
 

  

Abstract— In this study, we propose a method to 

simultaneously estimate a vehicle's parameters and a bridge by 

estimating the road surface roughness of the front and rear 

wheels from the vibration data of a running vehicle and 

minimizing the difference between them. It is possible to 

estimate the vehicle, bridge, and road surface unevenness 

simultaneously from vehicle vibration. In this study, we focused 

on the shape of the objective function of the bridge parameters. 

We found that the objective function of the bending stiffness is 

always downward convex. In contrast, the unit weight of the 

bridge is multimodal. 

 
Index Terms— structure health monitoring , vehicle response 

analysis, vehicle-bridge Interaction System  

 

I. INTRODUCTION 

UE to the aging of infrastructure structures related to 

logistics networks, the development of maintenance 

techniques for road bridges has become an urgent issue. 

Therefore, bridge monitoring methods using signals have 

been proposed. They can be classified into bridge response 

analysis and vehicle response analysis. Bridge response 

analysis uses sensors mounted directly on the bridge, 

enabling accurate investigation of the bridge's health, but is 

expensive. In vehicle response analysis[1], sensors are 

mounted only on the vehicle. The acceleration response 

obtained when the vehicle runs over an infrastructure 

structure can be used for indirect damage detection. Therefore, 

it can be implemented at a relatively low cost. 

 Nagayama et al.[2] proposed a method for estimating the 

road profiles of the front and rear wheels by measuring the 

rigid behavior of the vehicle using a smartphone and 

combining the Kalman filter, RTS (Rauch-Tung-Striebel) 

smoothing, and the Robbins-Monro algorithm. Assuming that 

the same road profile is input to the front and rear wheels, the 

genetic algorithm is used to simultaneously identify the 

vehicle's parameters so that the difference between the 

estimated road profiles of the front and rear wheels is 

 
 

minimized. 

 Murakami[3] proposes a method for simultaneously 

estimating the vehicle, bridge, and road surface from the 

vibration data of multiple vehicles. The road profile input to 

each of the multiple vehicles is estimated from the vehicle 

vibration alone. The combination of vehicle and bridge 

parameters that minimizes the error in the obtained road 

profile is searched. Since the shape of the objective function 

is unknown, the vehicle and bridge parameters and the road 

surface roughness are estimated based on particle swarm 

optimization(PSO). This method's features are: 1) only 

vehicle vibration is used without bridge vibration, and 2) not 

only vehicle parameters, and road surface profile but also 

bridge parameters are estimated simultaneously. However, 

the actual vehicle vibration is greatly influenced by the engine 

vibration. Besides, since the time that multiple vehicles travel 

on a bridge simultaneously is short, it is more practical to use 

a single vehicle as in Nagayama et al.[2] 

 In this study, we improve the Murakami model's 

estimation method by constructing a model that considers the 

effects of external disturbances such as engine vibration. Also, 

we clarify the shape of the objective function of the bridge 

parameters estimated by this method. The effect of 

measurement noise on each parameter's estimated values is 

determined, and its influence on the objective function is 

clarified. The experiments were conducted using numerical 

experiments. 

II. BASIS THEORY OF THE PROPOSED METHOD 

A. Vehicle-Bridge Interaction (VBI) 

VBI is a phenomenon that occurs when a vehicle runs over 

a bridge. It is caused by the vehicle and bridge systems' 

equations of motion, the contact force between the vehicle 

and the bridge, and the unevenness of the road surface. When 

a vehicle enters a bridge, the unevenness of the road surface 

first shakes the vehicle. Then, the vehicle shakes the bridge. 

In addition, the shaken bridge and the uneven road surface 

shake the vehicle in succession. The conceptual diagram of 

VBI is shown in Fig. 1. 
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Fig.1 Conceptual image of Vehicle-Bridge Interaction 

 

 
Fig. 2. Dynamical model diagram assumed in this study 

B. Vehicle System 

In this study, the vehicle model is the half-car model shown 

in Fig. 2. A rigid body of mass 𝑚𝑠 is used as the vehicle body, 

connected to the ground by a suspension modeled as a spring 

and dampers (spring constant: 𝑘𝑠𝑖 , damping: 𝑐𝑠𝑖 ) and tires 

modeled as a single spring (spring constant: 𝑘𝑢𝑖 ).Here, 𝑖 
represents the axle, and the front wheels are 1, and the rear 

wheels are 2. The excitation force due to engine vibration is 

represented by 𝑓. Between the suspension and the tires, there 

is a mass 𝑚𝑢𝑖, which is called the unsprung mass, while the 

car's body is called the sprung mass. Since the sprung mass is 

a rigid body, it can be expressed by two equations of motion, 

one for translation and one for rotation. The vertical 

displacement vibration at the center of gravity on the spring 

is 𝑧𝐺(𝑡), the rotation is 𝜃𝐺(𝑡), the displacement vibration at 

the front and rear wheel positions is 𝑧𝑠𝑖(𝑡). The displacement 

vibration under the spring is 𝑧𝑢𝑖(𝑡) .The first-order time 

derivative is denoted by ( ̇ )  and the second-order time 

derivative by ( ̈ ).The distance from the center of gravity to 

the front and rear wheels is 𝑑𝑖, and the distance to the engine 

is 𝑑3.The equations of motion for the vehicle model are then 

as follows. 

 

TABLE I 

THE VEHICLE SYSTEM PARAMETERS 

Mass:ms 9.00×103 [kg] 

Unsprung-Mass:mu1,mu2 5.00×102 [kg*m2] 

Damping (Sprung-mass):cs1,cs2 2.00×103 [kg/s] 

Stiffness(Sprung-mass):ks1,ks2 4.50×103 [kg/s2] 

Stiffness(Upsprung-mass):ku1,ku2 6.00×104 [kg/s2] 

Distance between axles: d1+d2 3.00 [m] 

  

𝑚𝑠�̈�𝐺(𝑡) =        𝑓 − 𝑐𝑠1(�̇�𝑠1(𝑡) − �̇�𝑢1(𝑡))

− 𝑐𝑠2(�̇�𝑠2(𝑡) − �̇�𝑢2(𝑡))

− 𝑘𝑠1(𝑧𝑠1(𝑡) − 𝑧𝑢1(𝑡))

− 𝑘𝑠2(𝑧𝑠2(𝑡) − 𝑧𝑢2(𝑡)) 

(1) 

  

𝐼𝑠  �̈�𝐺(𝑡) =     𝑑3𝑓 − 𝑑1 × 𝑐𝑠1(�̇�𝑠1(𝑡) − �̇�𝑢1(𝑡))

+ 𝑑2 × 𝑐𝑠2(�̇�𝑠2(𝑡) − �̇�𝑢2(𝑡))

− 𝑑1 × 𝑘𝑠1(𝑧𝑠1(𝑡) − 𝑧𝑢1(𝑡))

+ 𝑑2 × 𝑘𝑠2(𝑧𝑠2(𝑡) − 𝑧𝑢2(𝑡)) 

(2) 

  

𝑚𝑢𝑖  �̈�𝑢𝑖(𝑡) =             𝑐𝑠𝑖(�̇�𝑠𝑖(𝑡) − �̇�𝑢𝑖(𝑡))

+ 𝑘𝑠𝑖(𝑧𝑠𝑖(𝑡) − 𝑧𝑢𝑖(𝑡))

− 𝑘𝑢𝑖(𝑧𝑢𝑖(𝑡) − 𝑢𝑖(𝑡)) 

(3) 

  

Here, the displacement and rotation at the center of gravity 

of the rigid body are expressed using the displacements at the 

front and rear wheel positions. 

  

𝑧𝐺(𝑡) =
𝑑2𝑧𝑠1(𝑡) + 𝑑1𝑧𝑠2(𝑡)

𝑑1 + 𝑑2
 (4) 

 

𝜃𝐺(𝑡) =  𝑡𝑎𝑛 (
𝑧𝑠1(𝑡) − 𝑧𝑠2(𝑡)

𝑑1 + 𝑑2
)

≅
𝑧𝑠1(𝑡) − 𝑧𝑠2(𝑡)

𝑑1 + 𝑑2
 

(5) 

  

Equation (1) through Equation (5) can be summarized as 

follows. 

𝐌v�̈�(𝑡) + 𝐂v�̇�(𝑡) + 𝐊v𝒛(𝑡) = 𝒇v(𝑡) (6) 

  

𝐌v =

[
 
 
 
 
 
 
𝑑2𝑚𝑠

𝑑1 + 𝑑2

𝑑1𝑚𝑠

𝑑1 + 𝑑2
𝐼

𝑑1 + 𝑑2

𝐼

𝑑1 + 𝑑2
𝑚𝑢1

𝑚𝑢2]
 
 
 
 
 
 

 (7) 

  

𝐂v = [

𝑐𝑠1 𝑐𝑠2 −𝑐𝑠1 −𝑐𝑠2
𝑑1𝑐𝑠1 −𝑑2𝑐𝑠2 −𝑑1𝑐𝑠1 𝑑2𝑐𝑠2
−𝑐𝑠1 𝑐𝑠1

−𝑐𝑠2 𝑐𝑠2

] (8) 

  

𝐊v

=

[
 
 
 
𝑘𝑠1 𝑘𝑠2 −𝑘𝑠1 −𝑘𝑠2
𝑑1𝑘𝑠1 −𝑑2𝑘𝑠2 −𝑑1𝑘𝑠1 𝑑2𝑘𝑠2
−𝑘𝑠1 𝑘𝑠1 + 𝑘𝑢1

−𝑘𝑠2 𝑘𝑠2 + 𝑘𝑢2]
 
 
 
 

(9) 

  

𝒛(𝑡) = [𝑧𝑠1(𝑡), 𝑧𝑠2(𝑡), 𝑧𝑢1(𝑡), 𝑧𝑢2(𝑡)]
𝑇 (10) 

  

𝒇v(𝑡) = [𝑓(𝑡), 𝑑3𝑓(𝑡), 𝑘𝑢1𝑢1(𝑡), 𝑘𝑢2𝑢2(𝑡)]
𝑇 (11) 

  

𝐌v , 𝐂v  and 𝐊v  are the mass, damping, and composite 

matrices of the vehicle. 𝒇v is the external force term, which 

consists of the excitation force f due to engine vibration and 

the input displacement 𝒖 to the tire. The parameters of the 

vehicle are shown in TABLE I. 
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Sensors installed 
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C. Bridge System 

The bridge is assumed to be a simple one-dimensional 

beam. Suppose the vibration of the bridge is 𝑦(𝑥,  𝑡). In that 

case, the bending stiffness is 𝐸𝐼, the mass per unit length is 

𝜌𝐴, and the external force is 𝑝, the equation of motion of the 

bridge is expressed by equation (12). 

  

𝜌𝐴�̈�(𝑥,  𝑡) +
𝜕2

𝜕𝑥2
𝐸𝐼 (

𝜕2

𝜕𝑥2
𝑦(𝑥,  𝑡)) = 𝑝 (12) 

  

𝑝 =∑ 𝛿(𝑥 − 𝑥𝑖(𝑡))𝑃𝑖(𝑡)
2

𝑖=1
 (13) 

  

Here, the external force 𝑝 is the concentrated external force 

in the vertical direction at 𝑥𝑖(𝑡) for each axle position of the 

front and rear wheels, and 𝑃𝑖(𝑡) is the concentrated external 

force in the vertical direction. However,  is Dirac's delta 

function and satisfies the following conditions. 

 

 (14) 

 (15) 

  

The weighted residue equation in Eq. (12) is given by Eq. 

(16) below. 

  

∫ 𝜔(𝜌𝐴
𝜕2𝑦

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑦

𝜕𝑥4
− 𝑝)d𝑥

𝐿

0

= 0 (16) 

  
Let 𝜔 denote the weights. We change equation (16) to the 

weak formulation. 

  

∫ (𝜌𝐴𝜔
𝜕2𝑦

𝜕𝑡2
+ 𝐸𝐼

𝜕2𝜔

𝜕𝑥2
𝜕2𝑦

𝜕𝑥2
− 𝑝)d𝑥

𝐿

0

= 0 (17) 

  
A one-dimensional finite element beam model with 

Hermite interpolation function is applied to numerically 

calculate the bridge vibration. The Hermite interpolation 

function can be defined for an element coordinate system 𝑠 
(normalized to − ≤ 𝑠 ≤  ). 

  

(18) 

  
When the whole coordinate system 𝑥  is inside a beam 

element 𝑗  consisting of nodes 𝑥𝑗  and 𝑥𝑗+1 , where ∆𝑥 =

𝑥𝑗+1 − 𝑥𝑗 , the components of the basis function vector  

of the interpolation are expressed as follows. 

  

(19) 

  
Both components are assumed to be zero outside the 

element. The component of the deformation vector  at the 

node 𝑥𝑗  is given by  equation (20) using the deflection 

𝑥𝑗  and the deflection angle 𝜃(𝑥𝑗 ). 

  
𝑥𝑗

𝜃 𝑥𝑗
(20) 

  
In this case, the approximate solution of the solution y(x,t) 

is expressed by equation (21). 

  

∙  (21) 

  

The weights can be similarly transformed into equation 

(22) by substituting  𝜔(𝑥) = ( ) ∙ 𝝎  into the weighted 

residue equation. 

  

𝝎T(𝐌B�̈�(𝑡) + 𝐊B𝒚(𝑡) − 𝑭(𝑡)) = 0 (22) 

  

𝐌B and 𝐊B refer to the mass and composite matrix of the 

bridge, respectively. 𝒚(𝑡) is a vector of deformations with 

components of deflection and deflection angle at each node. 

𝑭(𝑡) is a vector of external forces with concentrated external 

force components and moment load of force at each node. 

The equality condition of equation (15) is obtained for any 𝝎, 

and the finite element equation shown below is obtained by 

introducing a damping term. 

  

𝐌B�̈� + 𝐂B�̇� + 𝐊B𝒚 = 𝑭(𝑡) (23) 

  

The parameters of the bridge are shown in TABLE II. 

 

TABLE Ⅱ 

THE BRIDGE SYSTEM PARAMETERS 

Length 30 [m] 

Number of Elements 6  

Mass per unit length 

values of all elements:  
3000 [kg/m] 

Flexual Rigidities of all 

elements:𝐸𝐼 
1.56×1011 [N×m2] 

 

D. Vehicle Bridge Interaction System 

 In general, the response of a vehicle and a bridge is 

modeled by their outputs with each other as inputs. First, the 

vehicle vibration is determined using only the road profile. 

Then, the bridge vibration is calculated by determining the 

input load to the bridge from the vehicle vibration and the 

vehicle model. The bridge vibration is then added to the road 

profile to obtain the input displacement to the vehicle. By 

repeating this process, the input displacements to the vehicle 

and bridge are obtained. The input profile and ground force, 

which are the vehicle and bridge inputs, are described below. 
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D1. Input profile 

The input profile u(t) in this study is given by the sum of 

the road surface profile r(t) and the bridge profile y ̃(t) and is 

expressed by equation (24). 

  

𝒖(𝑡) = 𝒓(𝑡) + �̃�(𝑡) (24) 

  

Here, the road profile is the unevenness of the road surface 

at the axle position. When the road surface roughness is 𝑅(𝑥), 
and the axle position is 𝑥𝑗(𝑡), equation (25) is obtained. 

  

𝑟𝑗(𝑡) = 𝑅 (𝑥𝑗(𝑡)) (25) 

  

𝑟𝑗(𝑡) is a component of 𝒓(𝑡).On the other hand, the bridge 

profile is the bridge vibration �̃�𝑗(𝑡) = 𝑦(𝑥𝑗(𝑡), 𝑡) at the axle 

position 𝑥𝑗(𝑡) . The bridge vibration 𝒚(𝑡)  is the vector of 

deformations at each node. Therefore, the basis functions 

used in the finite element method are used to obtain the bridge 

displacement �̃�𝑗(𝑡)  at the axle position 𝑥𝑗(𝑡) . Using the 

transformation matrix 𝑳(𝑡), the bridge vibration at the axle 

position is represented by Equation (26), and 𝑳(𝑡) is shown 

in Equation (27). 

  

�̃�(𝑡) = 𝑳T(𝑡)𝒚(𝑡) (26) 

  

𝐿𝑘𝑗(𝑡) =

{
  
 

  
 𝑁𝑘 (𝑥𝑗(𝑡)) (𝑘 =  𝑖 −  )

𝑁𝑘 (𝑥𝑗(𝑡)) (𝑘 =  𝑖        )

𝑁𝑘 (𝑥𝑗(𝑡)) (𝑘 =  𝑖 +  )

𝑁𝑘 (𝑥𝑗(𝑡)) (𝑘 =  𝑖 +  )

 (27) 

 

D2. Contact force 

The ground force, which is the bridge's input, corresponds 

to the elastic force acting on the spring with tire stiffness 𝑘𝑢𝑗. 

However, in the equation of motion of the vehicle (Equation 

(6)), the gravity term disappears because the equation is based 

on a balanced position. However, in calculating the elastic 

force, the effect of gravity must be taken into account because 

it is set to zero when the vehicle is at its natural length. Noting 

that the center of the vehicle's rotation is the center of gravity, 

the front and rear wheels' ground forces can be written as 

equation (28). 

  

𝑉1(𝑡) =
𝑑2𝑚𝑠

𝑑1 + 𝑑2
(𝑔 − �̈�𝑠1) +𝑚𝑢1(𝑔 − �̈�𝑢1) 

(28) 

𝑉2(𝑡) =
𝑑1𝑚𝑠

𝑑1 + 𝑑2
(𝑔 − �̈�𝑠2) + 𝑚𝑢2(𝑔 − �̈�𝑢2) 

  

The external force vector acting on the bridge is Equation 

(30), where 𝑯(𝑡) represents the fulcrum reaction force. 

  

𝑭(𝑡) = 𝑳(𝑡)[𝑉1(𝑡) 𝑉2(𝑡)] + 𝑯(𝑡) (30) 

 

E. Implementation of numerical simulation 

In this study, vehicle vibration data during driving is 

numerically reproduced to investigate whether the 

mechanical parameters can be estimated from vehicle 

vibration alone by the proposed method. The VBI system is 

modeled using a rigid-Bodies-Spring Model (RBSM) vehicle 

and a one-dimensional Finite Element Method bridge. In the 

numerical experiments, the vehicle model and the bridge 

model are separated. Their respective inputs are obtained 

using the Newmark-β method and the iterati e method.  

 

E1. Newmark-β method 

The vehicle vibration 𝒛(𝑡) and bridge 𝒚(𝑡) vibration are 

obtained by applying the Newmark-β method to the 

respective equations of motion (Equations (6) and (23)). The 

equations of motion are expressed in the MCK system as 

follows. 

 

𝐌�̈�(𝑡) + 𝐂�̇�(𝑡) + 𝐊𝒔(𝑡) = 𝑸(𝑡) (31) 

  

The time function 𝒔(𝑡) is discretized to 𝒔𝑘, where 𝒔𝑘 is the 

displacement response of the bridge or vehicle, and ∆𝑡 is the 

time increment. 

  

𝒔𝑘 = 𝒔(𝑘Δ𝑡) (32) 

  

In this study, the update equations of the Newmark-β 

method are assumed to be equations (33) and (34). 

  

�̇�𝑘 = �̇�𝑘−1 + ( − 𝛾)∆𝑡�̈�𝑘−1 + 𝛾∆𝑡�̈�𝑘 (33) 

  

𝒔𝑘 = 𝒔𝑘−1 + ∆𝑡�̇�𝑘−1 + (
 

 
− 𝛽) ∆𝑡2�̈�𝑘−1

+ 𝛽(∆𝑡)2�̈�𝑘 
(34) 

  

 The vehicle and the bridge's vibrations are calculated from 

their respective equations of motion using the following 

equations. 

  

�̈�𝑘 = 𝐀
−1𝒃𝑘  (35) 

  

𝐀 = [𝐌+
∆𝑡

 
𝐂 +

(∆𝑡)2

4
𝐊] (36) 

  

𝒃𝑘 = 𝑸𝑘 + 𝐂𝒃1 +𝐊𝒃2 (37) 

  

𝑸𝑘 = 𝑸(𝑘Δ𝑡) (38) 

  

𝒃1 = −�̇�𝑘−1 −
�̈�𝑘−1
 

∆𝑡 (39) 

  

𝒃2 = −𝒔𝑘−1 − �̇�𝑘−1∆𝑡 −
�̈�𝑘−1
4

(∆𝑡)2 (40) 

  

The vehicle's speed is constant at 10 [m/s], and it runs on 

the road surface for 8 seconds. If the starting point of the 

vehicle's frontal area position is -20[m], the bridge is between 

0[m] and 30[m]. Fig. 3 and Fig. 4 show the behavior of the 

vehicle and the bridge obtained from the numerical 

simulation. 
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Fig.3 Unsprung, sprung displacement and input profile 

 
Fig.4 Displacement of the bridge (center section) 

 

F. VBI System Identification 

Assume that the vehicle vibration �̈�(𝑡) has been obtained 

as measured data. By substituting the vehicle vibration data 

and randomly assumed initial values of the vehicle and bridge 

parameters into the VBI system, the road profile 𝒓(𝑡) can be 

obtained. First, the measured vehicle vibration data, �̈�(𝑡), is 
substituted into the Newmark-β method to o tain �̇�(𝑡) and 

𝒛(𝑡) . Assuming that the vehicle's system parameters are 

random, 𝐌v, 𝐂v, and 𝐊v can also be obtained. At this point, 

all the left-hand sides of Equation (1), the equation of motion 

of the vehicle, have been obtained, and 𝒇v(𝑡) can be obtained. 

In equation (11), which expresses 𝒇v(𝑡), 𝑑1, 𝑑2, 𝑘𝑢1, and 𝑘𝑢2 

in the equation have already been assumed, so 𝑓, 𝑑3, 𝑢1, and 

𝑢2can be obtained. In other words, the excitation force 𝑓 and 

the input profile 𝒖(𝑡) due to engine vibration are estimated. 

Next, the vehicle vibration data �̈�(𝑡)  and the assumed 

vehicle system parameters are substituted into Equation (28) 

to obtain the ground forces 𝑉1(𝑡) and 𝑉2(𝑡). If the system 

parameters of the bridge are also assumed to be random, the 

bridge vibration 𝒚(𝑡) can be obtained using Equation (23), 

which is the equation of motion of the bridge, and the 

Newmark-β method.  he o tained  ridge  i ration 𝒚(𝑡) can 

be substituted into equation (26) to obtain the bridge profile 

�̃�(𝑡). 
Now, subtracting �̃�(𝑡)  from 𝒖(𝑡)  obtained earlier, 𝒓(𝑡) 

can be estimated. Furthermore, the road surface unevenness 

𝑟𝑖(𝑡) is position-synchronized with the axle position 𝑥𝑖(𝑡), 

and the road surface unevenness 𝑅𝑖(𝑥)（𝑅𝑖(𝑥𝑖(𝑡)) = 𝑟𝑖(𝑡)）. 

When the vehicle goes straight, the front and rear wheels 

follow the same path, so the road surface irregularities 𝑅1(𝑥) 
and 𝑅2(𝑥) are equal. However, in this estimation process, the 

vehicle and bridge parameters are assumed randomly. The 

values of 𝑅1(𝑥) and 𝑅2(𝑥) are expected to be different. 

 

F1. The error function 

Consider the optimization problem of minimizing the 

squared error of 𝑅1(𝑥) and 𝑅2(𝑥). The objective function is 

shown in Equation (30). 

  

𝐽 =∑|𝑅1(𝑥) − 𝑅2(𝑥)|
2 (30) 

  

If all the randomly assumed parameters are correct, the two 

calculated road surface roughness will match. Therefore, if 

we can update the parameters so that the calculated road 

surface roughness matches, we can expect that the parameters 

will eventually approach the correct values. In this study, we 

refer to such a parameter identification method as "VBI 

system identification". However, the shape of the objective 

function is not known. Besides, it is not always the case that 

there is only one combination of system parameters for the 

vehicle and the bridge when the road surface roughness 

estimated for the front and rear wheels coincides. Therefore, 

the shape of the objective function is checked by selecting 

one parameter and varying its value. This method is 

equivalent to estimating the optimization parameters in a 

brute force fashion in system identification. Although this 

method is computationally expensive, it is a reliable way to 

search for the correct combination of values. Next, the VBI 

system identification is also performed using the gradient 

descent method, which is the simplest and least 

computationally expensive method. Finally, the results are 

compared and discussed. 

 

F2. Gradient descent method 

In this study, the gradient descent method is used to search 

for the optimal solution of the parameters. The gradient 

descent method is one of the gradient method algorithms for 

the continuous optimization problem to find the minimum 

value of a function. In the gradient descent method, the 

parameters are brought closer to the solution using an 

iterative method; when the solution is at ℎ𝑘  in the 𝑘 th 

iteration, the position of the parameters in the 𝑘 +  th 

iteration is expressed by equation (31).   

  

ℎ𝑘+1 = ℎ𝑘 − 𝐽𝑘−1
ℎ𝑘 − ℎ𝑘−1
𝐽𝑘 − 𝐽𝑘−1

 (31) 

III. RESULTS AND DISCUSSION 

Numerical simulations are performed based on TABLE I 

and TABLE II parameters to obtain the vehicle vibration. 

Vary 𝐸𝐼 from 0.5 to 1.5 times the correct value, and vary 𝜌𝐴 

from 1 to 2 times the correct value, to find the value of the 

objective function 𝐽  and examine the shape of each 

parameter's error function. The shape of the error function for 

each parameter is examined. The model in this study is a 

multivariate function. However, for the sake of clarity, the 

results are presented as a single variable. 

 

A. Shape of the error function without noise 

The results of the error functions obtained for different 

bridge parameters (𝐸𝐼, 𝜌𝐴) are shown in Fig. 5 to Fig. 6. 

The red dotted line is the correct value for each parameter. 

The red circle is the minimum value of the error function, 

i.e., the optimal solution when calculated by the brute force 

method. 𝐸𝐼 has six parameters, but there is no significant 

difference in each of them, so the objective function of 

only𝐸𝐼1 is visualized as a representative value. It can be 

seen that the stiffness 𝐸𝐼 of the bridge is convex downward  

and there is no multimodality. Furthermore, the optimal 

solution (the minimum value of the error function) was 

consistent with the correct value. However, the mass per 

unit length of the bridge, 𝜌𝐴, was convex near the correct 

solution and resembled a parabola but was multimodal in a 

broader range. Therefore, the optimal solution for the 
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stiffness 𝐸𝐼 of the bridge can be found by a simple method 

such as the gradient descent method. In order to find 𝜌𝐴, 

other optimization methods may need to be combined. 

 
Fig.5 Objective function shape of 𝐸𝐼1 

 
Fig.6 Objective function shape of 𝜌𝐴 

 

B. Effect of added noise on the error function 

Next, we examine the case where noise is added to the 

vehicle vibration. Since this study's noise is supposed to be 

the engine vibration and observation noise, it is assumed that 

all sensors are subjected to the same magnitude of noise. 

Therefore, we used a brute force equation to find the optimal 

solution when 0.01 percent of noise (uniform random 

number) is added to the vehicle vibration's maximum 

amplitude under the spring. For each parameter (𝐸𝐼, 𝜌𝐴), the 

VBI parameter identification results for each noise are shown 

in Fig. 7 to Fig. 8. It was found that the optimal solution 

obtained by adding noise deviated from the correct value. 

However, even with the addition of noise, the shape of EI's 

objective function is convex. 

 
Fig.7 Objective function shape of 𝐸𝐼1 (noise is added) 

 
Fig.8 Objective function shape of 𝜌𝐴 (noise is added) 

 

On the other hand, the estimated value of 𝜌𝐴  was the 

correct value even when noise was added. 

IV. SUMMARY AND FUTURE ISSUES 

In this study, we developed a model that took into account 

the disturbance and clarified the effect of measurement noise 

on the bridge parameter estimates in VBI system 

identification from the objective function's shape. The 

parameters were obtained in a brute force fashion. The results 

showed that the shape of the EI was convex downward. Also, 

the vertices match the correct values. Therefore, it is 

suggested that 𝐸𝐼 can be estimated by a simple method such 

as finding the minimum value of the error function. 

In addition, 𝜌𝐴 was found to be multimodal. Therefore, 

parameter optimization using only the gradient descent 

method cannot reach all parameters' correct values. To solve 

this problem, it is necessary to improve parameter estimation 

methods' accuracy and efficiency by combining other 

optimization methods such as PSO and MCMC (Markov 

chain Monte Carlo) methods, as Murakami has done. 
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