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Abstract— High energy synchrotron X-ray diffraction is 

widely used for residual stress evaluation. Rapid and accurate 

conversion of 2D diffraction patterns to 1D intensity plots is an 

essential step used to prepare the data for subsequent analysis, 

particularly strain evaluation. The conventional multi-step 

conversion process based on radial binning of diffraction 

patterns (‘caking’) is somewhat time consuming. A new method 

is proposed here that relies on the direct ‘polar transformation’ 

of 2D X-ray diffraction patterns. As an example of using this 

approach, residual strain values in an Al alloy bar containing a 

Friction Stir Weld (FSW) and subjected to in situ bending were 

calculated by using both ‘polar transformation’ and ‘caking’. 

The results by the new approach show good agreement with 

‘caking’ microstrain evaluation. However, the ‘polar 

transformation’ technique simplifies the analysis process by 

skipping 2D to 1D conversion and opens new possibilities for 

robust 2D diffraction data analysis for strain evaluation. 

 
Index Terms— Polar transformation, residual stress, 

synchrotron X-ray diffraction 

 

I. INTRODUCTION 

ESIDUAL stresses play a significant role in defining 

properties and the deformation behavior of processed 

engineering materials [1]. They can be defined as those 

stresses that remain in a body after manufacturing or 

processing without the effects of external fields (e.g. 

applicable forces or thermal gradients) [2]. The 

technological relevance of residual stresses is that the 

superposition of internal and external stresses may have a 

positive or negative impact on the mechanical properties of 

materials depending on their value and sign. Thus, the 

knowledge of residual stress distribution can help analyze 

the deformation behavior based on total stress under  

in-service conditions, and optimize the durability of 

engineering components and assemblies [3]. 

In the last two decades, various approaches were 

developed connecting the conventional mechanical methods 
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with modern microscopy techniques for the purpose of 

experimental evaluation of residual stresses and strains at the 

micro-scale. For the experimental estimation of residual 

stresses, X-ray diffraction methods (XRD) offer special 

benefits [4]. Firstly, XRD is a non-destructive technique 

which preserves material integrity during the test, unlike 

other destructive or semi-destructive methods which cannot 

be directly checked by repeat measurements. Secondly, other 

methods require stress-free reference samples, which are 

usually difficult to construct and prepare. Furthermore, their 

spatial resolution and depth penetration are typically orders 

of magnitude worse than those of XRD [5]. 

X-ray diffraction approach is conveniently classified into 

synchrotron-based and traditional laboratory XRD due to the 

significant differences in terms of spatial resolution, flux, 

energy, and penetration ability: whilst laboratory 

experiments are typically performed at the surfaces at mm 

lateral resolution, at synchrotron this can be done in 

transmission through cm-thick samples, whilst lateral beam 

sizes can be scaled down to allow micro- and even  

nano-diffraction experiments. 

Stress is a derived extrinsic property that is defined as 

force per unit cross-sectional area that is not directly 

measurable. Consequently, all approaches of stress 

calculation require measurement of some intrinsic property, 

such as strain, or indirect deduction of force (and area). An 

additional benefit of the synchrotron-based method is that it 

can provide information about the average bulk strain over 

the depth of the sample, and not just from the surface as for 

other methods [6, 7]. 

Advanced, robust and convenient strain analysis approach 

is based on Digital Image Correlation (DIC) [8]. However, 

in its original ‘tracking’ form it is only capable of following 

the strain evolution from a reference state. In the absence of 

such reference, DIC is unable to determine residual stress. 

The use of high energy synchrotron X-ray diffraction 

provides the possibility of measuring residual elastic lattice 

strain, and then deducing stresses by using the material’s 

elastic properties in the generalized Hooke’s law expression.  

Thus, the emphasis of synchrotron diffraction data 

interpretation falls on strain determination from XRD 

scattering patterns. To streamline and speed up the 

interpretation of large quantity of data files, a DIC-based 

approach has been proposed [2]. Whilst that approach offers 

a reduction in effort and may speed up analysis, further 

alternative procedures may be proposed for the processing 

of 2D detector images to achieve efficient extraction of 2D 

strain states. This forms the core objectives and the results 

included in the present report. 
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II. METHODS AND MATERIALS 

A. Sample Preparation 

A 4 mm-thick rolled plate of Aluminum alloy AA6082-T6 

plate was used for the manufacturing of a Friction Stir 

Welded (FSW) joint. The welded plate was subjected to 

wire Electro Discharge Machining (EDM) to cut out a 

sample with parallel sides. The sample was then subjected to 

four-point bending to induce permanent plastic deformation 

associated with specific bending strain profile.  

 

B. XRD Experiment 

The experiment was conducted at Diamond Light Source 

on the Test Beamline B16. The beam energy was defined 

at 18keV using multi-layer monochromator. The variation 

of strain across the bent bar was investigated by scanning 

the sample across the beam (collimated to 0.1 mm square 

beam spot). 

 

C. Pre-Processing and Calibration 

In diffraction mode involving monochromatic beam 

impinging on a powder or polycrystalline sample, beams 

scattered from a family of crystallographic planes associated 

with a set of (hkl) Miller’s indices have a fixed angle with 

the incident beam direction, forming cones that appear on a 

2D detector as concentric Debye-Scherrer rings. All residual 

stress analyses based on the measurement of interplanar 

lattice spacings dhkl of the lattice plane with Miller's indices 

using Wulff-Bragg law: 

 

2 sinhkld n  , 

where θ – diffraction angle, λ – wavelength, and 

n is a positive integer. 

(1) 

 

Defining precise residual strain values requires careful 

interpretation of 2D XRD patterns so that the radial peak 

position reaches the accuracy approaching 10-4 or even 

better. Now there is a reliable and efficient approach for 2D 

XRD data interpretation based on radial-azimuthal binning 

(colloquially referred to as ‘caking’) which allows obtaining 

strains with high accuracy. However, this method has some 

drawbacks in terms of the large processing time and large 

number of steps required. ‘Caking’ is a multi-stage process 

that involves the following stages: calibration, conversion of 

the 2D pattern into a 1D profile, and Gaussian fitting for 

peak center determination to calculate strain values. 

The first experimental step is the assembly of ancillary 

equipment for positioning (and possibly loading) the sample, 

placing the detector and beam stop, calibrating the distance 

between, and obtaining exact information regarding the 

image center of diffraction patterns, and calibrating the 

geometrical distortion related to detector's orientation angle. 

Next, it is essential to collect scattering patterns from 

reference sample(s) and processing them via ‘caking’ to 

reduce 2D diffraction pattern to 1D radial functions of the 

azimuthal angle φ that can be visualized as line plots of 

scattered beam intensity against radial position R (Fig. 1). 

 

 
Fig. 1.  2D diffraction pattern of calibration with selected 

azimuthal angle φ in 20° increments to produce 1D intensity 

distributions. 

 

In this study calibration test was applied for a non-

deformed sample that enables to define the exact center 

position of the diffraction pattern and use this for all 

subsequent analyses. By indicating the approximate start 

point and upper and lower limits of variations of azimuthal 

angle, the binning sector width is defined. Then, the selected 

region is binned with a step of φ, and the center of the 

diffraction pattern found by means of ensuring 2-fold 

symmetry of the rings.  

Due to the visible ‘shadowing’ effect of the beamstop, 

radial intensity distributions were found for two pairs 

azimuth angles: (45˚, 225˚) and (135˚, 315˚) for calibrating 

X and Y directions at once. Center of calibration image was 

achieved by comparison of the position of the same peaks 

for two symmetric profiles approximated by Gaussian 

function. If the distance between these peak's centers 

exceeds 0.001 pixels the X0 and Y0 positions are changed and 

‘caking’ approach is repeated again until required accuracy 

is reached. 

Moreover, in the process of calibration image analysis, 

detector saturation effect was found, illustrated in Fig. 2. 

Note that the peak shape of the brightest ring is flattened at 

the top due to the maximum threshold pixel intensity 

reached (65535 counts for 16-bit “TIF” format). 

Consequently, these points must be excluded from Gaussian 

fitting. 

 

 
Fig. 2.  The peak of a 1D intensity distribution with 

indicated ‘o’-blue experimental data, ‘x’-green 

supersaturation effect and gauss fitting (red solid line). 

 

These operations were then applied to each 1D profile for 
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azimuthal angles around values of 0˚, 45˚, 90˚, 135˚, 180˚, 

225˚, 270˚, 315˚, and 360˚. 

Step three is fitting of most intense peak positions (Ri) as 

a function of the azimuthal angle (φi) by a sine function, 

namely, 

 

sin(2( ))i iR a b c   , 

where a, b and c are offset, amplitude and phase shift, 

respectively. 

(2) 

 

The relationship between residual strain and d-spacing is 

defined as 

 

0

0 0 0 0

1 1
d d d a b

d d a b


 
    


, 

where ε is an elastic residual strain, d = a + b is  

d-spacing of a strained sample, and d0 = a0 + b0 is the 

value of d-spacing when the sample is strain free (from 

calibration image). 

(3) 

 

Nevertheless, conventional ‘caking’ approach has 

drawbacks, as it requires defining regions, selecting 

directions, splitting into sectors and averaging them that are 

imprecise for a textured sample whose ring intensity is 

nonuniform or spread on ring region. This should be 

considered in the context of the processing time of this 

analysis increasing manifold for large amounts of images. 

In this investigation we consider a new technique of 

determining residual strain based on the geometric 

transformation [9] of 2D diffraction pattern from a Cartesian 

to polar coordinate system with respect to the pattern center 

(Fig. 3), namely, 
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  (4) 

 

Following this cartesian-to-polar transformation,  

Debye–Scherrer rings can be displayed as lines on the 

radial-azimuthal contour plot. Following this, the entire 

transformed intensity pattern can be fitted with a sine 

function (2) to determine the residual strain variation (3). 

 

  
Fig. 3.  The typical 2D diffraction pattern (a) and its polar 

transformation (b). 

 

The main goal of this transformation is to improve the 

efficiency and reduce the total processing time of 2D XRD 

patterns, whilst preserving the accuracy of analysis. 

 

III. RESULTS 

In this study, the accuracy of a new technique based on 

the polar transformation of 2D XRD patterns was validated 

by comparison with the conventional ‘caking’ method. 

Programming language Python 3.7 with set standard libraries 

(os, numpy, scipy, matplotlib, lmfit, opencv and skimage) 

was used for obtaining 1D profiles from 2D patterns, 

Gaussian and polar transformation fitting respectively. 

Firstly, the center of the 2D diffraction pattern of the 

reference sample was found with the accuracy about 0.001 

pixels for (45˚, 225˚) and (135˚, 315˚) azimuthal angle pairs, 

respectively. According to theoretical knowledge about the 

stress-strain condition is that centers of two symmetrical 

peaks of 1D intensity plot in non-deformed material should 

be equal with given precision. However, fitting a Gauss 

function for each peak and calculating the radial position of 

each center led to a non-symmetrical distribution illustrated 

in Fig. 4. This behavior connected with deformation ring 

into ellipse due to two main factors. At first, the primary 

source of distortion of a ring into an ellipse is detector plane 

tilt that purely based on an oblique section of Debye-

Scherrer cone. However, the strain also distorts the ring that 

comes from strain transformation: 

 

 1 2 1 2( ) cos 2
2 2

   
  

 
    

where ε1 and ε2 are principal strains in principal 

directions that are rotated by angle φ with respect to 

Cartesian axes (x, y) considering that φ = 0 is along x. 

(5) 

 

Therefore, interpretation in terms of strain requires 

comparison between two ellipses (Fig. 5). The calibrated 

parameters are a0 = 890.35±0.03 pixel,  

b0 = 2.41±0.05 pixel and c0 = (-10±2)·10-3 radian = 

= 0.57±0.12 ˚. This implies the detector tilt of 0.16˚, where 

the detector tilt angle can be calculated as 

0

0

arctan
b

a

 
 

 
3·10-3 radian = 0.16˚. 

 

 
Fig. 4.  The theoretical blue curve and experimental sine fit 

(black line with red error bars) for calibration. 
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Fig. 5.  The impact of detector plane tilt and strain on ring 

collapse into an ellipse. 

 

Next the diffraction patterns for the sample described in 

part IIA were processed by ‘caking’. At first, preliminary 

preparation of images needed to be carried out because of 

the supersaturation effects illustrated in Fig. 6, where run 

lines or weak contrast are seen.  

 

 
Fig. 6. Beam position on the sample and the collage of 2D 

diffraction patterns with development visual defects. 

 

To overcome these effects that arise due to sample grainy 

nature, a sum of patterns in horizontal rows in the scan map 

was studied (Fig. 7). 

 

 
Fig. 7.  Example of summarized pattern. 

 

The approaches described above were applied to the 

series of summed diffraction patterns as a function of 

vertical position. Fig. 8 shows the dependence of peak center 

positions on the azimuthal angle. The set of experiment data 

of ‘caking’ significantly less than in case ‘polar 

transformation’. It influences essential difficulties related 

with comparison two methods: the lack of experimental 

points for ‘caking’ approach is connected with a particular 

small angle range by contrast with ‘polar transformation’ 

where fitting the entire 360˚. At result, gets a small error for 

the fitting parameters, and hence strain. 

 

 
Fig. 8.  The dependence of peak center position against 

azimuth angle range on (0˚, 360˚, step 15˚) for ‘caking’ (a) 

and the complete revolution for ‘polar transformation’ (b): 

the blue ‘x’ markers are experimental data, the black solid 

lines are sine fitting (with red error bars). 

 

Fig. 9 demonstrates the correlation between data of 

residual elastic strains at the azimuth angles from 0˚ to 360˚ 

with a step equals 15˚ respectively. The ‘caking’ fit profiles 

are illustrated as a light blue solid line and the profiles after 

polar transformation are shown using an orange solid line 

with the associated red and black error bars respectively.  

The offered Cartesian-to-polar transformation technique 

does not prevent to determine all strain and consequently 

stress values with their directions. Defining results by a new 

approach show fine agreement with ‘caking’ microstrain 

results. 

 

 
Fig. 9.  Comparison of residual elastic strains obtained from 

‘caking’ (blue top line) and ‘polar transformation’ (orange 

bottom line) techniques 
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IV. DISCUSSION AND CONCLUSION 

In this study, a new technique for the processing of 2D X-

ray diffraction patterns from synchrotron experiments is 

presented that is referred to as the ‘polar transformation’ 

interpretation approach. The advantage of ‘polar 

transformation’ lies in the ability to perform fast processing 

of large numbers of 2D diffraction patterns without repeated 

binning conversions, with the specific purpose of extracting 

strain information.  

The key benefits of the new method are:  

(a) reduction of computational effort and processing time; 

(b) simplification of the analysis by omitting the 

conversion of 2D patterns to 1D profiles followed by 

Gaussian peak fitting; 

(c) minimizing possible error sources associated with 

polar-radial binning (‘caking’). In particular, Fig. 8 

demonstrates that ‘polar transformation’ makes use of more 

statistically representative data sets.  

 

The processing time was estimated using Python timing 

library. The processing time for 10 summed images required 

~10 minutes using the ‘caking' approach, while the ‘polar 

transformation’ method required only ~30% of this time. It 

should nevertheless be noted that binning is required at the 

initial stage of precise pattern center determination. 

Modern data processing targets fast, operator-

independent, automated procedures applicable to big data. 

The new technique for the processing of 2D X-ray 

diffraction patterns collected at synchrotrons in large 

volumes conforms to these requirements. Furthermore, the 

efficiency of the new technique may additionally facilitate 

near online strain mapping in engineering objects during 

data collection. Cartesian-to-polar transformation of 2D 

synchrotron X-ray diffraction patterns allows separating 

Debye-Scherrer rings distortions into the contributions from 

detector misalignment and strain, respectively.   

Good match in terms of strain results was found between 

Cartesian-to-polar and traditional ‘caking’ approaches for 

the case of friction stir welded (FSW) aluminum alloy 

sample, with clear advantages of the new technique in terms 

of processing speed and automation. 
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