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Abstract—Equivariant geometry involves a group
action on a manifold. This is the starting point to
consider a super-geometry showing even and odd
variables (bosons, fermions) The localization meth-
ods that provide source in the symplectic geome-
try (Duistermaat-Heckman formula), allow in certain
cases to compute path integrals in an explicit way
by using the concept of localization. Applications are
important in topological field theory: They lead to the
definition of new symplectics invariants.
Keywords: Localization, Duistermaat-Heckman for-
mula, Path integral.

I. Introduction

IN this article, we discuss a fundamental problem,
both in mathematics and physics. This is the problem

of localization. Localization is a fundamental idea that
makes a problem that is not countable a problem that it
is. for example consider a map from a finite dimensional
n vector space E to a finite dimensional m vector space
F , the problem of finding the image of any vector of
E by an application f in F is an uncountable problem
because there is an infinite number of vectors in E thus
an infinite number of possible images. Now if we located
on the set of linear applications, to find the image of a
vector of E, just know the image of n vectors: namely
a basis of E, to know the image of any vector from the
starting space. In other words, knowing a table of size
nxm: the matrix of the linear map is enough to solve
the problem. We will begin by giving some examples of
the problem of localization in mathematics, mainly in
symplectic geometry, and quantum field theory, before
then we recall the approach of the Feynman path integral
[1]. We then show how the introduction of fermionic
variables can help to locate a problem and compute
a path integral by using a localization principle. The
main idea of the localization of the integrals comes from
the oscillatory integrals, mainly the laplace method on
the localization around the critical points of a Morse
function.

II. Motivations, simple examples: Quantization
problem of Feynman

The idea of localization has a lot of applications in
quantum field theory (QFT) . Feynmann has shown that
the quantization of a classical field theory led to the
computation of a path integral. This integral consists of
calculating all the possible trajectories from a point A to
a point B, then integrate on this space.
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A. Toy model
: Let’s start with a very simple problem: This prob-

lem is resolvable by a high school student: Consider a
mouse moving over a grid consisting of n rows and m
columns. His only possible actions are to advance or step
up without ever going back or down. it is well known
that counting all the possible trajectories consists of
counting the number of anagrams consisting of n
times the letter A and m times the letter M. in this case
the sum of all possible trajectories is a finite number is
the combinations of n among n+m: NT =

(
n+m
n

)

B. Path integral
: In the case of path integral,the set of trajectory

is in general infinite. Localization problems then make
perfect sense. Recall that the path integral introduced
by Feynman is given by:

K(x(ti), x(tf )) =
∫
x(ti)→x(tf )

Dx(t)exp( iS(x(t))
h̄

) (1)

In this formula, the measure D is poorly defined: relates
to an infinite number of paths from an initial configu-
ration to a final configuration. The fact of considering
forced passages by certain points leads to the notion
of correlation function . Physicists have postulated that
knowledge of all correlation functions makes it possible
to understand a quantum field theory. In the case of our
toy model, it is very easy to determine all the correlation
functions passing through a point, two or more points of
the grid).

III. Equivariant cohomology, and localization
Berline and Vergne [2] define equivariant cohomology.

This leads to a very useful localization formula: The
equivariant geometry localization formula. In the context
of symplectic geometry, this formula becomes the formula
of Duistermaat-Heckman. Witten was able to give a
concrete application of this formula in the framework
of supersymmetric field theory: We can then give a
dictionary that allows us to translate the vocabulary of
equivariant geometry into that of supersymmetric field
theories.

A. Equivariant cohomology
Briefly, equivariant geometry consists in making a

group G act on a variety. In the same way that the
cohomology of de Rham is defined on M , equivariant
cohomology can be defined on MG, if it is necessary to
define a differential dg in Ω•G we set:

(dgα)(X) := d(α(X))− iXα(X) (2)
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The symbol g denotes the Lie algebra associated with the
G group (assumed to be a Lie group) We can see link
between this differential and the cohomology operator
BRST Q physicists.

B. Localization formula in equivariant geometry
Let G a compact Lie group, with Lie algebra g, acting

on an oriented compact manifold M of even dimension
2n. Let α be an equivariantly closed form M . Let X ∈ g
and assume XM has only isolated 0 then:∫

M

α(X) = (−2π)l
∑

p∈M0(X)

α(X)[0](p)
det

1
2 (Lp)

(3)

where M0(X) is the set of p ∈ M with X(p) = 0 ,
α(X)[0](p) designe f function (0- form) at p ∈M and Lp
is the transformation matrix of the action LXξ evaluated
at p ∈M0(X)

C. Localization formula in symplectic geometry
A particularly interesting case of application of the

above formula is that of symplectic geometry: given
symplectic manifold (M,ω) , hamiltonian function H,
and hamiltonian vector field XH , given G acting in
(M,ω), and the moment map µ : M → g∗, we have The
integral of Duistermaat-Heckman [3] theorem:

Theorem
LetM be a compact symplectic manifold of dimension

n = 2l and G a compact Lie group acting over it. Let
X ∈ g and let XM ∈ X(M) be the hamiltonian vector
field generated by the moment map µ, that holds the
identity iXMΩ = dµ(X) with Ω be a symplectic 2-form
over M . If M0(X) is the finite set of point on which X
vanish, then∫

M

eiµ(X)dβ = il
∑

p∈M0(X)

(eiµ(X))[0](p)

det
1
2 ((Lp)(X))

(4)

where the square root sign is chosen by canonical orien-
tation on TpM , we denote dβ := (e

Ω
2π )[n] = Ωl

(2π)ll!

Application
Let S1S2 an action given by the rotation with respect

to the vertical axis. Let us verify the hypothesis in the
theorem of Duistermaat-Heckman for the action before:

1) (S2, sinφdφ ∧ dθ) is a symplectic manifold with
dim(S2) = 2.

2) S1 is a compact Lie group.
3) The moment map µ is given by the height function,

µ = cosφ.
4) X The vector field on the sphere is X =

∂
∂θ=−y

∂
∂x + x ∂

∂y

5) X The finite set of points where X vanishes, i.e,
the fixed points of the action are N = (0, 0, 1) and
S = (0, 0,−1).

We can apply the theorem of Duistermaat-Heckman!
1) The equivariant symplectic differential form is

Ωeq = µ(X) + ωS2 = tcosφ+ sinφdφ ∧ dθ.

2) The Lie algebra is given by g = R = t. The vector
field that this induces isXM = tX = t(−y ∂

∂x+x ∂
∂y )

3) The transformation matrix A corresponding to the
Lie bracket is given by L(XM ) : X(S2) → X(S2),
ξ 7→ [XM , ξ]: A =

(
0 t
−t 0

)
4) det

1
2 (A) = ±t ,then the sign of the square root

in the formula of Duistermaat-Heckman depends
on the orientation coming from TpS

1: At the
point (0, 0, 1) the sign is negative, and positive at
(0, 0,−1).

5) the Liouville form is dβ := Ωl
(2π)ll! = 1

2π sinφ ∧ dθ
By the theorem of Duistermaat-Heckman we obtain:∫
S2
eitcos(φ)12πsinφdφ ∧ dθ = i(e

itcos(0)

−t
+ eitcos(π)

t
)

multiplying by 2π to both sides of the equality
and expressing the exponential terms as a trigonometric
function, it becomes to:∫

S2
eitcos(φ) 1

2π sinφdφ ∧ dθ = 4πsin(t)
t

(5)

the applications of the concept of localization goes be-
yond the framework of mathematics. We will now apply
this concept to physics and particularly to the topological
fields theories.

IV. Become to physic: path integral,
supersymmetry

A. Classical fields
The concept of field is fundamental in physics. A field

ϕ is a function of a world sheet (source space) into a
target space, M (space physics) with a sufficient number
of dimensions. So given a "package" (Σ,M, ϕ) and a
classical action: S where: Σ is the source space, often a
manifold: for The classical mechanic of the point is the
time axis (world line), for the conformal field theories
like strings theories: a Riemann surface ...
The Lagrangian density is a function on one or more
fields and its first derivatives:

L = L(ϕ1, ϕ2, ..., ∂µϕ1, ∂µϕ2...).

The classical action is the integral of the classical
Lagrangian density on the parameter space
S =

∫
Ldn+1x

Principle of least action: The minimization of the
action (δS = 0, leads to each field noted just ϕ to the
Euler-Lagrange equation gives the equations of motion
of the particle ∂L

∂ϕ − ∂µ( ∂L
∂(∂µϕ) ) = 0

Example of classical fields
The free particle: For a free particle, the field is simply

the parameterized curve that describes the trajectory
of the particle in free space :x(t). In this case, you can
take to Lagrangian density
L = L(x(t), ẋ(t)) = 1

2mẋ
2, Euler Lagrange equation is:

∂L
∂x − ∂t(

∂L
∂(ẋ) ) = −∂t( ∂L

∂(ẋ) ) = 0 solution is the uniform
motion.
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The free string: For the free string, the field is simply
the function that describes the trajectory of the string
in the target space: X(τ, σ). Its Lagrangian density is
contained in the Nambu-Goto action:
S = −T

∫ τ1
τ1
dτ
∫ l

0 dσ
√
Ẋ2X ′2 − (ẊX ′)2 with

Ẋ2 = ẊµẊνηµν , ẊX
′ = ẊµX ′νηµν Euler Lagrange

equation is then: ∂τ ∂L
∂Ẋµ

+ ∂σ
∂L
∂X′µ = 0 and the solution

is the equation of vibrating strings.

B. Noether Symmetries
Symmetry of the action: the role of symmetry in

physics is essential. We want, for example, such action
invariant through a transformation like translation, ro-
tation ...: if ϕ→ ϕ+ δϕ alors S → S + δS
Noether’s theorem: through any symmetry, the action
is the same: δS = 0
Example translation: x → x + ε is taken up the free

particle, ε small, independent of time,
δS =

∫
(mẋε̇)dt = εmẋ|t1t0 −

∫
(mẍ)εdt

and as ẍ = 0 we get: The symmetry by translation is
equivalent to the conservation of momentum p = mẋ

Notation: In physics, symmetry x → x + ε is denoted
δx = ε.

C. Quantum fields, QFT
Path integral:

Uncertainty on the position or momentum in quantum
mechanic led to replace the classical solution (least
action) by the partition function or the set of all possible
solutions: It is the path integral Z =

∫
Σ→M e−S(ϕ)Dϕ:

Correlation Functions:

Similarly, one can calculate correlation functions,
or functions with n points.
< ϕ1(x1), ..., ϕn(xn) > =∫

Σ→M ϕ1(x1)...ϕn(xn)e−S(ϕ)Dϕ

We can apply this machinery to the supersymmetric
sigma model and define a new quantum field theory:
the topological field theory TFT .The program devel-
oped by Witten is to calculate the correlation functions,
by replacing each value by a cohomology class called
BRST cohomology. That requires, introducing fermionic
variables invariant under this generalized Noether
symmetries. These tools are supersymmetry.

D. Supersymmetry
We can define a supersymmetric field theory Σ → M

by adding fermionic variables, that is to say sections of
some vector bundle E on Σ. A good image of a fermionic
field is ψ(x) = Σfi(x)dxi , a 1-form equipped with a
wedge-product . We have the theorem:
Localization theorem: the path integral is localized
around field configurations where fermionic variables
stay invariant under supersymmetric transformations.
Supersymmetric transformation is infinitesimal
transformation of the action, which transforms bosons
into fermions and vice versa.

Calculus supersymmetric
We can define a supersymmetric Calculus:

Algebraic Computation: Let ψ1, ψ2 two fermions
ψ1ψ2 = −ψ2ψ1 we deduce ψψ = 0 Let a bosonic
variable Xboson,ψX = Xψ
Calculus:

∫
(a + bψ)dψ = b,

∫
ψdψ = 1,∫

ψ1ψ2...ψn)dψ1dψ2...dψn = 1,
∫
dψ = 0

Change of variables : We have:
∫
ψ̃dψ̃ =

∫
ψdψ = 1

V. Localization in Physic
A. Example 1 zero-dimensional supersymmetry

A "Toy" model is to make space for starting Σ = {P}
and target M = R the real line. In this context, a field
is simply the variable x, the path integral is just Z =∫
M
e−S(x)dx

A supersymmetric action is given by:
S(x, ψ1, ψ2) = h′(x)2

2 − h”(x)ψ1ψ2.
hence the partition function:
Z =

∫
e
−h′(x)2

2 +h”(x)ψ1,ψ2dxdψ1dψ2
by developing in power series fermionic part, we get:
Z =

∫
e
−h′(x)2

2 (1 + h”(x)ψ1ψ2)dxdψ1dψ2, but
∫
dψ = 0,

hence the first integral is zero, then:
Z =

∫
M
h”(x)e

−h′(x)2
2 dx

∫
ψ1dψ1

∫
ψ2dψ2,

and as
∫
ψdψ = 1 (fermionic integration) we get:

Z =
∫
M
h”(x)e

−h′(x)2
2 dx

Supersymmetric transformations
For the example above, we can define supersymmetric

transformations that respect this action.
δx = ε1ψ1 + ε2ψ2
δψ1 = h′(x)ε2
δψ2 = −h′(x)ε1

We show that δS = 0, the fermionic variables
are invariant for supersymmetric transformation iff
h′(x) = 0. If h′(x) 6= 0, the change of variables
(x, ψ1, ψ2)→ (x− ψ1ψ2

h′(x) , ψ1, ψ2) shows that the partition
function is zero outside the critical points. By expanding
to second order near the critical point xc
(h(x) = h(xc) + h”(xc)

2 (x− xc)2):
Z =

∫
M
h”(x)e

−h′(x)2
2 dx

Z =
∑
h′(xc)=0 h”(xc)

∫
M
exp(− (h”(xc)(x−xc))2

2 )dx,
with change of variables y = |h”(xc)|(x− xc):
Z =

∑
h′(xc)=0

√
π h”(xc)
|h”(xc)|

Abstract

Supersymmetry: We just define an action for a su-
persymmetric field theory of dimension 0 by adding
fermions, supersymmetry variables.
Invariance: This action is invariant under super-
symmetric transformations.
Location: The associated path integral is localized
on the fields for which the fermions are invariant
under supersymmetry.
Towards a generalization: This suggests defining
an operator that vanishes on the fermionic fields. A
fermionic field is associated to a differential form,
there is an idea of cohomology below.
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B. Exemple two: Supersymmetric quantum mechanic
(one dimensional TQFT

1) Now we study a supersymmetric field theory
in one dimension. This is the model of
supersymmetric quantum mechanics which
has allowed Witten [4] to give a new proof of
the index theorem[5], [6]. We considÃ¨re the
lagrangian:
L = ẋ2

2 −
h′(x)2

2 + i(ψ̄ψ̇ − ˙̄ψψ)− h”(x)ψ̄ψ .
ψ = ψ1 + iψ2
ψ̄ = ψ1 − iψ2

2) let π = ∂L
∂ψ̇

= iψ̄, p = ∂L
∂ẋ = ẋ the conjugate

moments
3) Let supersymmetric relations

δεx = εψ̄ − ε̄ψ
δεψ = ε(iẋ+ h′(x)) ε = ε1 + iε2
δεψ̄ = ε(iẋ+ h′(x))

4) <4-> We can show :
δεS =

∫
δLdt =

∫
d
dtLdt = 0

Localization of supersymmetric quantum mechanic
1) The two operators of supersymmetry, are associ-

ated supercharge Q, Q̄ with Q2 = Q̄2 = 0 and we
deduce an elliptic complex:
HF

Q,Q̄−→ HB
Q,Q̄−→ HF

Q,Q̄−→ ....
2) In hamiltonian formalism, {Q, Q̄} = 2H
3) SQM compactified on S1 give:

Tr(−1)F e−βH = dimHB(0) − dimHF(0) with F
fermion number.

4) The supertrace giving the index, expressed by :
Tr(−1)F e−βH =

∫
periodicBd

DXDψDψe−S

5) ∂
∂βTr(−1)F e−βH =
−
∫
periodicBd

DXDψDψHe−S=0

Limite: From 1-dim TQFT to 0-dim TQFT
The fundamental result is that only time-

independent contribute: that reduce calculation
to 0-dim TFT:
Z = Tr(−1)F e−βH =

∑
h′(xc)=0

√
π h”(xc)
|h”(xc)|

VI. Example III: A model of Witten "A side of
the mirror"

L, the supersymmetric lagrangian of a super-string is
given by:
L = 2t

∫
Σ( 1

2gIJ∂zφ
I∂zφ

J)d2z

+ 2t
∫

Σ(iψizDzχ
igii + iψizDzχ

igii −Riijjψizψizχjχj)d2z
The beginning of integral is the bosonic part of the
action, the last , the fermionic part: fields are sections
of bundles on Σ:

Fermionic part
•χ(z) a section C∞ de f∗TX ⊗ C
•ψz(z) a section C∞ de (T 10Σ)∗ ⊗ f∗T 01X
•ψz, a section C∞ de (T 01Σ)∗ ⊗ T 10X
Supersymmetric transformation preserving action
δxI = ηχI δχI = 0
δψiz = η∂zφi δψiz = η∂zφi

• If δψiz = δψiz = 0, we recognize the conditions
of Cauchy-Riemann!: The instantons of this model
are curves "minimum energy" according to Gromov:
holomorphic curves [7].

A. BRST Cohomology
At previous fermionic transformations one associates

an operator Q (for charge), the terminology come from
electromagnetism: charge is the integration of a "cur-
rent". Mathematically, the operator Q has the prop-
erties of ordinary differential form (they will have an
isomorphism between BRST cohomology with that of
De Rham:
we give now the main properties of this operator
Properties of the operator
• Q(xI) = χI Q(χI) = 0
• Q is a linear operator.
• Q(fg) = Q(f)g + fQ(g): Q is a derivation.
BRST cohomology
• We note that Q2 = 0
• Hp

BRST = KerQ:Hp→Hp+1
ImQ:Hp−1→Hp is the p- th cohomology

group BRST
endsubsection

B. Correlation functions BRST
In correlation functions fields are replaced by their

cohomology classes [4], so they are defined modulo an
exact term by:

Correlation Functions
Correlation functions of topological field theory will be
given by:
< [Φ1(x1)], ..., [Φn(xn)] >=∫

Σ→M Φ1(x1)...Φn(xn)e−SDxDgDχDψ
they do not depend on the selected points on the
Riemann surface.

Correlations functions of side A of the mirror
• Let ω1, ....ωn forms on M ,
< [ω1], ..., [ωn] >=

∫
Σ→M ω1...ωne

−(SB(f)+SF (f))DxDgDχDψ
• For the theorem location: the path intgral
is localized around holomorphic curves f̃ :
< [ω1], ..., [ωn] >=

∫
Σ→M ω1...ωne

−(SB(f̃))DxDgDχDψ
• e−(SB(f̃)) = e

−
∫

Σ
f̃∗ω is a topological invariant gives

the "degree" of application f̃ .

C. Relationship with enumerative geometry
The path integral above can be rewritten:

< [ω1], ..., [ωn] >=∑
β∈H2(M,Z) e

−
∫

Σ
f̃∗ω ∫

f̃(Σ)∈β ω1...ωnDxDgDχDψ
Here β ∈ H2(X,Z) is a cohomology class, "specifically"
the degree of f̃ .

Counting curves
we can hope the integral:∫
f(Σ)∈β ω1...ωnDxDgDχDψ
taken on a moduli space M to define properly, can
provide an integer. This will be the case if the dimension
of this moduli space is related to the number of fields [ωi]
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Gromov Witten invariants These integrals, which give
integers in good cases are Gromov Witten invariants [8]
[9] [10].Their knowledge provides a means of calculating
correlation functions from a topological viewpoint and
hope to understand better the physics!

VII. Conclusion
Localization methods are crucial in mathematical

physics. As we have seen, it allow t possible to make
certain quantities calculable. It has brought back to
the taste of the day some of the algebraic geometry
methods as enumerative geometry. Its application to
mathematical physics leads to the definition of moduli
spaces and, in the best case, to instantons counting.
This makes it possible to calculate certain correlation
functions, resulting from a path integral. These methods
have allowed a better understanding of quantum field
theories in physics, they now connect topology, geometry
and physic, to the concept of supersymmetry correctly
defined from a mathematical point of view.
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