                                (36) 

where Kvi and Kvj are the coefficients of Vni and Vnj, and 
mnsi, mnsj are the twisting moments, components of the 

corner reaction, and  * *  and i jw w  are the fundamental 

solution displacements. The corner reaction is given by:  

1 1 2 2ci n s n sR m m                                                           (37) 

 Knowing that, using the results presented in the article, 
Vni and Vnj are null in the corner nodes, their coefficients do 
not need to be calculated, and therefore (36) becomes: 

* *... .....nsi i nsi jm w m w                                                     (38)   

If β = π / 2 or β = 3π / 2 the corner reaction is not zero 
and (36) for one of the corner nodes is replaced by (39) 

since, according to (8),  0nsi nsim m  . 

The equation of the other double node remains the same. 

If c c
3

 and 
2 2

 
     the corner reaction is null, then 

mnsi=mnsj=0 and the two corner equations are replaced by 
(40) and (41) 
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VI. EXAMPLES 

The results obtained from the BEM that are most 
influenced by the corner boundary conditions are the 
equivalent shear force and the bending moment and thus 
these are the main results that are compared in this work 
with those obtained by the FEM. The displacements in 
plate's domain are practically the same for both methods. 

In the BEM, the equivalent shear force Vn and the 
bending moment mn are unknowns of the system of 
equations and, therefore obtained directly from the solution 
of the problem. For the finite element method, the 
unknowns of the system of equations are the displacements 
and their derivatives. The bending moment is obtained from 
derivations of the form functions for each finite element. 
The equivalent shear force is not obtained in the same way. 
The  the finite element programs provide the nodal 
reactions: concentrated loads on nodes with vertical 
displacement restricted. Thus, the direct comparison 
between the equivalent shear force obtained by the 
boundary element method and the concentrated forces on 
the finite element nodes cannot be done directly. Thus, to 
have a comparison, even with limitations, the concentrated 
forces are transformed into distributed tractions on the sides 
adjacent to the node, as shown in Fig.(6). 

Initially, the results obtained for a square plate with side a 
clamped at its boundary and submitted to a uniformly 
distributed load g in its domain are presented. 
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Fig. 6 Concentrated load at the node and the distributed 
traction on the sides of the finite elements 
 

In the BEM analysis, each side of the plate was divided 
into 10 and 40 boundary elements, and for the FEM [13] 
analysis, 1600 and 10000 rectangular finite element mesh 
were used. Fig. (7) and Fig. (8) show the bending moment 
and the shear force diagram along the side of the plate 
obtained from the two formulations. A good agreement 
among the results can be observed. It can also be observed 
that the results with the BEM are practically the same for 
the meshes adopted. 
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Fig. 7. Bending moment mn along the side of the plate 
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Fig 8. Equivalent shear force Vn along the side of the plate 

 
The next example is that of the previous plate now simply 

supported on the boundary. The corner reaction obtained 
with FEM for a mesh of 10000 rectangular elements is Rc = 
0.0641ga and the one obtained with the BEM is Rc = 
0.0642ga. Fig.(9) shows the distribution of the equivalent 
shear force along the side of the plate. 

VII. CONCLUSIONS 
In this paper, a study was presented of the boundary 

conditions in plate corners and their applications. It has been  
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Fig 9 Equivalent shear force Vn along the side of the 

plate simply supported on the boundary 
 
shown that in some plate corners, the equivalent shear force 
Vn and bending moment mn are equal to zero. It has been 
demonstrated that the corner reaction only exists in corners 
whose sides are simply supported and whose angle is π/2 or 
3π/2 . In the presented examples, the results obtained with 
this formulation with coarse meshes showed an excellent 
agreement with those obtained from FEM with well-refined 
meshes 
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