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Stochastic Permutation Flow Shop Scheduling
Problem under Different Disruptions
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Abstract—This paper considers the permutation flow shop
scheduling problem (PFSP) under stochastic processing time
and in the presence of different types of real-time events.
A multi-objective optimisation model and a novel predictive-
reactive approach based Simulation-Particle Swarm Optimi-
sation algorithm is designed and adapted for this problem.
This algorithm hybridised the Monte-Carol Simulation (MCS)
technique with the Particle Swarm Optimaisation algorithm to
deal with the the stochastic behavior of the problem. Also, a
deterministic version of the benchmark set proposed by [1]
is adapted and used to test the aforementioned problem and
solution method. Furthermore, the survival analysis based on
the Kaplan-Meier estimator is used to analyse the behaviour of
stochastic and dynamic solutions.

Index Terms—Permutation Flow Shop Scheduling; Multi-
objective Optimisation Model; Predictive-Reactive Approach;
Simulation-Particle Swarm Optimisation Algorithm

I. INTRODUCTION

The scheduling in a manufacturing environment has re-
ceived a special attention for its wide real applications. In
real-world scheduling systems, there are two main sources of
uncertainties that lead to different scheduling environments,
which are; dynamic and stochastic. When there are some
variables that are considered as unknown and follow a
probability distribution, the scheduling in this case is named
as stochastic scheduling [2]. The PFSP problems in stochastic
environment (SPFSP) have received increasing interesting
in the literature of scheduling, due to the nature of most
real problems where the data and information cannot be
known in advanced. However, the stochastic and dynamic
scheduling problems have less consideration comparing to
the deterministic PFSP. Stochastic scheduling models have
been mainly introduced since the 1980s where researches
have traditionally concentrated on non-anticipative policies
which intent to minimise the criteria in expectation. [3]
showed that for the scheduling problem of m immediately
available jobs with random variable service times. It is
certain that such problems can be reduced to equivalent
deterministic problems. [4] investigated the analytic prop-
erties in scheduling of various classes of policies, also
for special cases the optimal policies were determined. [5]
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derived additive performance bounds for a parallel machine
without release dates in stochastic environment. [6] studied a
stochastic 3-machines scheduling problem in Johnsons flow
shops with the objective of minimising the expected total
completion time. [7] addressed the flow shop scheduling
problem (FSP) with minimisng the expected total completion
time under machine breakdowns in stochastic environment.
The authors presented a method that converts a schedul-
ing problem under breakdowns into a finite sequence of
problems without-breakdowns. [8] applied a hypothesis-test
method incorporated into a Genetic Algorithm for solving
the FSP problem under stochastic environment and to avoid
premature convergence of the Genetic Algorithm. [9] pro-
vided an interesting review of many classical Combinatorial
Optimisation Problems COP in a stochastic environment
such as; stochastic scheduling, stochastic VRP and stochastic
reservations. [10] proposed a job sequencing rule which
includes Talwars and Johnsons rules for the 2-machines
FSP so as to minimise the total completion time. In this
problem, the processing times are assumed independently
and follow the Weibull distribution. [11] proposed a class
of PSO algorithm with SA and hypothesis test to solve the
FSP with no-wait constraint in stochastic environment, where
the criterion is to minimise the total completion time. The
developed PSO algorithm showed better feasibility, effec-
tiveness and robustness when compared to other proposed
algorithms. [12] applied heuristics for the stochastic FSP and
general distributions for processing times. [13] dealt with a
scheduling problem of a real-world offline stochastic FSP
with limited buffers. The impatience of a job is consider as
an uncertain due date and both of the processing times and
due dates are stochastic variables. The criteria is to minimise
the expected weighted number of tardy jobs. [14] proposed
a developed B&B method for the single-machine stochastic
scheduling problem in order to minimise the total expected
earliness and tardiness costs. [15] considered the setup and
processing times as stochastic variables for the problem of a
2-machines production FSP with the criterion of minimising
the total completion time. [16] proposed some heuristics from
the literature for the PFSP under stochastic processing times
in order to minimise the expected total completion time.

The terms Optimisation for Simulation or Simulation for
Optimasation are commonly mentioned in the field of
stochastic COPs [17]. Both the comprehensive surveys of
[18] titled Optimisation via Simulation, and [19], which is
titled Simulation Optimisation (Sim-Opt), reflect the two
terms mentioned previously. The main aim of hybridising
simulation and optimisation is to handle the COPs in the
presence of stochastic components. Figure 1 illustrates the
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Fig. 1. Overview scheme of the Sim-Opt approach

scheme of the Sim-Opt approach. Recently, in stochastic
scheduling, the Sim-Opt is used where heuristics or meta-
heuristics are applied for the optimisation part. The concept
of Simulated Annealing (SA) algorithm has been developed
into an algorithm that can be used to solve a variety of
optimisation problems. This is shown in work by [20], where
SA was used to optimise parameters for an automated man-
ufacturing system simulation. [21] presented the Simulation-
Iterated Local Search approach that extends the Iterated
Local Search algorithm by combining simulation to provide
the algorithm with the ability of dealing with stochastic COPs
in a natural way. [22] presented a Sim-heuristic approach
for solving the PFSP under uncertain processing times.
[23] integrated routing metaheuristics with MCS for solving
the VRP with stochastic demands; [24] presented a review
of Sim-heuristics by extending metaheuristics to deal with
stochastic COPs. In this paper, the PFSP under stochastic
processing time and different dynamic disruptions including;
machine breakdowns and new job arrivals is considered,
where a multi-objective model is used to preserve the prob-
lem stability and robustness. The reminder of this paper is
as follows, Section II concentrates on the multi-objective
model that used for the proposed problem. Section III shows
the hybridisation of the MCS approach and PSO algorithm,
which lead to the Sim-PSO approach. The experimental
results are given in section IV. Finally, the conclusions and
future works are listed in section V.

II. A MULTI-OBJECTIVE OPTIMISATION MODEL FOR
ROBUST DYNAMIC PFSP

In this paper, a multi-objective optimisation model pro-
posed by [25] is presented. This model is designed for the
PFSP of size n x m (jobs x machines) in the presence
of different real-time events. The model considers very
important performance measures including utility, stability,
and robustness. The proposed multi-objective optimisation
model (M SR) is given as follows:

Min MSR = aU,(S*) 4+ BL.(S*) + vR.(S*) (1)

where «, 8 and v are the objective weights and a + 3 +
v =1, U,(S*) is the real makespan, I,,(S*) is the stability
objective and R,,(S*) is the robustness objective.
The first measure, utility, is defined as a classical makespan
measure, which is used to indicate the degree of optimisation
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of the problem. It is required to define two makspans in
this model, which are; the real and predictive makespans. To
define these makespanes, for given processing times p;,; for
jobs 7 = 1,2/ ...,n on machines ¢ = 1,2,...,m, and a job
permutation m = my, 7o, ..., T, that sequenced n jobs through
m machines using the same permutation, the C;; denotes the
completion time of job 7; on machine i. The calculation of
completion time for jobs j on machines ¢ is given as follows:

Cn = Pn

Cij =Chrj—1+ Pij

Ci1 =Ci_11+ Py

Cij = mazx{C; j_1,Ci_1,; }+Pi;

Where P;; = pir,. Then the makespan of the PFSP is
defined as follows:

Vi=2,...m, j=2,..n

> Crmj < Crn, ¥

J
Hence, the first objective is defined as follows:

Un(S*) =Y CRuj 2)
j/

Where }; CRy,; is the makespan in the real schedule.
m is total number of machines.
n' is the number of the jobs sequence that have not been
processed yet and the job in progress on the first machine,
including the newly arrived job at the disruption time ¢p.
j ={1,2,..,n'} the index of n’ jobs.
S* refers to the new schedule for the partial subsequnce of
jobs that have not been processed yet on the first machine at
the time of disruption ¢p. It should be noted that the S* has
n' number of jobs and n’ depends on the disruption type,
e.g., if there is new job arrived to the system then n’ will be
the number of not processed jobs, the job in process on the
first machine and the new arrived job.
The stability measure is defined as the deviation of the
completion time of each job in the baseline sequence and
the new schedule. The stability performance is defined as
follows:

I,(S*) =YY |CRijy — CPyj| 3)
N

where C' R,/ refers to the real completion time in the real
schedule, and C'P;;; represents the predicted completion
time of a job j/ on machine ¢ according to the planned
baseline solution.

The third performance measure is robustness, which is
defined as the difference of the total completion time between
the new schedule and the baseline one and it is given by the
following equation:

Rn(S*) = | Z Oij’ - Z Cij" (4)
5 5

where > Y CP,,; is the predicted value of makespan
according to the planned baseline solution.
To enable a fair comparison between models, the MSR
model is normalised as follows:
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NMSR = aNU,(S*) + BNI.(S*) + YNRa(S*)  (5)

Where NU,(S*), NI,,(S*) and NR,(S*) are the nor-
malised objectives of makespan, stability and robustness
respectively. The normalised makespan is giving by the
following equation:

o Un(S*) — Min(U,)
NU(57) = Max(U,) — Min(U,)

Where Max(U,) and Min(U,) are the upper and lower
bounds respectively for the makespan at the moment of
disruption ¢p. The calculation of Min(U,), Max(U,)
and NI,(S*) are given in details in [25]. The objective
NR,(S*) is calculated as follows:

o Rn(S*) — Min(R,)
N B (57) = Max(R,) — Min(R,)

Where R,,(S*) represents the robustness measure after
the disruption time ¢p, Max(R,,) is the robustness upper
bound and Min(R,,) is the robustness lower bound [25].

(6)

III. THE SIMULATION-PSO FRAMEWORK

Following an analysis, we propose that the processing
times follow the Log-Normal distribution. In this case, a
random variable p;; (of processing time) follows a Log
Normal probability distribution where p and o are param-
eters if log(p;;) follows a Normal distribution N (y, o). To
transform the stochastic problem into dynamic version of
deterministic processing times, we assume that the deter-
ministic processing time of job 7 is the expected value of
the probability distribution which characterised the unknown
processing time of the same job. After this, the expected
values of makespan for the PFSP is estimated by employing
the MCS technique. The MCS phase will be repeated running
as many times as we require to obtain an enough reliable
estimation. Thus, the steps of the Sim-PSO approach can be
given as follows:

1) For stochastic FSP in a permutation scheduling, let us
first consider stochastic processing times P;; of jobs ¢
and on machines j where the jobs number are n and the
machines number are m. Each stochastic processing
time P;; follows the Log Normal distribution with
known mean E[P;;].

2) In the dynamic PFSP scheduling where the processing
times are constant values, we consider the processing
times p;; as constant values given by p;; = E[P;;].

3) For the dynamic PFSP under different real-time events,
we generate an initial scheduling sequence (solution)
by using the predictive-reactive based PSO algorithm
with the MSR model.

4) Improve the initial generated schedule by applying a
classical Local Search (LS) algorithm, then the new
improved solution is consider as a new initial solution
for the dynamic problem.

5) Apply a simulation for short runs (for example 250
iterations), to obtain the estimated expected stochastic
solution of the dynamic PFSP.

6) Employ the ILS technique [26] to improve the best of
dynamic and stochastic solutions obtained so far.
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7) Employ a simulation with long runs (e.g. 1000000
runs) to obtain good expected stochastic makespans
related to the best dynamic and stochastic solutions.

The LS algorithm has been applied in different steps in the
Sim-PSO approach, the proposed LS algorithm used in this
research has been used by [27] among others.

The MCS is employed to estimate the expected makespan
value that related to the given solution. The approach steps
are given in the following points:

a. Generate a random variate for all jobs processing
times using the Log Normal distribution.
b. The random variates obtained from the proposed

probability distribution are employed to generate a
random stochastic makespan observations.

c. These steps are iteratively repeated and the obtained
observations are employed to estimate the expected
makespan, variance or quartiles.

d. An efficient operator of the perturbation process,
which is the enhanced swap operator and the accep-
tance criterion of Demon-like procedure are used in
the Sim-PSO approach. For more details about the
acceptance criterion and the perturbation process
we refer to [28] and [29].

Moreover,

IV. EXPERIMENT RESULTS

In this section, the experimental results and statisti-
cal study for the approach are given and discussed. The
predictive-reactive based PSO is hybridised with the MCS
approach and the MSR model are used to solve the SPFSP
under different real-time events. Java eclipse is used to imple-
ment all the experiments on a PC of Intel Cori5 2.6 GHz with
6GB of memory RAM. The proposed Sim-PSO approach
starts with solving the dynamic part of the problem (PFSP
under machine breakdown and new job arrivals disruptions)
using the predictive-reactive based PSO algorithm with the
MSR model, then, the MCS is applied to calculate the
stochastic makespan. Since we apply a multi-objective opti-
misation model, different weights are used, these weights are
assumed to be; (0.333,0.333,0.333), (0.498,0.498,0.002)
and (0.166,0.166,0.666). For the instances introduced by
[1] (PFSP under machine breakdown and new job arrivals
disruptions), we suppose the processing times p;; as the ex-
pected processing time P;; = E/[p;;] follow the Log-Normal
distribution. In this paper, we consider small, medium and
large Taillard benchmark [30] of size 20 x 5, 50 x 10 and
200 x 20 (jobs x machines). Each instances from the same
size consists of 10 different problems. [1] have reported the
PFSP with different real-time disruptions including machine
breakdown and new job arrivals. In this experiment, each
problem has been run for five independent times. Also, we
consider the limit ¢,,,, = nxm x0.03 in seconds to stop the
approach. The Log-Normal distribution has two parameters,
namely; j;; and o;; parameters. These parameters are given
in the equations below from the Log-Normal distribution
properties.

pij = In(E[Py;]) — 0.5 x In (1 + VIP;] )

E[P;]?
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TABLE I
THE AVERAGE DYNAMIC AND STOCHASTIC RPD FOR WEIGHTS W1-W3
AND k = 0.1

nxm

DRPD

SRPD

Wi

20 x5

25.762

25.76

50 x 10

29.287

29.2

200 x 20

19.863

19.86

Wy

20 x5

25.684

25.21

50 x 10

30.122

28.76

200 x 20

19.697

19.43

Ws

20 x5

21.114

20.353

50 x 10

23.903

23.888

200 x 20

14.976

14.517

12

1

0.8

0.6

Percent

0.4

0.2

[}
1460 1470 1480 1490 1500 1519 1520

Stochastic Makespan

o=y sh)

We will consider the scenario where the variance are rela-
tively low particularly k£ = 0.1 [22]. Once the best solution is
found, the average relative percentage deviation of dynamic
solution (DRPD) and the average relative percentage devia-
tion of stochastic solution (SRPD) are calculated over 10 of
Taillard problems from the same size (n x m). The average
relative percentage deviation is given as follows:

M — Bestgy;
BestSOI

RPD = x 100 (7

Where the value M represents the acquired solution using
the proposed model and solution methods. Bestg,; is the
average of lower bound solution of 10’s Taillard’s instances
that have the same number of jobs and machines. Table 1
show the results obtained in this experiment, for the SPFSP
under different real-time events. Table 1 includes the results
corresponding to one of the three weights W;, ¢ =1,2,3. It

—— Dynamic

----- Stochastic

Fig. 2.

k = 0.1 and weight W3

Survival plot with intersecting solutions for problem 20 X 5 with
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k = 0.1 and weight W3

Survival plot with intersecting solutions for problem 50 x 10 with

shows the solutions corresponding to the variance where &
is equal to 0.1 and both of the DRPD and SRPD are taken
as average of 10 Taillard’s instances from same size (20 x 5,
50 x 10 and 200 x 20). Finally, the Table has the relative
percentage deviations for dynamic and stochastic solutions.
From Table 1, we can conclude the following two points:

o The SRPDs corresponding to the best solution obtained

from MCS are generally lower than the dynamic RPDs.
Also, the difference between the DRPD and SRPD rises
even for low level of uncertainty k& = 0.1.

o The DRPD and SRPD are variants typical to different
weights, hence, the SRPD corresponding to weight
W3 = (0.166,0.166,0.666) are generally lower than
other SRPD of other weights. For this, we select the the
weight W3 = (0.166, 0.166, 0.666) for the next analysis
study.

Figures 2, 3 and 4 show the survival functions for different
size instances selected previously with k = 0.1. The selected
instances are of size 20 x 5, 50 x 10 and 200 x 20,
respectively. The survival functions are related for both of the
best dynamic and the best stochastic solutions, respectively.
The survival function produced from the observed stochastic
makespans when employing the stochastic solution. This
function corresponds to the stochastic solution and is gener-
ally under the survival function corresponding to the dynamic
solution. The dynamic solution is constructed from the
observed stochastic makespans when the dynamic solution
is used. It means in job schedule terms that the probability
of keeping the job under operation will be generally lower
when using the stochastic solution.
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Fig. 4. Survival plot with intersecting solutions for problem 200 x 20 with
k = 0.1 and weight W3

V. CONCLUSION

a novel approach that hybridised predictive-reactive based
PSO algorithm with the MCS technique (Sim-PSO) has
presented in this paper. This approach has been proposed
with the MSR model to solve the SPFSP under different
real-time events including machine breakdown and new job
arrival. The PSO algorithm has the ability to deal with
dynamic and stochastic problems successfully, hence, the
contribution of this paper is hybridising the PSO algorithm
with the MSC to solve the SPFSP under different uncertain-
ties. Another contribution of this paper is applying the MSR
model to reduce instability and maintain robustness along
with the Sim-PSO approach for the problem. Moreover, this
paper indicates the analogy between work failure times and
duration times from Survival Analysis so as to better compare
alternative solutions. Consequently, some realisations of the
Sim-PSO may produce makespan values over the duration of
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experiment, so providing incomplete or censored obser-

vations. This statistical study shows that the the probability
of ongoing jobs corresponding to the stochastic solution is
generally lower than the dynamic one. In summary, this paper
clarifies some of the advantages which can be gained when
hybridising the PSO algorithm with the MCS technique in
solving the SPFSP under different uncertainties. For future
work, the proposed approach could compare with other
methods to solve the SPFSP under different real-time events.
Also, applying the Sim-PSO approach for other stochastic
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