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Abstract—The diffusion convection reaction equa-
tion with variable coefficients and for anisotropic in-
homogeneous media is discussed in this paper to
find numerical solutions by using a combined Laplace
transform and boundary element method. In this
study, the coefficients only depend on the spatial
variable. First the variable coefficients equation
is transformed to a constant coefficients equation.
The constant coefficients equation is then Laplace-
transformed so that the time variable vanishes. The
Laplace-transformed equation is consequently written
in a purely boundary integral equation which involves
a time-free fundamental solution. The boundary inte-
gral equation is therefore employed to find numerical
solutions using a standard boundary element method.
Finally the results obtained are inversely transformed
numerically using the Stehfest formula to get solu-
tions in the time variable. The combined Laplace
transform and boundary element method is easy to be
implemented, efficient and accurate for solving tran-
sient problems of anisotropic functionally graded me-
dia governed by the diffusion convection equation.

Keywords: anisotropic functionally graded materi-

als, unsteady diffusion convection reaction equation,
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1 Introduction

The transient anisotropic diffusion convection reaction
equation of variable coefficients and incompressible flow
is written as

∂

∂xi

[
dij (x)

∂c (x, t)

∂xj

]
− vi (x)

∂c (x, t)

∂xi

−k (x) c (x, t) = α (x)
∂c (x, t)

∂t
(1)

Referring to the two-dimensional Cartesian coordinate
system Ox1x2 this paper will concern with the tran-
sient anisotropic DCR equation (1) in which i, j = 1, 2,
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x = (x1, x2), dij is the anisotropic diffusion/conduction
coefficient, vi is the velocity, k is the reaction coefficient,
α is the rate of change and c is the dependent variable.
Within the domain in question [dij ] is a real symmetri-
cal matrix satisfying d11d22 − d212 > 0. For the repeated
indices in equation (1) summation convention applies so
that equation (1) can be written explicitly
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(
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+

∂
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(
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+
∂
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(
d22

∂c

∂x2

)
− v1

∂c

∂x1
− v2

∂c

∂x2
− kc = α

∂c

∂t

Heat transfer and mass transport problems are among ap-
plications for which DCR equation is taken to be the gov-
erning equation. According to Ravnik and Škerget [1], in
mass transport which frequently occurs in environments,
the convection process take places with a flow velocity
which varies in the medium in question, and in the case
of turbulence modelling with turbulent viscosity hypoth-
esis, the diffusivity also change in the domain. These
situations draw the relevancy of the DCR equation (1).

Functionally graded materials (FGMs) are materials pos-
sessing characteristics which vary (with time and posi-
tion) according to a mathematical function. Therefore
equation (1) is relevant for FGMs. FGMs are mainly
artificial materials which are produced to meet a preset
practical performance (see for example [2, 3]). This con-
stitutes relevancy of solving equation (1).

In the last decade studies on the DCR equation had been
done for finding its numerical solutions. The studies can
be classified according to the anisotropy and inhomogene-
ity of the media under consideration. For examples, [4–7]
solved an isotropic-DCR equation with variable velocity,
[8,9] considered a constant coefficients unsteady isotropic-
DCR equation with a source term, and again [10] solved
an isotropic-DCR equation with a source term. Recently
Azis and co-workers had been working on steady state
problems of anisotropic inhomogeneous media for sev-
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eral types of governing equations, for examples [11, 12]
for the modified Helmholtz equation, [13–17] for the dif-
fusion convection equation, [18–21] for the Laplace type
equation, [22–26] for the Helmholtz equation.

Equation (1) provides a wider class of problems since
it applies for anisotropic and inhomogeneous media but
nonetheless cover the case of isotropic diffusion that hap-
pens when d11 = d22, d12 = 0 and also the case of homo-
geneous media which occurs when the coefficients dij (x),
vi (x), k (x) and α (x) are constant.

Not so many works have been done on DCR equation of
type (1) for anisotropic media with simultaneously vari-
able diffusivity, velocity and reaction coefficients. This
paper is intended to extend the recently published works
[27–33] on the steady DCR equation to the transient DCR
equation for anisotropic functionally graded materials.

2 The initial boundary value problem

Given the coefficients dij (x) , vi (x) , k (x) , α (x) solutions
c (x, t) and its derivatives of (1) are sought which are
valid for time interval t ≥ 0 and in a region Ω in R2

with boundary ∂Ω which consists of a finite number of
piecewise smooth curves. On ∂Ω1 the dependent variable
c (x, t) is specified, and

P (x, t) = dij (x)
∂c (x, t)

∂xi
nj (2)

is specified on ∂Ω2 where ∂Ω = ∂Ω1 ∪ ∂Ω2 and
n =(n1, n2) denotes the outward pointing normal to ∂Ω.
The initial condition is taken to be

c (x, 0) = 0 (3)

The method of solution will be to transform the variable
coefficient equation (1) to a constant coefficient equation,
and then taking a Laplace transform of the constant coef-
ficient equation, and to obtain a boundary integral equa-
tion in the Laplace transform variable s. The boundary
integral equation is then solved using a standard bound-
ary element method (BEM). A Laplace transform inver-
sion is taken to get the solution c and its derivatives for
all (x, t) in the domain. The Laplace transform inver-
sion is implemented numerically using the Stehfest for-
mula. The analysis is specially relevant to an anisotropic
medium but it equally applies to isotropic media. For
isotropy, the coefficients in (1) take the form d11 = d22
and d12 = 0.

3 The boundary integral equation

We restrict the coefficients dij , vi, k, α to be of the form

dij (x) = d̂ij g(x) (4)

vi (x) = v̂i g(x) (5)

k (x) = k̂ g(x) (6)

α (x) = α̂ g(x) (7)

where g(x) is a differentiable function and d̂ij , v̂i, k̂, α̂ are
constants. Further we assume that the coefficients dij (x),
vi (x), k (x) and α (x) are quadratically graded by taking
g(x) as an quadratic function

g(x) = [β0 + βixi]
2

(8)

where β0 and βi are constants. Therefore (8) satisfies

d̂ij
∂2g1/2

∂xi∂xj
= 0 (9)

Substitution of (4)-(7) into (1) gives

d̂ij
∂

∂xi

(
g
∂c

∂xj

)
− v̂ig

∂c

∂xi
− k̂gc = α̂g

∂c

∂t
(10)

Assume
c (x, t) = g−1/2 (x)ψ (x, t) (11)

therefore substitution of (4) and (11) into (2) gives

P (x, t) = −Pg (x)ψ (x, t) + g1/2 (x)Pψ (x, t) (12)

where

Pg (x, t) = d̂ij
∂g1/2 (x)

∂xj
ni Pψ (x, t) = d̂ij

∂ψ (x, t)

∂xj
ni

And equation (10) can be written as

d̂ij
∂

∂xi

[
g
∂
(
g−1/2ψ

)
∂xj

]
− v̂ig

∂
(
g−1/2ψ

)
∂xi

− k̂g1/2ψ

= α̂g
∂
(
g−1/2ψ

)
∂t

which can be simplified

d̂ij
∂

∂xi

(
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∂ψ

∂xj
+ gψ
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∂xj

)

−v̂i

(
g1/2

∂ψ

∂xi
+ gψ

∂g−1/2

∂xi

)
− k̂g1/2ψ

= α̂g1/2
∂ψ

∂t

Use of the identity

∂g−1/2

∂xi
= −g−1 ∂g

1/2

∂xi

implies

d̂ij
∂

∂xi

(
g1/2

∂ψ

∂xj
− ψ

∂g1/2

∂xj

)

−v̂i

(
g1/2

∂ψ

∂xi
− ψ

∂g1/2

∂xi

)
− k̂g1/2ψ

= α̂g1/2
∂ψ

∂t
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Rearranging and neglecting the zero terms give

g1/2
(
d̂ij

∂2ψ

∂xi∂xj
− v̂i

∂ψ

∂xj

)

−ψ

(
d̂ij

∂2g1/2

∂xi∂xj
− v̂i

∂g1/2

∂xi

)

+

(
d̂ij

∂ψ

∂xj

∂g1/2

∂xi
− d̂ij

∂ψ

∂xj

∂g1/2

∂xi

)

−k̂g1/2ψ = α̂g1/2
∂ψ

∂t
(13)

For incompressible flow

∂vi (x)

∂xi
= 2g1/2(x)v̂i

∂g1/2(x)

∂xi
= 0

that is

v̂i
∂g1/2(x)

∂xi
= 0

Thus (13) becomes

g1/2
(
d̂ij

∂2ψ

∂xi∂xj
− v̂i

∂ψ

∂xi

)
− ψd̂ij

∂2g1/2

∂xi∂xj

−k̂g1/2ψ = α̂g1/2
∂ψ

∂t

Equation (9) then implies

d̂ij
∂2ψ

∂xi∂xj
− v̂i

∂ψ

∂xi
− k̂ψ = α̂

∂ψ

∂t
(14)

Taking a Laplace transform of (11), (12), (14) and ap-
plying the initial condition (3) we obtain

ψ∗ (x, s) = g1/2 (x) c∗ (x, s) (15)

Pψ∗ (x, s) = [P ∗ (x, s) + Pg (x)ψ
∗ (x, s)] g−1/2 (x) (16)

d̂ij
∂2ψ∗

∂xi∂xj
− v̂i

∂ψ∗

∂xi
−

(
k̂ + sα̂

)
ψ∗ = 0 (17)

where s is the variable of the Laplace-transformed do-
main.

By using Gauss divergence theorem, equation (17) can be
transformed into a boundary integral equation

η (ξ) ψ∗ (ξ, s) =
∫
∂Ω

{Pψ∗ (x, s) Φ (x, ξ)

− [Pv (x) Φ (x, ξ) +Γ (x, ξ)]ψ∗ (x, s)} dS (x)(18)

where
Pv (x) = v̂i ni (x)

For 2-D problems the fundamental solutions Φ(x, ξ) and
Γ(x, ξ) for are given as

Φ (x, ξ) =
ρi

2πD
exp

(
− v̇. Ṙ

2D

)
K0

(
μ̇Ṙ

)

Γ (x, ξ) = d̂ij
∂Φ (x, ξ)

∂xj
ni

where

μ̇ =

√
(v̇/2D)

2
+

[(
k̂ + sα̂

)
/D

]

D =
[
d̂11 + 2d̂12ρr + d̂22

(
ρ2r + ρ2i

)]
/2

Ṙ = ẋ− ξ̇

ẋ = (x1 + ρrx2, ρix2)

ξ̇ = (ξ1 + ρrξ2, ρiξ2)

v̇ = (v̂1 + ρrv̂2, ρiv̂2)

Ṙ =

√
(x1 + ρrx2 − ξ1 − ρrξ2)

2
+ (ρix2 − ρiξ2)

2

v̇ =

√
(v̂1 + ρrv̂2)

2
+ (ρiv̂2)

2

where ρr and ρi are respectively the real and the positive
imaginary parts of the complex root ρ of the quadratic
equation

d̂11 + 2d̂12ρ+ d̂22ρ
2 = 0

and K0 is the modified Bessel function. Use of (15) and
(16) in (18) yields

ηg1/2c∗ =

∫
∂Ω

{(
g−1/2Φ

)
P ∗

+
[(

Pg − Pvg
1/2

)
Φ− g1/2Γ

]
c∗
}
dS (19)

Equation (19) provides a boundary integral equation for
determining the numerical solutions of c∗ and its deriva-
tives ∂c∗/∂x1 and ∂c∗/∂x2 at all points of Ω.

Knowing the solutions c∗ (x, s) and its derivatives
∂c∗/∂x1 and ∂c∗/∂x2 which are obtained from (19), the
numerical Laplace transform inversion technique using
the Stehfest formula is then employed to find the values
of c (x, t) and its derivatives ∂c/∂x1 and ∂c/∂x2. The
Stehfest formula is

c (x, t) � ln 2

t

N∑
m=1

Vmc∗ (x, sm)

∂c (x, t)

∂x1
� ln 2

t

N∑
m=1

Vm
∂c∗ (x, sm)

∂x1
(20)

∂c (x, t)

∂x2
� ln 2

t

N∑
m=1

Vm
∂c∗ (x, sm)

∂x2
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where

sm =
ln 2

t
m

Vm = (−1)
N
2 +m ×

min(m,N2 )∑
k=[m+1

2 ]

kN/2 (2k)!(
N
2 − k

)
!k! (k − 1)! (m− k)! (2k −m)!

A simple script has been developed to calculate the values
of the coefficients Vm,m = 1, 2, . . . , N for any number N .

4 Numerical results

In order to justify the analysis derived in the previous
sections, we will consider two problems of an analytical
solution and without a simple analytical solution. For
both problems we take

g1/2 (x) = 0.8− 0.1x1 + 0.2x2

d̂ij =

[
0.65 0.15
0.15 1

]
v̂i = (0.2, 0.1)

For a simplicity, a unit square (depicted in Figure 1) will
be taken as the geometrical domain.

�

�

x1

x2

D(0, 1)

A(0, 0) B(1, 0)

C(1, 1)

Figure 1: The domain Ω

4.1 Problem 1

Another aspect that will be justified is the accuracy of the
numerical solutions. The analytical solution is assumed
to be

c (x, t) =
[1− exp (−1.8t)] exp (−0.5 + 0.2x1 + 0.3x2)

0.8− 0.1x1 + 0.2x2

We choose
k̂ = 1 α̂ = −0.936/s

and a set of boundary conditions (see Figure 1)

Table 1: Comparison of the numerical (Num) and the an-
alytical (Anal) solutions at (x1, x2) = (0.5, 0.5) for Prob-
lem 1

t
c ∂c

∂x1

∂c
∂x2

Num Anal Num Anal Num Anal
0.0005 0.0008 0.0008 0.0003 0.0003 0.0001 0.0001

0.5 0.5438 0.5437 0.1727 0.1727 0.0351 0.0352

1.0 0.7646 0.7648 0.2429 0.2429 0.0494 0.0495

1.5 0.8542 0.8547 0.2713 0.2715 0.0552 0.0553

2.0 0.8910 0.8912 0.2830 0.2831 0.0576 0.0577

2.5 0.9062 0.9061 0.2878 0.2878 0.0586 0.0586

3.0 0.9125 0.9121 0.2898 0.2897 0.0590 0.0590

3.5 0.9151 0.9146 0.2907 0.2905 0.0591 0.0592

4.0 0.9161 0.9156 0.2910 0.2908 0.0592 0.0592

4.5 0.9164 0.9160 0.2911 0.2910 0.0592 0.0593

5.0 0.9164 0.9161 0.2911 0.2910 0.0592 0.0593

P is given on side AB
c is given on side BC
P is given on side CD
P is given on side AD

Table 1 shows the accuracy of the numerical solutions c
and the derivatives ∂c/∂x1 and ∂c/∂x2 solutions in the
domain for Problem 1. The errors mainly occur in the
fourth decimal place for the c, ∂c/∂x1, ∂c/∂x2 solutions.
The elapsed CPU time for the computation of the nu-
merical solutions at 19× 19 spatial positions and 11 time
steps from t = 0.0005 to t = 5 is 7086.515625 seconds.

4.2 Problem 2

We choose
k̂ = 1 α̂ = 1

and boundary conditions (see Figure 1)

P = 0 on side AB
c = 0 on side BC
P = 0 on side CD
P = P (t) on side AD

where P (t) takes four forms

P (t) = 1 constant
P (t) = 1− exp (−1.8t) exponential
P (t) = 0.2t linear
P (t) = 0.12t (5− t) quadratic

The results in Figure 2 are expected. The trends of the
solutions c mimics the trends of the exponential function
P (t) = 1 − exp (−1.8t), the linear function P (t) = 0.2t
and the quadratic function P (t) = 0.12t (5− t) of the
boundary condition on side AD. Specifically, for the ex-
ponential function P (t) = 1− exp (−1.8t), as time t goes
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Figure 2: Solutions c at (x1, x2) = (0.5, 0.5) for Problem
2

to infinity, values of this function go to 1. So for big value
of t, the case of P (t) = 1 − exp (−1.8t) is similar to the
case of P (t) = 1. And the two plots of solutions c for
both cases in Figure 2 verifies this, they approach a same
steady state solution as t gets bigger.

5 Conclusion

A mixed Laplace transform and standard BEM has been
used to find numerical solutions to initial boundary value
problems for anisotropic functionally graded materials
which are governed by the diffusion-convection-reaction
equation (1). It involves a time variable free fundamental
solution and therefore that is why it would be more accu-
rate. It is easy and accurate and does not involve round-
off error propagation as it solves the boundary integral
equation (19) independently for each specific value of t
at which the solution is computed. Unlikely, the meth-
ods with time variable fundamental solution may produce
less accurate solutions as the fundamental solution some-
times contain time singular points and also solution for
the next time step is based on the solution of the previous
time step so that the round-off error may propagate.
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[1] Ravnik, J., Škerget, L., “A gradient free integral
equation for diffusion-convection equation with vari-
able coefficient and velocity,” Eng. Anal. Boundary
Elem., vol. 37, pp. 683, 2013.

[2] Abotula, S., Kidane, A., Chalivendra, V.B., Shukla,
A., “Dynamic curving cracks in functionally graded
materials under thermo-mechanical loading,” Int. J.
Solids Struct., vol. 49, pp. 1637, 2012.

[3] Abadikhah, H., Folkow, P.D., “Dynamic equations
for solid isotropic radially functionally graded circu-
lar cylinders,” Compos. Struct., vol. 195, pp. 147,
2018.
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