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Abstract—Additive technological processes of layer-by-layer
deposition of material to the inner surface of an axisymmetric
cylindrical mold rotating around its axis at an arbitrary time-
varying angular velocity are investigated. The deposed material
exhibits properties of linear creep and aging. The flexibility
of the mold is not taken into account. A mechanical model
of the studied processes based on the general approaches of
the mathematical theory of accreted solids developed by the
authors is proposed. The corresponding nonclassical boundary
value problem for the velocity characteristics of the deformation
process of the formed material layer under the action of
centrifugal forces is stated. The closed analytical solution of the
stated problem in quadratures is obtained. By means of it the
evolution of the stress state of the layer under consideration
in the process of its additive formation during any number
of stages of the material continuous deposition with arbitrary
pauses between these stages and after the formation completing
is built. The found technological stresses in the having been
formed layer, caused by the action of centrifugal forces in
the process of its manufacturing, depend on the nature of the
process in determining wise. The distributions of these stresses
essentially differ from the classical stresses distributions in a
similar rotating material layer that did not experience an im-
pact of deformation factors during the manufacturing process.
This difference is explained by the fundamental mechanical
features of the accreting process itself and causes the inevitable
occurrence of residual stresses in the having been formed layer
after stopping its rotation and, if the simulated technological
process implies it, the subsequent detachment of the completed
layer from the mold. The distributions of these residual stresses
can be found by means of the dependences constructed in the
paper.

Index Terms—accreted solid, additive manufacturing, cen-
trifugal deposition, technological stresses, viscoelastic material.

I. INTRODUCTION

MANY technological processes are accompanied by an
increase in the size and, possibly, by a change in the

shape of the solids involved due to attaching the additional
material to them, that is, building-up, or growing these solids.
It is obvious that when studying this kind of processes one
should take into account the kinematic and force features
of the new substance gradual inflow to the surface of the
accreted solid under loads taking place in the technological
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process that act to this solid simultaneously. However, such
accounting is impossible to implement correctly in principle
in the framework of the classical mechanics of deformable
solids, even if we consider the traditional equations and
boundary conditions in a domain variable in time. This is due
to the fact that the classical formulation of the mechanical
problems always implies the existence in the entire solid in
general such a configuration in which there are no stresses.
Such a configuration is commonly called natural. It is this
configuration that the objective measures of deformation
of the considered body, compared with its stress state in
one way or another by means of defining relations, are
measured from.

Meanwhile, the accreted solid may not have a natural
configuration in general case (unlike, for example, the solid
exposed to the removal of the material). Indeed, while some
of the material elements have already deformed with the
solid, others have not yet been incorporated into it. As a
consequence of this fundamental fact, the problems of me-
chanical behavior of accreted solids should possess a number
of specific features and constitute a special class of problems
of deformable solid mechanics. The development of common
approaches to mathematical formulation of such nonclassical
problems and developing methods of their solution con-
struction and analysis, as well as studying various growth
processes on the basis of these problems present works [1–
25]. One can find there specific examples of solutions of
such problems and discussing a variety of new mechanical
effects discovered thanks to the obtained solutions. Note that
among a great number of papers on AM technologies written
by technologists, chemists, and physicists (see, e.g., [26–48])
a rare one is devoted to mechanical aspects and analyses of
AM fabricated parts and similar problematics.

Mass forces often act as a mechanical loading in the
studied processes. These include, in particular, the forces
of inertia caused by the movement of the solid in space
as a rigid whole. First of all, these are centrifugal forces
that must be taken into account in the case of accreting the
rotating bodies, in particular in the analysis of manufacturing
processes or strengthening a certain type of products, as
well as deposing coating layers on products. These are that
very processes that the processes studied in this paper are
referred to.

II. STATEMENT OF THE PROBLEM

This work is devoted to modeling the processes of grad-
ual deposing the uniform in thickness layers of additional
material on the inner surface of a axisymmetric cylindrical
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substrate rotating around its axis at the angular velocity
Ω(t) arbitrarily changing in time t. It is assumed that when
deposing the material the velocity of its inflow in the circum-
ferential direction is incomparably higher than the velocity
of its inflow in the radial direction. This assumption makes it
possible to simulate the considered process of deposing the
material as axisymmetric process of deposing the layer being
formed simultaneously throughout its whole inner surface. In
addition, this deposing process is considered as continuous,
in which each infinitely small period of time an infinitely
thin additional layer joins the accreting body. Thus, the time
dependence of the inner radius of the generated layer a(t) is
a continuous function.

It is stated the task to trace the evolution of the stress-strain
state of the layer being deposed under the influence of the
inertia forces of its rotational motion together with the mold.
A sufficiently slow time variation of the mold rotational
speed is assumed,

∣∣Ω′(t)∣∣ � Ω2(t), so that the tangential
inertia forces of rotation are negligible if comparing to
centrifugal forces. It is supposed that the potentially possible
dynamic effects from the attaching the additional material
to the surface of the accreted layer are insignificant, and
therefore the forces of inertia of its deformation can also
be neglected in comparison with the centrifugal forces of
inertia and the problem can be considered in a quasi-static
statement.

The problem is solved in the approximation of the plane
strain state under small strain condition. In view of the latter,
it makes no sense to take into account the depending on
the time strain component of the inner radius of the formed
layer a(t) decreasing due to the inflow of additional material.
This dependence can be considered a prescribed program of
attaching material, which is implemented in the simulated
process. Thus, in the considered problem the dependence
a(t) is a given continuous function, strictly decreasing at
those time intervals at which the material is deposed, and
constant at those time intervals at which the inflow of
additional material to the formed layer is temporarily or
finally stopped.

It is obvious that if the additional material joins a certain
solid that is already in the process of deformation under
the exposure of certain impact, then the entire newly joined
material is inevitably involved in the process of deformation.
One of the objectives of the present study is a refined demon-
stration of the mechanical effects that arise due to building-
up the solid under simultaneous acting on it centrifugal
forces regardless of the influence of deformation processes,
occurring in the part of the solid under consideration existing
before start of accreting (initial). Therefore, in the proposed
model the possible compliance of the mold on which the
layer is being built is not taken into consideration (although
its consideration does not represent a fundamental difficulty),
and the mold is considered to be absolutely rigid. The inner
radius of the mold let us denote by a0.

Elements of the additional material to be attached to the
solid in the process of accreting, can for some reasons
mechanical, physical, chemical undergo pre-deforming when
joining. This will cause some initial stresses in them. In this
case, stress and strain fields will be formed in the accreted
solid even in the absence of an external load. Taking into
account the initial stresses in the elements of any accreted

solid is an integral part of the formulation of boundary
conditions on the surface of its growth. In this paper, these
stresses are considered to be zero, that is, when setting the
problem of the considered accreted layer deformation, it
is considered that the processes and effects accompanying
the continuous inclusion of the additional substance in its
composition does not lead to the appearance of nonzero
stresses in it near the growth surface. It is important to
note that this assumption in the studied problem, where the
deforming of the accreted solid occurs in the field of mass
forces action, from the mathematical point of view, does
not simplify the formulation and solution of the problem in
comparison with the case of action of some nonzero initial
stresses in the attached material. Consideration of zero initial
stress in the proposed model only allows to focus on the
effect of exlusively centrifugal forces on the development of
stress-strain state of the formed layer and convincingly show
the fundamental differences of this condition from the state
of the layer of similar size and material properties, firstly
formed entirely on the surface of a rigid mold without any
residual stresses, and only then forced to rotate. The latter
state can be obviously determined from the solution of the
corresponding classical problem of mechanics, which does
not take into account the process of the considered solid
formation and involves the applying the load to the solid
already in its final composition.

III. DESCRIPTION OF THE USED MATERIAL

If the elastic solid is formed by deposition, the rate of
change of its stress-strain state is obviously determined only
by instantaneous characteristics of the processes of its depos-
ing and loading. After deposing is completed and the loading
and kinematic constrains are fixed, the state of the solid no
longer changes. This is not the case when the deformation
response of the material to the mechanical loads applied to it
depends on the duration of these loads acting and on the age
of the material in which these loads were applied. Extended
in time the processes of accreting solids with the use of such
materials are quite difficult to simulate as in this case the
process of changing the stress-strain state of accreted body
is affected at any given time by the entire previous history
of deforming its every material element, in particular those
that were in the part of the solid existed prior to the increase.
However, the study of this very kind of processes is relevant
from the point of view of various engineering applications
since many materials used in practice exhibit conspicuous
rheological properties and their mechanical characteristics
are often significantly changed with age regardless of acting
loads.

In the model proposed in this paper, we consider a linear
viscoelastic uniformly aging isotropic material with the same
constant (independent of either the material age or the time
elapsed since the application of loads to it) Poisson’s ratio
ν = const for instantaneous elastic strain and creep strain
developing over time. For the given material the relation
between the stress tensor T and the small strain tensor E
at each point of the solid r at any time moment t, calculated
from the time of manufacture of the material, has the form
[4], [49]:

Hτ0(r)T(r, t) = 2E(r, t) + (κ − 1)1 trE(r, t). (1)
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Here 1 is the unit tensor of the second rank, κ = 1
/

(1−2ν),
Hs is the linear viscoelasticity integral operator acting under
the rule

Hsf(t) =
f(t)

G(t)
−
∫ t

s

f(τ)

G(τ)
K(t, τ)dτ, (2)

where G(t) is the elastic shear modulus of the material at
its age t, and K(t, τ) is the creep kernel. The latter can
be expressed through various characteristics of the material,
describing its behavior in this or that elementary stress state.
For example, using the characteristics for the pure shear state
it will be

K(t, τ) = G(τ)
∂∆(t, τ)

∂τ
, ∆(t, τ) =

1

G(τ)
+ ω(t, τ),

where ω(t, τ) is the creep measure for the pure shear,
ω(τ, τ) ≡ 0. The ∆(t, τ) function describes the evolution
over time t of specific (per unit of the acting shear stress)
shear strain caused by the constant stress state of pure shear
created at the time moment τ .

The parameter s of the operator (2) has the meaning of
the time moment of occurrence of the stress state in the
neighborhood of the considered point of the solid r. Since
the accreted solid is increased with new material elements
already during the process of its deformation, the moment
of occurrence of stresses at the points r of such a solid
will change from point to point and be set by a certain
function τ0(r), which is taken into account in the constitutive
relation (1).

In the additive process of centrifugal deposition of the
material to a rigid cylindrical substrate modeled in this
paper, we assume that the elementary layers of the additional
material join the inner cylindrical surface of the formed solid
in the initially non-stressed state (see Section II) and thus
begin to deform only as a part of this solid. In this case, the
value

τ0(r) ≡ τ0(ρ) (3)

should be considered as the moment of joining to the growing
solid of the material layer with the radius ρ < a0.

It is clear that for all values of ρ that make sense for the
solid in question, it is true

t = τ0(ρ) =⇒ ρ = a(t), (4)

moreover, at any time interval of continuous growth of the
solid due to the strict monotony of the a(t) function the
inverse implication will be just as well. From (4) it follows
the identity a

(
τ0(ρ)

)
≡ ρ, when differentiating which, we

get the notation

τ ′0(ρ) = 1
/
ȧ(t), t = τ0(ρ), (5)

which we will need in the future. Here and everywhere
hereinafter, by stroke the derivative with respect to the
coordinate ρ is denoted, and a dot on the top denotes the
derivative of the function of one variable t.

Similar to (1) constitutive relations are widely used to
describe the mechanical behavior of various natural and
artificial stone (in particular, concrete), polymers, soil, ice,
wood. Typical experimental curves representing the evolution
with time t of the specific longitudinal strain

ε(t, τ)

σ0
=

[Hτσ0](t)

2(1 + ν)

/
σ0 =

∆(t, τ)

2(1 + ν)

of such material at its uniaxial tension by constant tension σ0
applied at the time moment τ can be borrowed, for example,
from [50].

Note that the state equation (1) contains as a special case
the state equation of the isotropic linearly elastic material.
This case is obtained by taking ω(t, τ) ≡ 0, G(t) = const.

For further convenience we will use the following short-
hand notation of the result of the operator Hτ0(r) acting to
an arbitrary function g(r, t) of point of accreted solid r and
time t:

g◦(r, t) = Hτ0(r) g(r, t). (6)

We will call the tensor T◦ standing on the left side of the
constitutive relation (1) the operator stress tensor.

IV. STATEMENT OF THE BOUNDARY-VALUE PROBLEM
FOR THE PROCESS OF PIECEWISE-CONTINUOUS

MATERIAL DEPOSITION

Let the continuous deposition of the material on the inner
surface of the mold rotating around its axis begins at some
time moment. This process may be interrupted at arbitrary
times moments by arbitrary pauses during which the inflow
of additional material to the material layer having already
been formed on the mold is temporarily stopped. Such a
piecewise continuous process of accreting the formed layer
finally comes to the end after a certain number of stages of
continuous deposition of additional material on it. After that
the finally formed layer can still continue to rotate coupled
with the mold rigidly bound with it.

Let us associate with the rotating around its axis ax-
isymmetric cylindrical rigid mold a polar cylindrical coor-
dinate system (ρ, ϕ, z) with the right orthonormal reference
{eρ, eϕ, ez}, here: ez = const is the direction along the axis
of rotation, z is the longitudinal coordinate measured in this
direction; eρ = eρ(ϕ) and eϕ = eϕ(ϕ) are the radial and
circumferential directions in the cross-section of a rotating
cylindrical solid formed on the mold, respectively, ρ and ϕ
are the polar radius and the polar angle in the cross-section.
In this movable noninertial base for the considered accreted
solid the standard equilibrium equation is valid

∇ · T + f = 0, (7)

in which the centrifugal forces of inertia

f(r, t) = eρ(ϕ) ρ c(t), c(t) = µΩ2(t), (8)

play a part of body forces, where µ is the mass density of
the material used.

As stated in Section I, for an accreted solid it is not
possible to introduce deformation measures, traditional for
continuous mechanics, due to the absence in such a solid in
whole a stress-free configuration that should be taken as a
non-deformed one. Meanwhile, it is obvious that in the whole
considered accreted solid having been formed by the time
moment t the sufficiently smooth velocity vector field v(r, t)
of the deformation motion of its particles is determined. In
the process of deposition simulated in this paper, we are
talking about a cylindrical solid a(t) < ρ < a0 and the
velocities of motion of its particles in the introduced rotating
coordinate system. Due to the axial and mirror symmetry of
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the process in this coordinate system in the considered case
of plane strain the velocity field will be:

v(r, t) = eρ(ϕ) v(ρ, t). (9)

For the formulation of mechanical problem in velocities
it is necessary to enter into consideration the strain velocity
tensor D = (∇vT +∇v)

/
2. Because of (9) we get

D(r, t) = eρ(ϕ)eρ(ϕ)Dρ(ρ, t) +

+ eϕ(ϕ)eϕ(ϕ)Dϕ(ρ, t),
(10)

Dρ(ρ, t) = v′(ρ, t), Dϕ(ρ, t) = v(ρ, t)
/
ρ. (11)

We can formulate an analogue of the defining relation (1)
for the velocity characteristics of the deformation process, i.e.
tensor D and the operator stress velocity tensor S = ∂T◦/∂t
[3]:

S(r, t) = 2D(r, t) + (κ − 1) 1 trD(r, t). (12)

From (12) and the representation (10) we get

S(r, t) = eρ(ϕ)eρ(ϕ)Sρ(ρ, t) +

+ eϕ(ϕ)eϕ(ϕ)Sϕ(ρ, t) +

+ ezez ν
[
Sρ(ρ, t) + Sϕ(ρ, t)

]
,

(13)

Sρ
ϕ
(ρ, t) = (κ + 1)Dρ

ϕ
(ρ, t) + (κ − 1)Dϕ

ρ
(ρ, t). (14)

The equation for the tensor S can be obtained by acting
on the equilibrium equation (7) with the linear operator
Hτ0(r) and by differentiating the result by time t. Here it is
important to note the fact that in general case the integral
operator Hτ0(r) and the divergence operator ∇ · are not
permutable as the lower integration limit of the operator
Hτ0(r) depends on the solid point r. However it can be
shown [3] that for the processes considered in this paper
these operators commute with respect to the stress tensor T,
that is (∇ · T)

◦
= ∇ · T◦ in the entire region occupied at

the given moment by the accreted solid, which means that an
analogue of the equilibrium equation (7) for operator stresses
can be written:

∇ · T◦ + f◦ = 0, (15)

and therefore, for operator stresses velocities:

∇ · S + ∂ f◦/∂t = 0. (16)

For body forces (8) by using integration by parts and the rule
of parameter differentiation of an integral we can compute

f◦(r, t) = eρ(ϕ) ρc◦(ρ, t), (17)
∂ f◦(r, t)/∂t = eρ(ϕ)χ(ρ, t), (18)

c◦(ρ, t) = c
(
τ0(ρ)

)
∆
(
t, τ0(ρ)

)
+

+

∫ t

τ0(ρ)

ċ(τ)∆(t, τ)dτ,
(19)

χ(ρ, t) = ρ ∂c◦(ρ, t)
/
∂t =

= ρ

[
ċ(t)

G(t)
+ c
(
τ0(ρ)

) ∂ω(t, τ0(ρ)
)

∂t
+

+

∫ t

τ0(ρ)

ċ(τ)
∂ω(t, τ)

∂t
dτ

]
.

(20)

The functions c◦(ρ, t) and χ(ρ, t) are known and determined
by the concrete programs of deposition and rotation of the

formed layer as well as the mass density and viscoelastic
properties of the material used, implemented in the simulated
additive process. In the special case of rotation of the mold
with a constant angular velocity Ω = const we have

c◦(ρ, t) = µΩ2∆
(
t, τ0(ρ)

)
,

χ(ρ, t) = µΩ2ρ ∂ω
(
t, τ0(ρ)

)/
∂t.

Taking into account (13) and (18) the component notion of
the equation (16) has the form

S′ρ(ρ, t) +
[
Sρ(ρ, t)− Sϕ(ρ, t)

]/
ρ+ χ(ρ, t) = 0. (21)

As one of the edge conditions that must be set for
this equation is the condition of immobility of the outer
boundary of the layer being formed in the considered rotating
coordinate system:

v(a0, t) = 0. (22)

In view of the transition in the process of mathematical
formulation of the problem from the operator stresses T◦

to their time derivatives S for the closure of the statement
it is required to set some initial conditions on the operator
stresses. This can be done taking into account that the
simulated process there are absent initial stress in each newly
attached elementary material layer (see Section II), that is

T
(
r, τ0(r)

)
= 0. (23)

Since at the moment t = τ0(r) of stresses appear-
ing at the point r of the growing solid the operator
stresses T◦

(
r, τ0(r)

)
on the strength of (6) and (2) co-

incide with the true stresses related to the shear modulus
T
(
r, τ0(r)

)/
G
(
τ0(r)

)
then the homogeneous initial condi-

tion (23) for the true stresses is equivalent to the homoge-
neous initial condition for operator stresses

T◦
(
r, τ0(r)

)
= 0. (24)

A remarkable fact is that the condition (24) implies the
following simple condition on the radial component of the
operator stress velocity tensor S on the internal moving due
to the inflow of additional material boundary ρ = a(t) of the
growing layer at any time interval of its continuous growth:

Sρ
(
a(t), t

)
= −q(t),

q(t) = −c(t)a(t)ȧ(t)
/
G(t) > 0.

(25)

Indeed, given the initial condition (24) we have

T◦(r, t) =

∫ t

τ0(r)

S(r, τ)dτ. (26)

Following [16] we substitute this representation into the
analogue of the equilibrium equation (15), calculating before-
hand the divergence of the tensor (26) according to the rule of
parameter differentiation of the integral by using the equation
(16) for the tensor S, the identity (3) and the representations
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(5) and (13):

∇ · T◦(r, t) = ∇ ·
∫ t

τ0(r)

S(r, τ)dτ =

=

∫ t

τ0(r)

∇ · S(r, τ)dτ −∇τ0(r) · S
(
r, τ0(r)

)
=

= −
∫ t

τ0(ρ)

∂ f◦(r, τ)

∂τ
dτ − τ ′0(ρ) eρ(ϕ) · S

(
r, τ0(ρ)

)
=

= f◦
(
r, τ0(ρ)

)
− f◦(r, t)− eρ(ϕ)

Sρ
(
ρ, τ0(ρ)

)
ȧ
(
τ0(ρ)

) ,

(15) ⇐⇒ eρ(ϕ)Sρ
(
ρ, τ0(ρ)

)
= f◦

(
r, τ0(ρ)

)
ȧ
(
τ0(ρ)

)
.

Taking into account (4), (17), and the representation (19) we
come from here to the condition (25).

At those time intervals t when the inflow of additional
material to the additively formed rotating layer is temporarily
or finally terminated, at each point r of its fixed inner
cylindrical surface ρ = a(t) = const the condition of this
surface unloading is set

eρ(ϕ) · T(r, t) = 0 (27)

starting from the moment t = τ0(r) of inclusion of this point
in the solid composition. From the condition (27) it obviously
follows that Sρ

(
a(t), t

)
= 0 in the absence of an inflow of

new material to the formed solid, that is, at any time interval
of constancy of the function a(t). So, since ȧ(t) ≡ 0 on
these intervals, the boundary condition (25) derived above for
the time intervals of continuous growth of the solid formally
remains valid even outside of these intervals when the growth
of the solid temporarily or permanently terminated.

Thus, for the entire process of piecewise continuous ac-
creting the viscoelastic solid under consideration, including
arbitrary prolonged period of time after the end of additive
formation of the solid, the boundary value problem (21), (20),
(14), (11), (22), (25) will be fair.

V. SOLUTION OF THE STATED PROBLEM AND
CONSTRUCTING THE TRUE STRESSES FIELDS

EVOLUTION

The exact analytical solution of the boundary value prob-
lem formulated in Section IV has the form:

v(ρ, t) =
ρ

2

[
−Λ

(−)
1 (ρ, t) +

+
λ
(+)
1/κ
(
a(t), ρ

)
λ
(+)
1/κ
(
a(t), a0

) Λ
(−)
1 (a0, t)−

λ
(−)
1 (a0, ρ)

λ
(+)
κ
(
a0, a(t)

) q(t)],
Sρ
ϕ
(ρ, t) = −Λ(±)

κ (ρ, t) +

+
λ
(∓)
1

(
a(t), ρ

)
λ
(+)
1/κ
(
a(t), a0

) Λ
(−)
1 (a0, t)−

− λ
(±)
κ (a0, ρ)

λ
(+)
κ
(
a0, a(t)

) q(t),
(28)

λ(±)α (ξ, η) = α± ξ2
/
η2,

Λ(±)
α (ρ, t) =

1

κ + 1

∫ ρ

a(t)

χ(ξ, t)λ(±)α (ξ, ρ)dξ.

The formulas (13) and (28) (where κ is the positive
material constant (see Section III), a(t) is the given law
of reducing the inner radius of the formed layer by adding
a new material to it, a0 is the constant radius of its outer
surface bound with the rotating rigid mold (see Section II),
and the functions q(t) and χ(ρ, t) are defined by (25) and
(20), respectively) give us the evolution of the operator stress
velocity tensor S(r, t) at each point r of considered piecewise
continuously accreted aging viscoelastic solid on a time beam
t > τ0(r), covering the entire history of deformation of the
neighborhood of a given point in the composition of this
solid. Therefore the evolution of the tensor of the operator
stresses T◦(r, t) at any point of the solid r at t > τ0(r)
can be restored using the integration procedure taking into
account the initial condition (24):

T◦(r, t) =

∫ t

τ0(r)

S(r, τ)dτ.

As soon as at the point r of the considered solid we know
the entire evolution of the tensor T◦(r, t), that is the law of
changing this tensor since the moment t = τ0(r) of appearing
stresses at the given point, we according to (6), (2) can find
the complete evolution of the true stresses tensor T(r, t) at
the point r by means of the integral transform H−1τ0(r) inverse
to Hτ0(r):

T(r, t)

G(t)
= T◦(r, t) +

∫ t

τ0(r)

T◦(r, τ)R(t, τ)dτ, (29)

where R(t, τ), called the relaxation kernel, is the resolvent
of creep kernel K(t, τ).

When using a specific analytic approximation of the creep
kernel K(t, τ) describing the experimental creep data of the
material used the analytic expression for the corresponding
relaxation kernel R(t, τ) may not be known in a closed form
or may be too cumbersome. In this case to construct the
evolution of the true stress fields it is advisable, instead of
using the analytical formula (29), to refer to the procedure
of numerical solution of the Volterra integral equation of the
2nd kind (see (6), (2))

T(r, t)

G(t)
−
∫ t

τ0(r)

T(r, τ)

G(τ)
K(t, τ)dτ = T◦(r, t)

with the parameter r relative to the desired time function
T
/
G with the known right part T◦. As a quite simple and

efficient numerical method of such equation solution it is
possible to suggest a method of quadratures [51].
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