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Abstract—The present study is devoted to the boundary value
problem of cooling of an elastic-plastic additive manufactured
spherical ball with rigid inclusion. Throughout the paper the
conventional Prandtl–Reuss model of solids generalised on the
thermal effects is used. The residual stresses and deformations
depending on the cooling rate and the layer size are investigated.
An estimate is made of the need to take into account the process
of non-stationary heat conductivity in the contact problems of
the theory of temperature stresses. Fields of residual stresses
and deformations are computed for different cooling modes.

Index Terms—elasticity, heat conduction, yield criterion,
plasticity, residual strain, thermal stress.

I. INTRODUCTION

THE present study deals with the problem of heat trans-
fer influence on residual stresses formation in elastic-

plastic solids.
As it is known, the thermal stresses accumulation occur

due to the thermal expansion of the material. However, in a
freely expanding solids, a uniform temperature field does not
cause stress [1]. In solids having any constraints on thermal
expansion (for example, in the case of a fixed part of the
body surface, or when an external load is affected) a uniform
change in the temperature field can cause significant thermal
stresses. Thus, the increasing of stresses with a uniform
temperature change depends on the mechanical boundary
conditions on the surface of the solids. On the other hand,
stresses can also occur in freely expanding bodies under the
unevenly distributed temperature field. Different parts of the
body are expanded with different rate forming the thermal
stresses fields. If we consider the problem of the uneven
temperature field effect on a body that has limitations on the
thermal expansion. One can conclude that the temperature
stresses in the thermoelastic problems arise due to following
cases: 1) the stresses arise under the temperature gradient and
conditions of free thermal expansion; 2) the stresses develop
by the influence of some uniform temperature field T (where
T is the average temperature in the considered body) under
limitations of thermal expansion. In the present study we try
to estimate the degree of influence of boundary conditions
and uneven thermal field on the formation of stresses and
deformations in a thermoelastic-plastic material.
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The limitations on thermal expansion include boundary
conditions in the contact problems in the frameworks of ther-
mal stresses theory, in which the change in the stress-strain
state of the material occurs due to the equalization of the tem-
perature field between the contacting bodies having different
referential temperatures. As an example, one can specify
shrink fitting processes, in which the stress-strain state is
determined by the difference in the initial temperatures in
the composite elements of the assembled structures [2]–[4].
Another example is the problem of heating bodies with a
rigid core [1]. Uniform temperature field can be replaced
by an equivalent mechanical load, when normal stresses
are specified on the boundary surfaces, the magnitude of
which depends on the temperature level. At present, the
additive manufacturing simulations are an exciting area of the
modern industry and mechanical engineering [5]–[10]. One
way of additive technology processing is adding preheated
layers to the basic growing body. The significant extension
is formed on the contact surfaces due to the heat transfer
determining the strength characteristics of the created objects
[4]. The residual stresses in the thermoelastic solids do not
depend on the process of heat transfer between the parts
and are determined by the steady temperature field. In real
materials, such as metals, the occurrence of irreversible
deformation processes is possible. The appearance of plastic
deformations leads to a change in the residual stress fields.
The final distribution of the stress-strain state parameters can
be more accurately prescribed by the plastic properties of
the material. A special feature of calculating thermal stresses
under conditions of irreversible deformation is the possibility
of simultaneous occurrence of regions of plastic flow and
unloading [11]–[16]. The level of plastic deformation in the
material without external loads depends on the magnitude
of the temperature field gradient. Regions of plastic flow
arise under high values of the temperature gradient. The
growth of plastic deformations are terminated and the ther-
moelastic regions with accumulated irreversible deformations
are developed during temperature equalization [13], [15],
[17]–[22]. Thus, the equalization of the temperature field
in this case leads to the residual stresses formation. It is
also possible plastic flow region expansion in the absence
of a temperature gradient with particular restrictions on
thermal deformation. In this case, the thermoplastic state of
the material (the state of neutral loading) is determined by
the steady temperature field. Simultaneous considerations of
arbitrary boundary conditions and temperature gradient can
lead to the repeated appearance, development and disappear-
ance of plastic flow processes [11], [21], [23]–[25]. Similar
material behaviour in 2D and 3D problems [26] equires huge
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computing resources. At the same time, it was found that in
some shrink fit processes [3], [27], [28] the distribution of
residual stresses approximately coincides with calculations
in which the residual stress field is calculated on the basis
of a final uniform temperature distribution. In the presented
study, the effect of the non-stationary temperature gradient on
residual stress formation in an elastic-plastic spherical layers
with a central rigid inclusion is considered. The simplest
one-dimensional statement of the problem made it possible
to elucidate the features of the formation of residual stresses
under conditions of non-stationary thermal action and to
determine the material parameters (size, thermal diffusivity,
initial and final temperature) for the problem reducing by
following assumption. We can neglect by the non-stationary
thermal conductivity processes. This simplification makes it
possible to reduce the solution of the problem by the use of
well known methods for cases of isothermal loading of the
material.

II. CONSTITUTIVE EQUATIONS AND BOUNDARY VALUE
PROBLEM STATEMENT

Let us consider a heated elastic-plastic spherical layer
under initial temperature T0, with inner and outer radii r1 and
r2. There is no radial displacement ur on the inner surface
of layer (inclusion surface)

u(r1, t) = 0. (1)

The condition of free thermal expansion (zero (normal)
radial stress) can be furnished on the outer surface in form

σr(r2, t) = 0. (2)

It is assumed in the referential state that there is no thermal
expansion in the material of the layer

∆ = α(T − T0), (3)

where α is coefficient of linear thermal expansion, T is the
actual temperature field.

The resulting thermal stresses σi and deformations di obey
the equations

σr,r +
σr − σϕ

r
+
σr − σϑ

r
= 0,

dϕ,r =
dr − dϕ

r
.

(4)

Hereafter, the index after the comma denotes a partial differ-
entiation with respect to the spatial variable. From the system
of equations (4) we can obtain

σϕ = σϑ =
1

2r
(r2σr,r),r

dr = (rdϕ,r),r, dϕ = dϑ.

(5)

Further, taking into account (5), we will assume that the
stress tensor is known if its radial component σr is known,
and the strain tensor is known if a radial displacement is
known ur.

The constitutive equations between stresses and strains in
elastic-plastic material is given by the Duhamel-Neumann
rules

σr = (λ+ 2µ)(ur,r − pr) + 2λ(r−1ur − pϕ) − q∆,
σϕ = 2(λ+ µ)(r−1ur − pϕ) + λ(ur,r − pr) − q∆,

(6)

wherein pi are components of plastic deformations, cal-
culated during the process of plastic flow. The following
condition pi = 0 is valid in the case of thermoelastic
deformation prior to the plastic flow.

The plastic flow process is initialized when the plasticity
condition is satisfied

f(r, t) = σϕ − σr = 2k, (7)

where k is yield stress of the material under shear. The
relations between the increments of plastic deformations
according to associated flow rule read by

dprr = −2dpϕϕ = −2dpϑϑ (8)

System of the equations (4) – (8) describes the processes of
elastic-plastic deformation as a function of the temperature
field.

Suppose that at some time t = t0 on the inner surface of
the layer the temperature decreases according to the rule

T0 − T

T0 − Tmin
= W (t), (9)

where Tmin is the temperature of the cooled layer, x is
parameter determining the rate of cooling of the internal
surface. The law of temperature change (9) has the form

W (t) = (1 − exp(−xt)),

which corresponds to the process of rapid cooling of the
surface during heat transfer [21]. The outer surface of the
layer is insulated from heat loss

T,r(r2) = 0.

The temperature field is known at any time t > t0 as the
numerical solution of the heat conduction equation

T,t = r−1(r(T,r)),r.

III. SOLUTION OF THE PROBLEM

The differential equation for determining of the radial
component of the stress tensor can be derived from the
system of equations (4) – (6) as follows

(rσr,r),r + 3σr,r = −4ω∆,r, (10)

where ω = µ(λ+ 2µ)/q.
Functions of radial stress and displacement can be ob-

tained by integration of the equation (10)

σr = −4ω

r3

∫ r

r1

∆(ρ, t)ρ2dρ+A(t) +
B(t)

r3
,

ur =
ω

µr2

∫ r

r1

∆(ρ, t)ρ2dρ+
A(t)

q
− B(t)

4µr2
.

(11)

Here A(t), B(t) is functions determining from the boundary
conditions of the problem.

The structure of equation (10) allows us to submit his
solution by the sum of two terms
1) the general solution of the homogeneous equation

(rσr,r + 3σr),r = 0

σr = A+
B

r3
,

ur = rαT +
rA

q
− B

4µr2
,

(12)
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2) particular solution σ∗
r of the inhomogeneous equation (10)

under homogeneous boundary conditions σ∗
r (ri, t) = 0.

Temperature T is the average value of the thermal distri-
bution over the volume of the spherical layer

T (t) =
3

r32 − r31

∫ r2

r1

∆(ρ, t)ρ2dρ. (13)

The plasticity function is represented in the form

f(σi) = f(σ∗
i ) + f(σi).

Suppose that at time t = t∗ the following condition

f,t(σ
∗
i ) = 0

is valid. This equality with free thermal expansion means
the unloading of the material. the beginning of unloading
depends on the rate of equalization of the thermal field. It
is established that, within the framework of the boundary
conditions (1)-(2) on the inner surface at t > t∗ the inequality

f,t(σi) > 0

is satisfied under the monotonous change of temperature
field. Thus, the decrease T is a sufficient condition for the
implementation of the simple loading regime. In this case,
the final distribution of stresses under plastic flow does not
depend on the thermal conductivity process.

Equivalent definition of simple loading is a constant in-
crease of the level of plastic deformations. In accordance
with the condition (7) the circumferential components of the
plastic deformations take the form

pϕ = pϑ =
k

ω
+

3

r3

∫ r

r1

∆(ρ, t)ρ2dρ− ∆(r, t). (14)

The boundary of the plasticity region at each time r = a(t)
is calculated from condition pϕ(a, t) = 0.
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Fig. 1. Residual stresses, r2/r1 = 4.3.
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Fig. 2. The evolution of plastic deformation in time on the inner surface.
T (r1, t) = W1(t), x = 20.
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Fig. 3. The evolution of plastic deformation in time on the inner surface.
T (r1, t) = W2(t), t1 = 0.5.

IV. CONCLUDING REMARKS AND RESULTS DISCUSSION

The residual stresses are shown on Fig.(1) for an arbi-
trary law of cooling on the contact surface. The carried
out calculations make it possible to conclude a number
of important remarks on the possibility of affect of non-
stationary thermal conductivity on irreversible deformation
processes. The maximum value of the loading function f(σi)
is reached on the surface of contact with a rigid inclusion.
This circumstance means that among the entire volume of the
spherical layer the maximum change in plastic deformation
affecting the formation of residual stresses occurs on the
contact surface. On Fig. 2 it is seen that the law of variation
of the circumferential plastic deformation with time corre-
sponds to a monotonically increasing function. Thus, the
process of irreversible deformation is a simple loading mode,
in which the final resulting distribution does not depend
on the loading history (hardening or possible appearance
of unloading regions). The level of plastic deformations is
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proportional to the value T0(r2 − r1)/r1 and at the final
time does not depend on the cooling speed. Function type (9)
determines the behavior of plastic deformation on the inner
surface of the layer. In the general case, for an arbitrary non-
decreasing function that specifies the temperature boundary
condition (9), the decrease of the average temperature and
the simple loading regime are valid, at which there is no
intermediate unloading of the material, and, consequently, the
final elastic-plastic state is completely described by the final
thermal field distribution. The change of plastic deformations
in time is shown on Fig. 3 under the temperature boundary
condition in the form W2(t) = (1 − t/t1). Rapid growth of
deformations in the range t0 < t < t1 is due to a high level of
temperature gradient. Further changes of deformation occur
due to temperature equalization and increase of mechanical
stresses. Note also that the cooling rate parameter x (9)
does not affect the distribution of residual strains and under
conditions of ideal plasticity is insignificant.
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