
Teaching Secure Program Design

Nadia Jones, Qingrui Yu, Karen Schell and Huiming Yu

Abstract-Developing secure software applications is becoming

very critical because many different types of attacks are caused

by software vulnerabilities. In order to effectively teach secure

software engineering, we have developed a course module titled

“Introduction to Secure Program Design”. This paper presents

the content of this module and reports our teaching experiences.

This module was successfully taught in the COMP 280 Data

Structures class during the Fall 2018 semester in the Department

of Computer Science at North Carolina A&T State University.

Our experience exhibited that teaching this module helped

students not only gain knowledge and understanding about the

impacts of input flaws and buffer overflows, but also they gained

significant knowledge about the practice of designing secure

programs. Students’ surveyed responses and feedback reflected

that this module was very valuable towards their educational

experience. This content could be taught in second year

sophomore classes of software engineering, computer science and

information technology.

Index Terms-secure program design, input validation flaws,

buffer overflow

I. INTRODUCTION

omputer programming design is defined as the

architecture and documentation of procedures used in

developing software. In the Software Development Life

Cycle, the design phase is the segment of development where

the resources needed for hardware and software are

recognized and the logical methods that will be used are

determined. Software should always be designed from the

very beginning, with security in mind. An ideal application

will always be designed from the top down and contain secure

practices throughout the entire development. A good example

of a secure design practice includes that everyone is

thoroughly familiar with the design, its ins and outs, and

captures other possible threats identified by others. When

designing software, developers should keep in mind the idea

of “least privilege”, meaning that every access point should

only allow the minimum access needed to accomplish its

necessary functions [9].

Manuscript received March 1, 2019; revised April 1, 2019. This work was

partially supported by National Science Foundation under the award number

1662469.

H. Yu is with the Department of Computer Science, North Carolina A&T

State University, Greensboro, NC 27411 USA (e-mail: cshmyu@ncat.edu).

N. Jones was a MS student of the Department of Computer Science, North

Carolina A&T State University, Greensboro, NC 27411.

Q. Yu was a MS student of the Department of Computer Science, North

Carolina A&T State University, Greensboro, NC 27411 USA (e-mail:

yuqinrui@outlook.com).

K. Schell is with the Department of Computer Science, North Carolina

A&T State University, Greensboro, NC 27411 USA (e-mail:

klshnell@ncat.edu).

There are several reasons why programs should be designed

with security in mind, especially when major companies

provide services to key customers. Companies have

information assets that they need to keep protected.

Obviously, it is in the best interest of companies to keep these

assets safe from threats in order to avoid potential financial

loss, trade secrets from being stolen, possible loss of

customers, and gaining an overall negative reputation. In order

to decrease the harm done to a company, they should put forth

special effort to help their developers protect and secure these

assets.

The purpose of a design program is to solve given problems.

However, designing without keeping security in mind will

lead to severe problems and may result in unexpected

consequences. Since malicious software can attack unsecure

programs and get information without permission, computer

science students should always keep security in mind when

designing and implementing software to anticipate all possible

threats and prevent attacks [1, 2].

Education is a very powerful tool in promoting secure

program design. By understanding software vulnerabilities and

possible threats, developers can save valuable time and create

secure applications while users can be better assured that their

information is safe. Most Computer Science, Information

Management System, and Software Engineering curriculums

do not include secure software engineering content. The

students are not adequately prepared to handle this

expectation. Based on this demand, the course module entitled

“Introduction to Secure Program Design” has been developed

to help students learn secure software engineering related

practices and understand issues. The module covers computer

security concepts; input validation flaws and buffer overflows;

how using a secure program design assists with preventing

input flaws and buffer overflow; and a laboratory exercise.

In this paper, we present a new course module entitled

“Introduction to Secure Program Design”, and discuss the

teaching experience of implementing the program. In the

second section, the teaching objective is discussed. The Data

Structures course is described in section 3. The details of the

Introduction to Secure Program Design module is presented in

section 4. In section 5, the results of the teaching experiment

are discussed. The conclusion is presented in section 6.

II. TEACHING OBJECTIVE

Designing and implementing secure software applications is

becoming very critical in today’s society. It results many new

requirements for software developers. In order to prepare

future students for the expectations of the Cybersecurity

workforce and for them to effectively learn about secure

software engineering, we have developed an “Introduction to

Secure Program Design” module for the Introduction to

Design and Data Structure computer science classes. The

C

Proceedings of the World Congress on Engineering 2019
WCE 2019, July 3-5, 2019, London, U.K.

ISBN: 978-988-14048-6-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2019

mailto:yuqinrui@outlook.com

objective of this module is to enhance software engineering,

computer science and information management system

curriculums by providing knowledge of input validation flaws,

buffer overflows and technology to prevent them. Instructors

can teach this module in computer science, information

technology, and software engineering sophomore classes.

Upon completion of this module, students should be able to

1) understand why secure program design is very important, 2)

gain significant knowledge of secure program design, input

validation flaws, buffer overflow, how to prevent input flaws

and buffer overflow vulnerabilities, and 3) apply the acquired

knowledge to real world applications.

III. COMP 280 DATA STRUCTURES

Comp 280 Data Structures is a required course for

undergraduate students who’s major is computer science. This

course takes students that have completed, as a prerequisite, a

foundational programming class to the next level of learning

data structures. This course makes use of abstractions

(algorithms, data types) and programming structures (pointers,

dynamic memory, and linked data structures). The course

examines essential data structures (stacks, queues, trees,

linked lists, and graphs). It analyzes and implements

techniques such as hashing, sorting, searching, and priority

queues to solve general problems. The emphasis of the course

is on building computer programs that implement essential

data structures. The students journey through the thought

process of programming efficiency and effectiveness in order

to handle problems like the speed of data retrieval, storage and

management. Further, they gain experience with performing

the presentation and discussion of their design logic; and

handle questions and feedback from their peers. In order to

enhance a student’s cybersecurity knowledge, we taught the

Introduction to Secure Program Design module in COMP 280

Data Structure class.

IV. COURSE MODULE: INTRODUCTION TO

SECURE PROGRAM DESIGN

The Introduction to Secure Program Design module consists

of five parts that include Introduction, Secure Program Design

Considerations, Insecure Programs, Safe Program Design and

a Laboratory Exercise.

A. Introduction

In the introduction section, we briefly describe the importance

of secure software engineering, secure program design

considerations, ensuring program best practices, and the

impact of insecure programs. Several examples are presented

to demonstrate that insecure programs can introduce

vulnerabilities and increase the possibility of resulting in an

attack.

 B. Secure Program Design Consideration

Top-level design refers to the steps to organize and develop an

application and to identify specific components that ensures

that the application perform according to their guidelines or

requirements. In most cases, the design phase is based on the

requirements of the project and should not only implement

these requirements but also ensure that security consideration

included during this phase [8]. Developers should set security

goals and ensure the priority of these goals throughout the

entire design of a program. The earlier that security is taken

into consideration in the development process, the fewer errors

that may be exposed later. Security measures are often ignored

in the design phase and often leads to problems. Typically a

designer may assume that many security flaws occur in the

implementation and testing phases of software, but often these

results actually occur mostly in the design phase. Some areas

of a program where users receive direct exposure (such as user

authentication) need to be designed before the implementation

phase of the development cycle. During implementation,

developers are only concerned with implementing code based

on the design requirements and not security requirements. This

is why it is important for software to be designed with security

considerations. The design phase should outline how to

implement the functionality of features, while ensuring that

these features are secure. Secure features have a

“functionality that is well engineered with respect to security,

such as rigorously validating data before processing it” [10].

It is very important to consider security issues early in

development, as opposed to the end, where anyone can make

adjustments to software and possibly harm it. Once a user

becomes more advanced in developing software, he or she

should implement the abstraction and decomposition

principles. Abstraction reduces complexities within a system

by removing extra details and isolating important elements to

easily manage the design [10]. Decomposition refers to the

process of breaking down and describing a problem or

generalization that make up an entire problem [10].

C. Insecure Programs

Developers failing to consider security when designing a

program is a continuous problem for programs and

applications. Security is not seen as an important concept until

the final phases of the Software Development Life Cycle

(SDLC). When designing, developers are not always aware of

the possible vulnerabilities and can be oblivious to what they

even look like. Some issues that arise with the lack of secure

program design include poor use of cryptography, buffer

overflows, flawed input validation, and overall weak structural

security. In the following sections, buffer overflows and

flawed input validation will be discussed, including how the

vulnerabilities occur, their impact, and possible solutions.

Input Validation Flaws

Input validation is defined as the validation of any data or

information before inputting it into a program or application

[5]. Validating input is extremely important for the safety of

applications and programs. One of the issues with input

validation is that many times an application does not verify the

input leading to input errors which provide opportunities for

attacks. Thus, input validation flaws can be described as

incorrect or inappropriate validation of data from a client or

environment.

First, we introduce to the students what is an input

validation and what is the impact of input validation flaws. We

use an example to show the results of an input validation flaw.

We use the Java program shown in figure 1 to demonstrate

this concept [x].

A simple validation flaw can easily lead to other serious

vulnerabilities such as interpreter injection, Unicode attacks,

file system attacks, and buffer overflows [6]. Figure 1 is a

Proceedings of the World Congress on Engineering 2019
WCE 2019, July 3-5, 2019, London, U.K.

ISBN: 978-988-14048-6-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2019

simple program that has room for several input errors. A user

is prompted to enter a positive integer. The user should check

for two input conditions - the input is an integer and that the

integer is greater than 0.

Buffer Overflow

A buffer is a block of memory in a program used to

temporarily store data [4]. A buffer serves multiple purposes

such as holding data while input or output information is being

transferred and moving data between processes on a computer

[4]. An easy way to think of a buffer is a way that a program

remembers certain information [1].

public class FlawedInput {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.println("Enter a positive integer value");

int x = input.nextInt();

System.out.println("You have entered an acceptable

positive integer value");

}

}

Fig. 1. Input Validation Flaw Example

In this example, if a user enters a value such as “seven”, the

errors shown in Figure 2 will be displayed. The java code

catches this error as an Input Mismatch Exception because the

user provided characters, rather than an integer. Fortunately,

java is a language that automatically throws exceptions, but

users should not rely on this, because not all programming

languages have this benefit. If a user enters an integer value,

such as -7, the program will run successfully and display

“You have entered an acceptable positive integer value”,

although the value that the user entered was not a positive one.

If user inputs are not properly validated and an attacker gets

into a system, they have the ability to harm the program

application.

Exception in thread "main" java.util.InputMismatchException

at java.util.Scanner.throwFor(Scanner.java:840)

at java.util.Scanner.next(Scanner.java:1461)

at java.util.Scanner.nextInt(Scanner.java:2091)

at java.util.Scanner.nextInt(Scanner.java:2050)

at flawedinput.FlawedInput.main(FlawedInput.java:17)

Fig. 2. Input Validation Flaw Output

A buffer overflow is a serious security vulnerability in

software and continues to be common in older, as well as,

newer applications [2]. A buffer overflow occurs when a

program tries to put more data in a buffer than what is

allocated. Buffer overflows, also occur, when a program tries

to write outside of the boundaries of a designated block of

memory [2]. The most common type of buffer overflow is one

in which an attacker attempts to overload a stack so that

malicious code can be implemented [9].

Although buffer overflows are difficult to discover and

exploit, attackers are still able to find these vulnerabilities, and

use them as opportunities to inject malicious data into

programs [2]. Once a buffer overflow occurs, an attacker can

overwrite data that controls program execution and use this to

conduct further attacks on the program [3]. Buffer overflows

can be found in all types of products or applications, and

typically occur within code that is too complex for a

programmer to understand and predict its behavior [2].

There are several examples of buffer overflow attacks. A

typical example would be an attacker sending data to a

program and storing it in an undersized stack buffer. When a

program call is made to this stack, the data, including the

function’s return pointer, will be overwritten and the value of

the return pointer is transferred to malicious code originating

from the attacker’s data [2]. Writing data outside of the given

memory space can cause the corruption of data, infinite loops,

program crashes, and further exploitation of code [2]. Other

impacts of buffer overflow attacks include improper

programming behavior, inability to access memory, programs

producing incorrect results, and easy access to elements that

can allow a user to alter an application’s security [1].

Consider the example in Figure 3, where a simple Array is

defined to hold three integers. The buffer overflow occurs

where i=3, and a user tries to access an address space that is

not available.

public class BuffOver {

public static void main(String Args[]){

int[] simpleArray = new int[3];

for(int i=0;i<4;++i){

simpleArray[i] = i;

}

System.out.println(“You have created a secure array!”);

}

}
Fig. 3. Buffer Overflow Example

A simple Array has been created to hold three integer values

in memory and the program tries to write data outside of the

array’s boundary. This extra data will cause program space to

be overwritten and could likely cause data corruption [7]. Data

corruption can cause a program to crash, or worse, allow an

attacker to execute malicious code, which only leads to other

serious problems [8]. No data will be printed to the screen

because the program will terminate and a user will receive the

error shown in Figure 4. This output is another example of a

java exception. The output demonstrates that a user is trying to

access a memory space that is outside of the bounds declared

for the array.

Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException: 3

at buffovertest.BuffOver.main(BuffOver.java:18)

Fig. 4. Buffer Overflow Error

Proceedings of the World Congress on Engineering 2019
WCE 2019, July 3-5, 2019, London, U.K.

ISBN: 978-988-14048-6-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2019

D. Secure Program Design

It is important emphasize if a software engineer wants to

develop secure software applications then he/she must

implement secure program design from the very beginning of

the development cycle. A secure program design practice

includes several steps that are extremely important when it

comes to ensuring that applications are not vulnerable to

attacks.

Data Validation Strategies

To control user input so that a user cannot deliberately enter

harmful input into a program, a designer needs to ensure that

all inputs are checked and validated properly. Two solutions

for ensuring the proper validation of data involve accepting

known good input and rejecting known bad input. In Figure 1,

the program must ensure that an integer is entered that is

greater than 0. If the input does not meet this requirement, the

program should not run successfully as it did in the previous

example. The modified program is shown in Figure 5. This

program uses a try/catch block to ensure that the appropriate

value is input into the program. If a user takes the necessary

precautions to ensure all inputs are correct, the program

should work similar to the output displayed in Figure 6. For

this example, the user should keep in mind the principles of

accepting known good and rejecting known bad data. In

Figure 6, a user checks various types of input to ensure that

the requested one is accepted. If it is not accepted, the program

notifies the user. The first three attempts show that rather than

entering a positive integer value a user has entered a string, a

negative number, and a non-integer value. For these three

cases, these values are not accepted. This is an example of

rejecting known bad. Finally when the user enters the value

‘9’, it is accepted because it is a positive integer value. This is

an example of accepting known good. An optional solution to

improving data validation flaws is to include integrity checks.

Integrity checks should be included anywhere that data passes

from a trusted to a less trusted source. An example of this

would be transferring data from the application to a user’s

browser via a hidden field [6].

Buffer Overflow Prevention

To avoid a buffer overflow, a user should always check the

array size before writing data to a buffer. If we recall the

example demonstrated in Figure 2, we note that a buffer

overflow will occur when a user tries to access the fourth

address space that was not actually available. There are two

ways to correct this problem. The first solution is to increase

the size of the array (See Figure 7) and the other would be to

access an appropriate address within the array’s memory (See

Figure 8). In Figure 7, the simple array is redefined so that it

can now hold four integers. In Figure 8, the for loop

termination condition has changed according to the array size.

import java.util.Scanner;

import java.util.InputMismatchException;

public class FlawedInput {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

int num = 0;

boolean loop = false;

while (!loop) {

 try {

 System.out.println("Enter a positive integer value.");

 num = input.nextInt();

 while (num < 0 || ((num < Integer.MIN_VALUE || num >

Integer.MAX_VALUE))) {

 System.out.println("You have not entered an acceptable

positive integer value");

 num = input.nextInt();

 }

loop = true;

System.out.println("You have entered an acceptable

positive integer value");

}

catch (java.util.InputMismatchException ex)

 {

 String wrongNum = input.nextLine();

 System.out.println("You have not entered an acceptable

positive integer value.");

 }

}

}

}
Fig. 5. Input Validation Flaw Solution

Enter a positive integer value.

nine

You have not entered an acceptable positive integer value.

Enter a positive integer value.

-9

You have not entered an acceptable positive integer value

99999999999999999

You have not entered an acceptable positive integer value.

Enter a positive integer value.

9

You have entered an acceptable positive integer value

BUILD SUCCESSFUL (total time: 18 seconds)

Fig. 6. Input Validation Flaw Output

public class BuffOver {

public static void main(String Args[]){

 int[] simpleArray = new int[4];

 for(int i=0;i<simpleArray.length;++i){

simpleArray[i] = i;

}

System.out.println("You have created a secure array!");

}

}

Fig. 7. Buffer Overflow Solution 1

Proceedings of the World Congress on Engineering 2019
WCE 2019, July 3-5, 2019, London, U.K.

ISBN: 978-988-14048-6-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2019

public class BuffOver {

public static void main(String Args[]){

 int[] simpleArray = new int[3];

 for(int i=0;i<3;++i){

 simpleArray[i] = i;

 }

 System.out.println("You have created a secure array!");

 }

}
Fig. 8. Buffer Overflow Solution 2

In both of these examples, our simple buffer overflow problem

has been resolved and the program will successfully run and

display the “You have created a secure array!” message. This

is a simple example and users should always be cautious of

where the boundary is. Java has built in capabilities that check

for an array boundary and will display the error message as

shown in Figure 4, but other programming languages may not.

This can leave room for attacks.

E. Laboratory Exercise

A laboratory exercise was developed to help students

understand buffer overflows and input validation flaws. The

laboratory consisted of two parts - a Java project assignment,

and questions and answers. Students should be able to use this

module as a guide to develop a vulnerable program as well as

provide an acceptable solution for this program.

Secure Program Design Assignment

We ask students to develop a java program to demonstrate

secure program design strategy concept. This program should

contain one instance of integer overflow, one instance of a

buffer overflow, and one instance of an input validation flaw.

Students should exploit the vulnerabilities of the program and

print the results. Once the program has been successfully

exploited, students will correct these errors, execute the

program again, and display the results of the successful

program.

Follow Up Questions

We have developed a set of questions to help students learn

secure program design. After students study the module and

complete the given program assignment, he/she should have

capability to answer the following questions.

a) Describe the difference between an input error and input

validation flaw.

b) Give one example of a buffer overflow.

c) Answer the question –“What is the relationship between an

input validation flaw and a buffer overflow?”

d) Answer the question – “What types of input errors did you

use for the assigned program and what were your results?”

e) Give two examples of how to prevent buffer overflows.

f) Give two examples of how to prevent input validation flaws.

V. TEACHING EXPERIMENTAL RESULTS

The Introduction to Secure Program Design module has been

successfully taught in COMP 280 Data Structure class in the

Department of Computer Science at North Carolina A&T

State University in the fall of 2018 and received excellent

results. The COMP 280 class had two sessions. All of students

were sophomores. To evaluate the students’ reactions and

obtain feedback about using the module, we conducted a pre-

survey before the module was taught and post-survey to

evaluate students learning outcomes. Twelve students were in

session I and fourteen students were in session II and were

given the pre and post survey for the course module. We

received excellent results. The student’s excitement level for

learning secure program design was very high. They showed

great eagerness and excitement to learn.

The survey questions were developed with the intent to

understand how well the students gained knowledge from the

experience. The pre-survey consists of six questions that

include extracting 1) knowledge about buffer overflows, 2)

knowledge about input validation flaws, 3) knowledge about

secure program design practices, 4) understanding the

importance of designing secure code, 5) the concept of buffer

overflow prevention and 6) input validation flaws prevention.

Based on how well the students felt that they understood the

material, they would give a score for each item with a scale of

1 (very low), 2 (low), 3 (medium), 4 (high), and 5 (excellent).

The post-survey included six questions in an attempt to

understand how well the students understood the material after

the instructor explained the module. The post-survey questions

are same as pre-survey. The survey results are shown in fig.9

and fig.10. The blue bar is the pre-survey results. The red bar

is the post-survey results. The findings illustrate how much the

students acknowledged that they had improved on their

understanding of the material presented in the different areas

of the module.

Fig. 9. Students Level of Knowledge Survey of Session 1

Fig. 10. Students Level of Knowledge Survey of Session 2

Proceedings of the World Congress on Engineering 2019
WCE 2019, July 3-5, 2019, London, U.K.

ISBN: 978-988-14048-6-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2019

VI. CONCLUSION

This paper presents a new course module titled “Introduction

to Secure Program Design” and reports our teaching results.

This module covers computer security concepts; input

validation flaws; buffer overflows; how to prevent input flaws

and buffer overflows; and a laboratory exercise.

This module has been taught in the COMP 280 Data

Structure class for undergraduate sophomore in the fall of

2018. The students’ survey results and feedback reflect that

this module is very valuable. By teaching this module,

students quickly obtained knowledge and understanding of the

impacts of input validation flaws and buffer overflows and

how to use secure program design to prevent input flaws and

buffer overflow.

ACKNOWLEDGEMENT

This work is supported by National Science Foundation under

the award number 1662469.

REFERENCES

[1] M. O. P. Frej, "Analysis of Buffer Overflow Attacks",

Available:http://www.windowsecurity.com/articles/analys

is_of_buffer_overflow_attacks.html.

[2] IEEE, “Avoiding the top 10 software security design

flaws”, 2017, Available:

http://cybersecurity.ieee.org/center-for-secure-design

[3] OWASP, "Category:Input Validation - OWASP",

Available:https://www.owasp.org/index.php/Category:Inp

ut_Validation.

[4] M. Quinson, & O. Gérald, “A Teaching System to Learn

Programming: the Programmer's Learning Machine”.

Proceedings of the 2015 ACM Conference on Innovation

and Technology in Computer Science Education, 2015.

[5] C. Theisen, L. Williams, K. Oliver and E. Murphy-Hill,

“Software security education at scale”, IEEE/ACM

International Conference on, 2016.

[6] K. Williams, X. Yuan, H. Yu and K. Bryant, “Teaching

Secure Coding for Beginning Programmers”, Journal of

Computing Sciences in Colleges (CCSC:MS), Volume

29, Issue 5, 2014.

[7] Wikipedia, "Buffer Overflow." the Free Encyclopedia.

Web, September 2011, Available:

http://en.wikipedia.org/wiki/Buffer_overflow.

[8] X. Yuan, L. Yang, B. Jones, H. Yu and B. Chu, “Secure

Software Engineering Education: Knowledge Area,

Curriculum and Resources”, Information Security

Education Journal, 2015.

[9] H. Yu and N. Jones, “Secure Software Programming”,

Journal of American Business Review, Vol. 3, Num. 1,

December 2014.

Proceedings of the World Congress on Engineering 2019
WCE 2019, July 3-5, 2019, London, U.K.

ISBN: 978-988-14048-6-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2019

