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Abstract—In this study, EEG signals were converted using 

continuous Wavelet transform (CWT) and short-term Fourier 

transform (STFT) into time-frequency images as input to the 

convolutional neural network. According to Bi-Spectral (BIS) 

index and signal quality indicator (SQI) of commercial machines, 

anesthetic state can be classified as anesthetic light (AL), 

anesthetic ok (AO), anesthetic deep (AD), and Noise. The EEG 

signal is converted into an image every 5 seconds as well as 2 

minutes period. The 5 seconds images dataset was generated 

from 13 patients as reported in a previous study which is 

compared to current study that is based on 2 minutes images 

dataset generated 55 patients. As a result, the 5 seconds EEG  

CWT image model predicts an accuracy of the individual 

categories of: AL is 69%, AO is 75%, AD is 73%, and Noise is 

50%. The overall accuracy of the model is 72.13%. However, the 

2 minutes EEG CWT images model predicts an accuracy of the 

individual categories of: AL is 81%, AO is 86%, AD is 91%, and 

Noise is 59%. The overall accuracy of the model is 85.62%. In 

addition, the 2 minutes EEG STFT image model predicts the 

accuracy of individual categories of AL is 82%, AO is 85%, AD 

is 92%, and Noise is 52%. The overall accuracy of the model is 

84.71%. The result shows that the 2 minutes images model is 

better than the 5 seconds images model. Therefore, ten patients 

were randomly selected from the data of 55 patients as test data. 

The test results show an overall accuracy of 92.5% and 87.85% 

for the CWT image model and the STFT image model. In 

conclusion, the 2 minutes EEG CWT image model is the best 

model for this study. 

Index Terms—Electroencephalogram (EEG), Continuous 

wavelet transform (CWT), short-term Fourier transform 

(STFT), Convolutional neural networks (CNN), Anesthesia,   

I. INTRODUCTION 

ONVOLUTION neural network (CNN) have been 

widely used in various fields in recent years. One of the 

most important advances in artificial intelligence learning is 
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deep learning. In addition, deep learning has been found to be 

mainly applied to dimensionality learning and multi-layer 

feature learning [1]. Therefore, CNN is a method based on 

multi-layer multi-dimensional convolution of images and 

extraction of specific features from images. 

EEG-related CNN methods in biomedical engineering are 

mainly focused on epilepsy [2], emotion recognition [3], sleep 

[4], and motor imagining [5]. However, the CNN method is 

rarely used in EEG studies to assess the depth of anesthesia 

(DOA) in patients. It is important for patient DOA monitoring 

during general anesthesia surgery. If the degree of anesthesia 

is too shallow during the procedure, the patient will have a 

slight awareness or feel a slight pain resulting in some 

postoperative memory impairment [6]. Moreover, long-term 

maintenance of deep anesthesia can lead to other 

complications in patients, so anesthesia management is very 

important [7]. Currently, many products for DOA monitoring 

have been developed on the market. For instance, Mid-latency 

auditory evoked potential (MLAEP) [8], a method of 

stimulating auditory response under general anesthesia and 

then evaluating the state of EEG, spectral entropy (SpE) [9] 

monitors DOA by calculation the state entropy (SE) and 

response entropy (RE) of the patient’s EEG, or bi-spectral 

(BIS) [10] is an indicator obtained by calculating image bit 

coupling of the frequency of an EEG signal. However, these 

methods are calculated by complex numerical algorithms.  

In the past research, processing techniques from numerical 

conversion to image have been developed and can be divided 

into time domain, frequency domain and time-frequency 

domain images. EEG inputs as CNN typically use 

time-domain and time-frequency images, where time-domain 

images are usually drawn with raw data, recurrent plot, and 

brain computer interface (BCI), while time-frequency domain 

images typically use continuous wavelet transforms (CWT), 

short-time Fourier transform (STFT), Hilbert-Huang 

transform (HHT) and Wigner-Ville distribution (WVD). 

Time-frequency techniques are a suitable method for EEG 

such nonlinear and unsteady signals, while providing 

instantaneous information about the frequency and intensity 

of brainwave activity [11]. Studies have shown that 

brainwave activity at different frequencies represents a 

different phenomenon [12]. Anesthetics reduce the activity of 

high frequency beta and alpha bands during induction of 

anesthesia and increased activity in the low frequency band 

during deep anesthesia [13]. Therefore, it can be observed 
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that EEG shows changes in signal characteristics and activity 

intensity during the anesthesia induction period, the 

maintenance period and the recovery period in the 

time-frequency domain image. 

Although the instantaneous frequency and intensity of the 

EEG can be obtained from time-frequency images, the EEG 

waveform do not have significant waveform characteristics of 

physiological signals such as ECG and PPG, and thus do not 

have clear and highly reproducible identifiable patterns. In 

this study, CWT and STFT are used to convert EEG signals to 

time-frequency images as CNN input images. In addition, the 

CWT method will have short-term and long-term EEG signals 

converted into images for training. The images will be 

classified according to the BIS values given by the Philips 

patient monitor. The purpose of the study was to evaluate the 

depth of anesthesia in a simpler way by CNN. 

II. MATERIALS AND METHODS 

A. Anesthesia dataset 

 In this study, two sets of data were prepared. The patients 

were all from the National Taiwan University Hospital 

(NTUH) in Taiwan. Before the surgery began, patients were 

injected with propofol to make the patient into an unconscious 

state. The first group used desflurane anesthesia from 13 

patients during anesthesia maintenance in our previous study 

[14] and the second group used 55 patients with sevoflurane 

anesthetics during anesthesia maintenance. 55 patient’s 

datasets surgery type selection has surgery for uterus and 

ovarian diseases. The signal channel 128 Hz EEG signal is 

recorded by the BISTM Quatro Sensor of the MP60 as well as 

record BIS and the signal quality indicators (SQI) every 5 

seconds. The first group will convert the image every 5 

seconds, so it is divided into four categories based on the 

value of the machine every 5 seconds: Anesthetic Light (AL) 

(100 ≥ BIS ≥ 60, SQI ≥ 50), Anesthetic Ok (AO) (60 > BIS ≥ 

40, SQI ≥ 50), Anesthetic Deep (AD) (40 ≥ BIS ≥ 0, SQI ≥ 

50), and Noise (SQI < 50). The second group will convert the 

image every 2 minutes but the BIS and SQI will have 24 

record points. Therefore, the classification decision for this 

category will determine the BIS level based on the median, 

while the SQI is less than 50, and more than 25% of the total 

record point will be classified into the Noise category. As 

CNN training, validation and testing, the first and second 

groups will be 70%-15%-15% and 70%-20%-10%, 

respectively. The data on anesthesia maintenance period 

during general anesthesia were the most abundant, as shown 

in Table I. The AO and AD of the first group accounted for 

45% and 44% of the data, while the AO and AD of the second 

group accounted for 47% and 36%. There is very little data 

that can be received during the anesthesia induction period 

and the anesthesia recovery period, with the first group of 

patients and the second group of patients accounting for only 

6% and 10%, respectively. The phenomenon of disturbance 

during the operation is not frequent, so the first group and the 

second group account for only 5% and 7% of the noise 

category. 

B. Data Preprocessing 

Since 2D CNN was applied to our research, the raw EEG 

signal was converted to an image and reflected the state of the 

DOA. First, the first group of patients' data is converted into 

images by CWT every 5 seconds as shown in our previous 

study [14]. The data of the second group of patients was 

converted into images by CWT and STFT every two minutes. 

The second group of data is updated once every 30 seconds in 

the processing of time, so there will be 75% overlap of the 

images before and after. The 2 min CWT image is the same as 

the 5s image processing method. The original EEG data 

converted as STFT will only be filtered once to retain the 

signal in the frequency range of 0.5-30 Hz. 5 s CWT image, 2 

min CWT, and STFT image AL category are shown Figs. 1 

(a), (e), and (i). AO category are shown in Figs. 1 (b), (f), and 

(j). AD categories are shown in Fig. 1 (c), (g), and (k). Noise 

category are shown in Figs. 1 (d), (h), and (l). Noise images 

usually occur when the patch is lost, or people touch the signal 

transmission line. 

Table I. Data distribution for each category. 

13 patients  

 Category Training (70%) Validation (15%) Testing (15%) Data distribution 

Anesthetic Light (AL) 812 173 173 6% 

Anesthetic Ok (AO) 5777 1238 1238 45% 

Anesthetic Deep (AD) 5715 1224 1224 44% 

Noise 689 147 147 5% 

Total 12993 2782 2782 100% 

55 patients 

Category Training (70%) Validation (20%) Testing (10%) Data distribution 

Anesthetic Light (AL) 1149 328 164 10% 

Anesthetic Ok (AO) 5404 1544 772 47% 

Anesthetic Deep (AD) 4174 1192 596 36% 

Noise 820 232 116 7% 

Total 11547 3296 1648 100% 
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C. Model and Operating Environment 

CNN is a deep learning algorithm that uses multiple layers 

of convolution to extract image features. In this study, we 

cooperate with Lenovo's branch office in Taiwan. They 

provide high-performance computer (HPC) equipment for us  

to use. The server system and GPU devices are Lenovo 

ThinkSystem SD530 and two Volta 100 GPUs as shown in 

Fig. 2. Firstly, you need to login from your local computer and 

connect to Lenovo's HPC input command training model. 

Finally, you can download the model to your local computer. 

When choosing the CNN model structure, we chose the 

8-layer shallow Alexnet model that won the championship in 

the ImageNet competition. The model structure is as shown in 

Fig. 3. No studies have shown which models and 

hyperparameter adjustments are appropriate for EEG studies, 

even if there are many EEG-related studies. In addition, 

considering that brain waves are quite complicated signals, 

each patient's brain waves for anesthetic drugs and other 

drugs (i.e. Ketamine, painkiller) will show different responses. 

The number of patient samples is not enough, so do not 

choose more complicated and deeper network structure. In 

this study, the second group of model tests, in addition to 

using the original test set to test the model. Randomly selected 

10 patients from 55 patients to test the model.  The reason is to 

test the model prediction of the patient’s EEG in real surgery. 

III. RESULTS 

The first group of data is entered at the beginning of CNN 

batch size 128 and 100 epoch in our previous study [14]. The 

second group of data sets the batch size 128 and 150 epoch. 

The first group and the second group of data were trained 

12,993 and 11,547 images respectively compressed to 227 × 

227 as the initial input. It takes 3.5 hours for the 5 s CWT 

image model trained by the first group of data. The 2 min  
 

Fig. 2. Operating procedures and hardware devices 

 

         
                (a)                                                     (b)                                                      (c)                                                      (d) 

        
                       (e)                                                    (f)                                                       (g)                                                      (h)  

  
                 (i)                                                    (j)                                                       (k)                                                      (l) 
Fig. 1. Time-frequency image: (a) 5 seconds CWT image of Anesthetic Light, (b) 5 seconds CWT image of Anesthetic Ok, (c) 5 seconds CWT image of 

Anesthetic Deep, (d) 5 seconds CWT image of Noise, (e) 2 minutes CWT image of Anesthetic Light, (f) 2 minutes CWT image of Anesthetic Ok, (g) 2 

minutes CWT image of Anesthetic Deep, (h) 2 minutes CWT image of Noise, (i) 2 minutes STFT image of Anesthetic Light, (j) 2 minutes STFT image 

of Anesthetic Ok, (k) 2 minutes STFT image of Anesthetic Deep, (l) 2 minutes STFT image of Noise 

 
Fig 3. Alexnet structure. 
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CWT and STFT image models trained by the second set of 

data takes 5.2 hours and 4.7 hours. The model test results are 

shown in Table II. The results show that the accuracy of the 5s 

CWT image model in AL, AO, AD, and Noise is 69%, 75%, 

73%, and 50%, respectively. The overall accuracy of the 

model is 72.36%. Moreover, it can be seen that the 5s CWT 

image model predicts AL images and is predicted to be AD 

only 2 images are predicted. The results of the 2min CWT 

image model and the STFT image model show that the 

accuracy in AL, AO, AD, and Noise are 81%, 86%, 91%, 

59% and 82%, 85%, 92%, 52%. The 2min CWT image model 

and STFT image overall accuracy is 85.62% and 84.71%. In 

the 2min image model, only one image was predicted to be 

AD when AL was predicted, and no image was predicted as 

AL when AD was predicted. The results show that the 2min 

Image model not only has accuracy in all categories, but also 

overall accuracy is higher than 5s CWT model. The overall 

accuracy of the 2min CWT image model is slightly higher 

than the STFT image model. 

 In order to test the prediction results of the 2min image 

model in the complete surgical procedure, 10 patient’s data 

test models were randomly selected from 55 patients. Table 

III shows that the accuracy of the 2 min CWT image model in 

AL, AO, AD, and Noise is 96%, 90%, 97%, and 74%. The 

accuracy of the 2min STFT model in AL, AO, AD, and Noise 

is 92%, 85%, 96%, and 74%. The 2 min CWT image model 

and STFT model overall accuracy is 92.5% and 87.85%. It 

can be seen from Table III that when the AL is recognized, no 

image is predicted as AD, and when AD is recognized, only 

one image is predicted to be AL. The 2min CWT image model 

overall accuracy is significantly higher than the STFT image 

model. In addition, the 2 min CWT image prediction for 

Noise is much higher than the STFT model. 

IV. DISCUSS ION AND CONCLUSION 

The 5s image model test results show that the categories are 

confused, and the 2min image model can distinguish between 

the AL and AD categories. That's because short-term EEG 

images do not contain EEG changes in the previous period of 

time and long-term EEG images contain EEG changes in 

patients from previous periods. Furthermore, long-term 

EEG-converted images provide long-term stable phenomena 

characteristic on different anesthesia stages. However, the 

2min image model still cannot effectively distinguish the 

images of the AO and Noise category. Previous tests were 

based on a scattered data test model. However, in real surgical 

cases, there is only one patient in the moment, and the data has 

continuous complete data rather than scattered and lost data. 

10 patients randomly were selected from the second group of 

data were trained with 70% of the images but 30% of the 

images were still not trained. From the results, the STFT 

model is close to 90% and the CWT model has exceeded 90%. 

In future work, we need to perform cross-validation to test the 

generalization of the model. The process of brain wave 

changes during anesthesia is not too fast so the model 

categories will be divided into ten categories in a more subtle 

way. The structural changes in the model can be added to the 

recurrent convolutional neural network (RCNN) or 

CNN-LSTM. The network structure that takes into account 

the concept of time allows the model to take into account the 

anesthetic state of the previous period and improve the 

accuracy. 
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Table II. Model testing result. 

5s CWT image model 

 
Predict result Individual 

accuracy AL AO AD Nosie 

T
ru

e 
d

at
a AL 120 37 2 15 69% 

AO 66 927 193 51 75% 

AD 25 240 892 67 73% 

Noise 23 27 23 74 50% 

Overall accuracy is 72.36% 

2min CWT image model 

 
Predict result Individual 

accuracy AL AO AD Nosie 

T
ru

e 
d

at
a AL 133 27 1 3 81% 

AO 22 667 73 10 86% 

AD 0 49 543 4 91% 

Noise 13 21 14 68 59% 

Overall accuracy is 85.62% 

2min STFT image model 

 
Predict result Individual 

accuracy AL AO AD Nosie 

T
ru

e 
d

at
a AL 134 24 1 5 82% 

AO 28 655 77 12 85% 

AD 0 43 547 6 92% 

Noise 15 25 16 60 52% 

Overall accuracy is 84.71% 

Table III. Whole surgical procedure data test results for 2 

min image model. 

2min CWT image model 

 
Predict result Individual 

accuracy AL AO AD Nosie 

T
ru

e 
d

at
a AL 510 19 0 3 96% 

AO 44 1211 75 15 90% 

AD 1 30 1172 5 97% 

Noise 14 36 5 153 74% 

Overall accuracy is 92.50% 

2min STFT image model 

 
Predict result Individual 

accuracy AL AO AD Nosie 

T
ru

e 
d

at
a AL 490 37 1 4 92% 

AO 54 1144 137 10 85% 

AD 0 41 1159 8 96% 

Noise 21 64 23 100 48% 

Overall accuracy is 87.85% 
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