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Abstract—Detection of moving objects in sequences of images
is an important research field, with applications for surveillance,
tracking and object recognition among others. An algorithm
to estimate motion in video image sequences, with moving
object distinction and differentiation, is proposed. The motion
estimation is based in three consecutive RGB image frames,
which are converted to gray scale and filtered, before being used
to calculate optical flow, applying Gunnar Farnebäck’s method.
The areas of higher optical flow are maintained and the areas of
lower optical flow are discarded using Otsu’s adaptive threshold
method. To distinguish between different moving objects, a
border following method was applied to calculate each object’s
contour. The method was successful detecting and distinguishing
moving objects in different types of image datasets, including
datasets obtained from moving cameras.

Index Terms—Computer Vision, Movement Detection, Opti-
cal Flow, Object Detection.

I. INTRODUCTION

NOWADAYS, more than ever, it is possible the develop-
ment and application of more complex algorithms using

inexpensive hardware. Optical flow and image processing in
general are computationally demanding. Nonetheless, they
are already possible in real time using common hardware.

Optical flow is an important method for motion estima-
tion in visual scenes. Lucas and Kanade image registration
method, also known as gradient-based optical flow, makes
motion estimation in images possible with very fast com-
putation [1], [2]. Pyramidal Lucas and Kanade [3], Gunnar
Farnebäck [4], [5], [6] and Brox et al. [7] optical flow are
other methods for motion estimation in images.

Sengar and Mukhopadhyay developed excellent methods
to detect movement [8] and a moving object area [9], based
on optical flow. The methods show precise results with low
processing time, which is important for automatic surveil-
lance and the detection of moving objects using computer
vision. The method creates a smaller image, which is a
fraction of the original image, and contains a representation
of the moving objects detected. When there are multiple
moving objects the image returned contains all the objects
and requires further processing to distinguish between the
objects.

Chen and Lu proposed object-level motion detection from
a moving camera [10], estimating the objects’ movement
relative to the camera.

The present paper describes a method of motion estimation
based on Gunnar Farnebäck’s optical flow. The aim is to
calculate a dense optical flow from consecutive images to
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accomplish the most precise movement detection in the least
amount of time. Images are preprocessed, namely converted
to gray scale and smoothed to improve the results. Otsu’s
threshold method [11] is applied to create a binary image
representing the areas of larger optical flow. Suzuki and
Abe’s border following method [12] is applied to the binary
image to make the distinction of different moving objects.

The paper presents results of different experiments using
images selected from popular datasets, each one representing
particular challenges for optical flow calculation.

Section II describes the hardware, the software and the
datasets used. The main steps of the algorithm are described
in Section III. The tests and results are presented and
discussed in Section IV and Section V. Section VI draws
some conclusions and possible future developments.

II. EXPERIMENTAL SETUP

1) Hardware: The hardware used was a laptop with a
2.40 GHz Intel Core i7-3610QM processor, 6 GB RAM
and a NVIDIA Graphics Processing Unit (GPU) with 2 GB
memory and 96 CUDA cores.

2) Datasets: The proposed methodology were tested us-
ing images from datasets adequate for optical flow calcu-
lation. The first experiments were performed using images
from dataset “O SM 02” from LASIESTA Database, of
the Universidad Politécnica de Madrid [13], which contains
outdoor images of moving people taken with a moving
camera. The camera resolution is 352 × 288 pixels. Other
datasets used are LASIESTA Database “O SM 07” and
Freiburg University “Chinese Monkey” [14].

3) Software: The algorithms were coded in C and C++
language using OpenCV (Open Source Computer Vision
Library) [15]. OpenCV, originally developed by Intel, is a
software toolkit for processing real-time image and video,
that also provides analytics and machine learning capability.
It is free for academic and commercial use.

For a better result, part of the algorithm, was developed
using OpenCV CUDA module. OpenCV CUDA module is a
set of classes and functions to utilize CUDA computational
capabilities.

Figure 1 shows a block diagram of the system architecture,
as well as the interactions between camera or Hard Disk
Drive (HDD) and the image processing module. The software
has been implemented in a modular way. The images can
be captured from a camera in real time, or read from the
computer disk. The experiments described below use images
from datasets, stored in the computer hard disk. The images
are then sent to the image processing module. This module
returns a list of moving objects, which can then be used by
an “action selector”. This algorithm was developed to make
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Fig. 1. System architecture with input images from a camera or an HDD
and the system output (list of moving objects sorted by area).

Fig. 2. Steps of the algorithm to detect moving objects.

future applications of moving object detection possible in real
time. The algorithm to detect moving objects is represented
in the flow chart shown in Figure 2. This will be explained
in Section III.

III. MOVING OBJECTS DETECTION

Motion estimation is based on three consecutive RGB
frames (F1, F2 and F3), as shown in Figure 3. These
images will be preprocessed and then used for optical flow
calculation as presented next.

A. Conversion to gray scale

The three RGB frames are first converted to gray scale
images. The conversion is made using Equation 1, giving
different weights to each color channel. The weights are the
default OpenCV values.

Grayi(x, y) = 0.299Ri(x, y)+0.587Gi(x, y)+0.114Bi(x, y)
(1)

Ri, Gi and Bi are the red, green and blue channel com-
ponents of RGB frame Fi. The pixel position in the frame

(a) Frame F1 (b) Frame F2 (c) Frame F3

Fig. 3. Three consecutive RGB frames from LASIESTA Database.

(a) Frame Gray1 (b) Frame Gray2 (c) Frame Gray3

Fig. 4. Gray scale images obtained from the RGB frames shown in Figure
3.

(a) Frame Smooth1 (b) Frame Smooth2 (c) Frame Smooth3

Fig. 5. Gray scale frames filtered with Gaussian filter.

image is defined by coordinates (x, y). Figure 4 shows the
same images as Figure 3 after gray scale conversion, using
Equation 1.

B. Noise smoothing

Digital images usually have some noise. To minimize that
problem, a Gaussian filter is applied to each frame using the
two dimensional Gaussian function shown in Equation 2.

Gaussian(x, y) =
1

2πσ2
e

−(x2+y2)

2σ2 (2)

The resulting Gaussian distribution resembles a bell curve
which is used to smooth the image. The standard deviation
of the Gaussian filter distribution, σ, can be interpreted as a
measure of its size, controlling the bell curve aperture. The
Gaussian distribution is approximated to a suitable convolu-
tion kernel (a matrix composed of floating point values). To
obtain the smoothed image it is necessary to convolve the
Gaussian filter with the gray image. The convolution follows
Equation 3, using the convolution kernel that results from a
chosen σ value.

Smoothi(x, y) = Gaussian(x, y) ∗Grayi(x, y) (3)

The kernel size was chosen to be of 3×3 for fast computation
applying the filter.

The optimal value for the standard deviation, σ, varies
from image to image. However, its calculation takes time.
In the present work was used a constant value σ = 1.5 that
showed good results in the experiments. Figure 5 shows the
results obtained after filtering the images shown in Figure 4,
using Equation 3.

C. Optical flow computation

Optical flow output is a two dimensional (2D) field that
represents moving objects in the real world or a moving
camera taking frames of a scene. In computer vision, the
main method for motion estimation is optical flow. It is also
used in the present paper.

Pyramidal Lucas and Kanade method produces good re-
sults, at the cost of a significant amount of computation time.
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(a) Farnebäck method (b) Brox et al. method (c) Pyramidal Lucas and
Kanade method

Fig. 6. Resulting movement detection using different optical flow methods.

(a) h1 (b) v1

Fig. 7. Optical flow in horizontal and vertical directions (h1 and v1),
calculated between frames F1 and F2.

Brox et al. optical flow outperforms the other methods in
precision. However, it also requires more processing time.
Since the aim of the present work is to apply the developed
algorithm in real time, Brox et al. optical flow was discarded.
Farnebäck’s method was also tested. It is faster than Pyra-
midal Lucas and Kanade. It showed the best results, in a
precision to computation time ratio basis. Figure 6, shows
the images of the optical flow obtained for these methods
applied to the sequence of images of Fig. 5. Table I shows
the computation times measured to calculate the optical flow
among three consecutive images—that is to calculate the
optical flow between frames F1-F2 and between frames F2-
F3. The aim of the present work is to detect movement
in a sequence of images. Therefore, a dense optical flow
calculation is applied for every two consecutive frames, using
Gunnar Farnebäck’s method.

The optical flow calculation results in horizontal and
vertical directions optical flow images as shown in figures
7 and 8. Figure 7 and Figure 8 show vertical and horizontal
optical flows calculated using, respectively, the first and
second frames and second and third frames shown in Figure
5. The optical flow pixels are a projection of the motion field
onto the 2D image. The motion field is a representation of
the real 3D world motion.

(a) h2 (b) v2

Fig. 8. Optical flow in horizontal and vertical directions (h2 and v2),
calculated between frames F2 and F3.

(a) Horizontal optical flow (H) (b) Vertical optical flow (V )

Fig. 9. Sum of horizontal and vertical optical flows applying equations 4
and 5 to the images shown in Figures 7 and 8.

D. Optical flow directions combination

For each two filtered consecutive frames there are the
horizontal and vertical optical flow components, hi and vi,
as explained above. Therefore, three consecutive frames (F1,
F2 and F3) result in four optical flow images (h1, v1, h2
and v2). The horizontal and vertical components are then
added resulting into one single image for each optical flow
direction, as shown in equations 4 and 5.

H(x, y) = h1(x, y) + h2(x, y) (4)

V (x, y) = v1(x, y) + v2(x, y) (5)

H and V are the images of horizontal and vertical optical
flow and (x, y) are the pixel coordinates. Figure 9 shows the
results of applying equations 4 and 5 to the images shown in
Figures 7 and 8. The magnitude of the horizontal and vertical
optical flows is calculated applying Equation 6.

M(x, y) =
√
H2(x, y) + V 2(x, y) (6)

The resulting optical flow, obtained after applying Equation
6 to images H and V , consists of one single 2D gray scale
image (M ), as shown in Figure 10(a).

The pixel’s values in M do not occupy all the range of
the gray scale images ([0, 255] for 8-bit gray scale images).
Therefore, for a better result, the image M is normalized
using Equation 7.

N(x, y) =
M(x, y)−Mmin

Mmax −Mmin
× Imax (7)

In the equation, M(x, y) is the optical flow magnitude value
at pixel position (x, y). Mmin and Mmax are the minimum
and maximum values in the image M . Finally, N(x, y),
is the normalized optical flow at pixel position (x, y) and
Imax is the maximum possible pixel value (255 for 8-
bit gray scale images). Normalization facilitates the motion
estimation procedure because of the wider range to calculate
the optimal threshold value, as explained in next Section.

E. Movement detection using adaptive threshold

The normalized optical flow image (N ) contains noise
(detected “false movement”). Noise which was not com-
pletely eliminated by the preprocessing of the original RGB
frames (F1, F2 and F3) causes “false movement” detection
(noise) after optical flow calculation and normalization. This
problem can be minimized by applying a threshold based
segmentation method, as proposed by N. Otsu [11]. This
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TABLE I
COMPUTATION TIMES, IN SECONDS, TO CALCULATE THE OPTICAL FLOW BETWEEN 3 CONSECUTIVE FRAMES USING THE CUDA GPU AND

DIFFERENT OPTICAL FLOW METHODS, FOR IMAGES OF DIFFERENT DATASETS.

Image set Farnebäck Brox et al. Pyramidal Lucas and Kanade Image size
LASIESTA “O SM 02” set 0.058870 0.736724 0.128260 352× 288
LASIESTA “O SM 07” set 0.060336 0.746460 0.115300 352× 288
“Chinese Monkey” set 0.144000 1.887000 0.491800 720× 432

(a) Optical flow magnitude (M ) (b) Normalized optical flow magni-
tude (N )

Fig. 10. Optical flow magnitude following Equation 6 and normalized
optical flow following Equation 7.

Fig. 11. Binarized image obtained applying Otsu’s threshold method to
the image of the Figure 10(b). The white area corresponds to the detected
movement.

method consists in computing the gray scale image his-
togram, and determining the optimal threshold value based
on the histogram peaks. The threshold is chosen as a value
between two peaks of a bimodal image histogram. The pixel
values above the threshold value are set to one and the values
below the threshold are set to zero.

Xu, Jin and Song refer that the threshold method is
effective to separate objects from the background when the
gray levels are substantially different between them [16].
Optical flow normalization, as described in Section III-D,
facilitates this task.

In the present work the threshold value, defined as λ,
is calculated from the normalized optical flow image (N ).
Afterwards, the image is binarized applying Equation 8.

B(x, y) =

{
1 if N(x, y) ≥ λ
0 otherwise (8)

The binarized image (B) resulting from applying Equation 8
to image N is shown in Figure 11. The white areas identify
the areas of movement detected in the original sequence of
three images. The black areas are areas where there is no
movement detected.

F. Moving object area detection

For a better distinction of the moving objects, the objects’
contours are calculated from the binary image (B) and stored

Fig. 12. Calculated contours from the binary image. The largest contour
corresponds to a 6342.5 pixels and the smaller to only 0.5 pixels area.

in a data structure (as a contour list). Figure 12 shows
the two contours calculated from image B and drawn in a
black background image. The contours are determined using
Suzuki and Abe’s border following method [12].

The list of contours contains small contours which are
most likely noise. Therefore, the small contours are ignored.
The area of all contours is calculated and only the contours
which have an area larger than a predefined value are
considered. Those contours represent some object (or part
of one) moving in the real world. On the other hand, the
contours with area smaller than the predefined value are too
small to be relevant. In the present implementation, only the
largest area contour is selected.

The area of the largest contour shown in Figure 12 is
6342.5 pixels. It was calculated using Green’s theorem1

OpenCV implementation.
Knowing the moving objects’ contours, the corners of

the minimum rectangle that contains those contours are
calculated and the rectangle is marked in the original image,
detecting the region of interest (ROI). Figure 13, shows a
green rectangle over the ROI in the original RGB frames.
The ROI cut out from each RGB frame can be seen in Figure
14.

Figure 15 shows the moving person superimposed, cut out
by hand, on the area of movement detected for comparative
reasons. As the images show, the area where movement was
detected contains approximately the union of the areas the
person occupied in the three images. There is an extra area
to the bottom right of the image which corresponds to part
of the person’s shadow, which also moved.

IV. RESULTS WITH OTHER SETS OF IMAGES

This section describes movement detection results ob-
tained for images from different datasets. For each dataset
the original three consecutive frames are shown and then the
binarized image with the area of movement detected.
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(a) (b) (c)

Fig. 13. Region of interest marked in green in the original RGB frames
(F1, F2 and F3) used to detect movement.

(a) (b) (c)

Fig. 14. Cut out region of interest from the largest area contour calculated,
from each LASIESTA Database RGB frame.

A. Images from LASIESTA Database

Figure 16 shows another set of frames from LASIESTA
Database, which is an outdoor set with different types of
camera motion. This set has medium camera jitter and low
camera rotation. Figure 16(d) shows the binarized image
presenting the detected movement areas. It is clear from this
result that this set is difficult. Since the camera is non-static,
not only the persons are moving but also the static objects in
the scene. The threshold method eliminates the slow moving
objects, but even so there are many areas with detected move-
ment in the binary image. In these three frames sequence 97
contours were identified. These contours are shown in Figure

1Green’s theorem brief explanation: https://en.wikipedia.org/wiki/Green’s
theorem (last checked 16.08.2018).

(a) Human figure superimposed on
Frame F1

(b) Human figure superimposed on
Frame F2

(c) Human figure superimposed on
Frame F3

(d) Overlap of the three frames

Fig. 15. Image of the human figure moving-object superimposed on the
area of movement detected, for each frame.

16(e). The areas of the three largest contours calculated using
Green’s theorem are 24325.5 (yellow), 5006.0 (cyan) and
2060.0 (pink) pixels. These contours results in the ROI seen
in Figures 16(f), 16(g) and 16(h) respectively.

B. Images from Freiburg Chinese Monkey dataset

Figure 17 shows three consecutive RGB frames from
Freiburg university, the Chinese Monkey dataset. The Chi-
nese Monkey dataset is a hard one because of the fast camera
movement. The camera movement causes areas of motion in
the image where there are only static objects.

Since the algorithm applied to calculate the ROI was the
contour of the largest area, the resulting ROI is only the
area where there is a person, as shown in Figure 17(e). In
this case the algorithm developed to differentiate regions of
movement is more effective selecting the region of interest
than the algorithm developed by Sengar and Mukhopadhyay
as mentioned in Section I. Using Sengar et al.’s method
of movement detection, the result is almost all the original
image frame, since there are regions of strong optical flow
all over the analysed images, as shown in Figure 17(f).

C. Computation time

The methodology described in Section III was tested with
the CPU and GPU capabilities, applied to the LASIESTA
“O SM 02” dataset. The total execution time measured,
using the CPU, is of 114.218 milliseconds (in the best of
three different runs). The total execution time measured,
using the GPU, is of 61.591 milliseconds (in the best of
three different runs).

V. DISCUSSION

Some surfaces, like metal grilles, are difficult for optical
flow calculation. They result in false movement detection. In
the present work the problem was minimized by applying a
Gaussian filter as described in Section III-B.

As shown in Section III-C, Gunnar Farnebäck’s optical
flow calculation method shows good results within accept-
able calculation time. That makes it appropriate for surveil-
lance purposes where near real time processing is necessary.

Otsu’s method is a good choice for the calculation of the
normalized optical flow threshold value. There are several
improvements to that same method that could be applied in
future work [16].

As described in Section III-E the threshold method is very
important to reduce false movement detection (noise due
to difficult surfaces on real world or a larger movement of
the camera). The more correct the threshold value the more
precise the movement detection will be.

Suzuki and Abe’s method to calculate contours in binary
images showed good results in the present work. The con-
tours facilitate the distinction between moving objects. This
is specially important in frames taken with a moving camera.

Experimental results show the methodology proposed was
effective detecting moving objects even when the camera is
moving (pan, tilt, jitter and rotation).
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(a) Frame F1 (b) Frame F2 (c) Frame F3 (d) Movement detected (e) Contours of detected
movement areas

(f) ROI 1 (g)
ROI 2

(h) ROI
3

Fig. 16. LASIESTA Database RGB image set (“O SM 07”): (a-c) consecutive RGB frames used, (d) binarized image of movement detection, (e) contours
of moving object areas and (f-h) regions of interest of movement detect (from the three largest area contours).

(a) Frame F1 (b) Frame F2 (c) Frame F3 (d) Movement detected (e)
ROI

(f) ROI using Sengar et
al. algorithm

Fig. 17. Freiburg Database RGB image set (“Chinese monkey”): (a-c) consecutive RGB frames used, (d) binarized image of movement detected and (e)
region of interest from movement detection obtained with proposed methodology and (f) obtained using Sengar et al. algorithm.

VI. CONCLUSION

A new methodology capable of detecting different mov-
ing objects using Gunnar Farnebäck’s optical flow, Otu’s
adaptive threshold and Suzuki and Abe’s contour calculation
method is presented. The methodology was successful in
detecting distinct moving objects in images from static and
moving cameras. Regions of the image can then be selected
based on the moving objects’ contour areas.

Experiments using images from different datasets show
that the methodology is effective and fast enough to be used
in real time. Therefore, it is suitable to use in applications
such as surveillance, object tracking, object counting and
others applications.

Future work includes development of an optimal Gaussian
filter calculator for gray scale images, in order to get a better
optical flow precision.

Otsu’s threshold method can also be improved, as dis-
cussed in Section V. The process can also be sped-up using
parallel GPU computation. As mentioned in Section V, it is
possible to use another optical flow calculation method to
achieve even better precision on the movement detection at
the cost of additional calculation time.
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