
 

 

    In this paper, exact analytical solutions are developed to 

describe the size-dependent nonlinear bending behavior of 

cantilever nano-beams subjected to an end force. Geometric 

and equilibrium equations of the deformed element are used in 

conjunction with a nonlocal differential constitutive relation to 

obtain large deformation of the nano-beam. Here, the nano-

beam is considered to be inextensible and the Euler-Bernoulli 

hypotheses are adopted. Applicability and accuracy of the 

present formulations are confirmed by comparing the 

predicted results with those reported in the literature. 

Furthermore, by using the exact solution presented in this 

investigation, the deformed configurations of the nano-beams 

are determined for different loading conditions. Our results 

reveal that the nano-beam exhibits a softening behavior when 

nonlocality is increasing.  

 
Index Terms— Postbuckling, Nonlocal elasticity, One-

dimensional nanoscopic structures. 

 

I. INTRODUCTION 

Postbuckling behavior of elastic beams is one of the 

basic problems in different engineering fields. Therefore, it 

is of substantial practical interest and has been widely 

studied by many researchers. Nowadays, one-dimensional 

nanoscopic structures including nanowires, nanorods, 

nanotubes, nanofibers and nanoribbons, have paved a new 

way for various advances in future applications [1]. 

Experimental observations have shown that one-

dimensional nanoscopic structures may undergo 

postbuckling [2]. The understanding of the postbuckling 

behaviour of these nanoscopic structures is crucial for the 

design of new nanodevices. Hence, in the last few years, the 

postbuckling analysis of one-dimensional nanoscopic 

structures has attracted extensive attention in the 

nanomechanics community [3-6].  

To the authors’ knowledge, no closed-form solutions for 

the postbuckling configurations of nano-beams have been 
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presented so far. It is well-known that the exact solution can 

serve as reference results for verifying numerical solutions, 

and so a closed-form expression is highly desirable. In this 

paper, an attempt is made to propose an explicit closed-form 

solution for the postbuckling behaviour of a cantilever 

nano-beam subjected to compressive load at its free end. In 

this connection, Eringen’s nonlocal elasticity theory [7] is 

used to incorporate the small-scale effect. This theory has 

been successfully used to solve problems involving the 

mechanics of nanoscopic structures [8]. The nonlinear 

governing equations of the problem are presented. Then, the 

equilibrium shapes of the nano-beam for different 

conditions are calculated by solving the nonlinear governing 

equations. The accuracy of the model is examined by the 

comparison between the present results and those reported 

in the literature. 

 

II. FORMULATION 

Consider an inextensible nano-beam of length L and 

flexural rigidity EI subjected to a tip axial force P (Fig. 1). 

As shown in Fig. 1, a Cartesian coordinate X-Y is chosen 

and the tangential angle between the nano-beam axis and 

the X direction is ψ. Using trigonometrical relations applied 

to a differential element dS (Fig. 2), the following 

geometrical relations are obtained: 

cos( )
dX

dS
 , (1) 

sin( )
dY

dS
 . (2) 

 

 

Fig. 1. Cantilever nano-beam subjected to an axial force P 
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Fig. 2. Free body diagram for a differential element 

 

Furthermore, the static equilibrium equations are derived 

on the basis of the equilibrium of the deformed element dS, 

i.e.,  

 
dT

V
d

  , (3) 

dV
T

d
 , (4) 

dM
V

dS
 , (5) 

where T, V, and M are the normal force, the shear force, and 

the bending moment. On the other hand, the bending 

moment-curvature relation for the nonlocal elastic material 

using Eringen’s constitutive relation is given as [9] 
2

2

2

d M d
M EI

dS dS


  , (6) 

where μ is the nonlocal scale coefficient which incorporates 

the small scale effect in the constitutive relation. To simplify 

Eqs. (1)-(6), the following dimensionless parameters are 

introduced:  
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Substituting Eq. (7) into Eqs. (1)-(6), the nonlinear 

governing equations are derived as, 
dt

v
d

  , (8) 

dv
t

d
 , (9) 

dm
v

ds
 , (10) 

2
2

2

d m d
m e

ds ds


  , (11) 

cos( )
dx

ds
 , (12) 

sin( )
dy

ds
 , (13) 

Furthermore, the boundary and load conditions are  

0)0( sx , 0)0( sy , 

(14) 

0)1( sm , )cos()1( Bpst  , 

0)0( s , ( 1) sin( )Bv s p    . 

Bs   )1( , 

Using Eqs. (8) and (9), the dimensionless normal and 

shear forces are found as functions of : 

cos( ) sin( )t a b    (15) 

sin( ) cos( )v a b    
(16) 

where a and b are constants determined by the loading 

conditions at the tip. Using Eqs. (15) and (16) at s = 1 and 

comparing the resultant relations with the load conditions, 

we obtain 

pa  , 0b . (17) 

Equations (10)-(11) and (15) are combined and the 

curvature relation is obtained as follows: 

  
ds

d
pem


 )cos(1 2  . 

(18) 

Multiplying each term of Eq. (18) by dsdm / , using Eqs. 

(10) and (16), integrating and after making some 

simplifications, we have  

2 2 2

2

1
(1 cos( ))m e p c

e
     (19) 

Since the bending moment at the tip is zero, the constant 

is calculated as follows: 

  22

2
)cos(1

1
Bpe

e
c   (20) 

To find the closed-form expression for geometrically 

nonlinear large deformation of nano-beams, it is necessary 

to obtain x and y as functions of . Using Eqs. (12), (13), 

(18), (19) and (20), it can be shown that 
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Equations (21) and (22) are closed-form expressions for 

geometrically nonlinear large deformation of nano-beams as 

a function of single unknown parameter B . According to 

the end condition Bs   )1( , the unknown parameter can 

be found as follows: 
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(24) 

Although Eq. (24) is a single nonlinear equation, it is an 

improper integral of the second kind,  and hence better 

solved by using a numerical method such as the false 

position method.  

III. NUMERICAL RESULTS 

To demonstrate the accuracy of the present closed-form 

solution, the values of the tip-angle, B , of the nano-beam 

subjected to pure compressive load are obtained and 

compared with the results determined earlier by Wang et al 

[9]. The results are presented in Table 1 and show that, the 

results obtained from the present model are in good 

agreement with those reported by Wang et al. [9] for small 

nonlocal scale coefficients. However, with increasing the 

nonlocal scale coefficient, a small discrepancy is observed 

between the results from the proposed closed-form solution 

and the numerical results reported by Wang et al. [9] on the 

basis of a shooting method. This discrepancy is attributed to 

the difference in the nonlinear models and numerical 

methods. After verifying the accuracy and applicability of 

the present formulations, they are now applied to various 

nano-beams. 

 

 

 

 

 

 

 

 
Table 1. Comparison of the predicted tip angle (degrees) 

e 

p = 2.5054  p = 2.8417 

Present 

study 

Wang 

et al. 

[9] 

 Present 

study 

Wang et al. 

[9]  

0.00 20.00 20.00  60.00 60.00 

0.02 20.64 20.68  60.20 60.45 

0.04 22.42 22.62  60.80 61.89 

0.06 25.11 25.61  61.77 64.67 

0.08 28.42 29.48  63.10 - 

0.10 32.13 34.13  64.75 - 

 

Figure 3 shows the postbuckling shapes of the nano-

beam subjected to pure compressive load. In this figure, the 

dimensionless nonlocal scale coefficient, e, is fixed at 0.2, 

and the nano-beam shapes are shown for eight compressive 

forces p = 2.25, 2.30, 2.50, 3.00, 5.00, 10.00, 15.00 and 

24.99.  

 

Fig. 3. Postbuckled shapes of the nano-beam with prescribed values of p. 

 

To illustrate the effect of the nonlocal scale coefficient on 

the postbuckling behavior of the nano-beam, the 

postbuckling shapes of the nano-beam subjected to pure 

compressive load is displayed in Fig. 4 for p = 2.47 and 

different values of the dimensionless nonlocal scale 

coefficient. From the numerical results, it is concluded that 

there is no continuous solution when e > 0.6352.  

 

Fig. 4. The effect of the nonlocal scale coefficient on the postbuckled shapes 

of the nano-beam for p = 2.47. 

 

The postbuckling load-deflection curves of the nano-

beams for different values of nonlocal scale coefficient are 

shown in Fig. 5. It can be seen that, as the postbuckling load 

increases, the maximum transverse displacement, yend, goes 

up sharply. After each curve takes its peak point at a 

postbuckling applied load, the maximum deflection 

decreases by increasing of the load.  
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Fig. 5. Postbuckling load-deflection curves for different values of nonlocal 

scale coefficient. 

IV. CONCLUSION 

An exact analysis of nonlinear large deformation of the 

cantilever nano-beams subjected to an axial end-tip load has 

been presented. In this investigation, nonlocal elasticity 

theory has been used for a nonlinear elastica problem. The 

present problem is a complex nonlinear boundary value 

problem including the small scale effect. Despite some 

achievement in analyzing large deflections of nano-beams, 

to the authors’ knowledge, no closed-form solution for 

determining the large deformed shape of nano-beams has 

been presented so far. In this paper, the nonlinear governing 

differential equations were solved  using elliptic integral 

approach. By using the proposed formulations, we obtained 

the deformed shapes of cantilever nano-beams under 

different loading conditions. Furthermore, the load-

deflection curves have been plotted by using the closed-

form solutions. In addition, the results were compared with 

existing numerical results in the literature.  
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