
 

 

Abstract—Recommender systems are commonly used for 

Internet-based activities to assist users in making decisions on 

what items to select. One very common use of recommender 

systems is in electronic commerce purchases. The need for 

recommender systems in electronic commerce is due to the vast 

amounts of items to choose from. Due to this vast amount of 

items, generation of recommendations for recommender 

systems is a computationally intensive activity. This paper 

reports on studies that were conducted to investigate methods 

for speeding up the computations for generating 

recommendations when the data that is used to generate 

recommendations is stored in a graph database. The proposed 

methods involve the pre-computation and storage of values that 

are used in the generation of recommendations. This leads to a 

speed-up of the computations for generating recommendations. 

 
Index Terms–-collaborative filtering, Cypher, graph 

database, Neo4j, recommender system  

I. INTRODUCTION 

ecommender systems are commonly used for Internet-

based activities to assist users in making decisions on 

what items to select. One very common use of recommender 

systems is in electronic commerce (e-commerce) purchases. 

Many e-commerce businesses, e.g. Amazon.com, use 

recommender systems to provide customers with lists of 

automatically generated recommendations of items to 

purchase. Examples of items are: books, music, movies. The 

recommendations are based on historical data on item 

purchases. The historical data typically consists of previous 

customers purchases and product ratings by other customers 

[1]. The need for recommender systems in e-commerce is 

due to the vast amounts of items to choose from, which leads 

to information overload. E-commerce traders, e.g. 

Amazon.com may have millions of item categories and 

thousands of item types in each category. This makes it 

extremely difficult for customers to examine all items in a 

given category in order to make informed decisions on 

which items to purchase. Various approaches exist for 

implementing recommender systems. Jannach, et al. [2] and 

Felfernig et al. [3] have observed that collaborative-filtering 

systems, content-based systems, and knowledge-based 

systems are the three basic approaches to recommender 

systems implementation. The research reported in this paper 

is based on collaborative-filtering recommender systems. 

Generation of recommendations for collaborative-filtering 

systems is a computationally intensive activity. 
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Experiments were conducted on methods for speeding up 

the computations for generating recommendations for the 

user-based collaborative-filtering method, when the data is 

stored in a graph database. The experimental results 

demonstrate that, for a graph database, it is easy to pre-

compute and store various values that are needed for 

generating recommendations. These values are subsequently 

used to generate recommendations for active users at a much 

faster rate. The rest of the paper is organised as follows: 

Section II provides the background to the reported research. 

Section III provides a discussion of the implementation of 

user-based collaborative-filtering recommender systems. 

Section IV presents the methods that were studied for 

speeding up computations. Section V provides a discussion 

of the experimental methods that were used. Section VI 

presents the experimental results. Section VII concludes the 

paper. 

II. BACKGROUND 

A. Collaborative Filtering Recommender Systems 

According to Ricci, et al. [1], collaborative filtering is the 

most commonly used approach for recommender systems. 

Collaborative filtering consists of two categories of 

recommender systems. These are: neighbourhood-based and 

model-based systems. Felfernig et al. [3] and Jannach et al. 

[2] have reported two different approaches to 

neighbourhood-based collaborative filtering. These are user-

based systems and item-based systems. Neighbourhood-

based collaborative filtering recommender systems rely on 

users’ past behaviour to be able to recommend items [4]. 

The past behaviour is in the form of purchases and ratings of 

items by users. The two categories of collaborative filtering 

are user-based and item-based collaborative filtering. For 

user-based collaborative filtering, the data for users with 

similar preferences is used to suggest items to the active user 

[3]. Given an active user U, who is interacting with the 

system and requires recommendations, the first step of user-

based collaborative-filtering is to identity users with similar 

ratings to U. This step is done using the k-nearest neighbour 

algorithm, which identifies the k most similar users to U [5]. 

The ratings and purchases for these k users are then used to 

determine the recommendations which are presented to the 

user U. For item-based collaborative filtering, the rating of 

the active user U for an item I is predicted based on the 

ratings of U for items similar to I [5]. Two items are 

considered to be similar if several users of the system have 

rated these items in a similar fashion. 
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B. Computations for user-based collaborative filtering 

The user-based approach takes the ratings of other users 

for an item, and uses this information to make a 

recommendation for the active user [5]. A common measure 

that is used for this approach is Pearson correlation 

coefficient of similarity [5]. Given two users Ua  and Ub, a 

set of items Iset, and item I,  (I    Iset), that is rated by both 

Ua and Ub, the Pearson correlation coefficient of similarity 

sim(Ua, Ub) between users Ua  and Ub is given by 

      

    

 

 
                                                                                      (1)                     (1)      

 

In equation (1), rUa,I  denotes the rating for item I by 

user Ua and rUb,I  denotes the rating for item I by user Ub. 

 and  denote the mean ratings by Ua and Ub 

respectively. The possible values of similarity range between 

-1 and 1, where 1 represents perfect similarity, and -1 

represents maximum dis-similarity.  

The users with similarity values closest to 1 are then 

selected. These are the k-nearest neighbours (e.g. k = 20) for 

the active user Ua. The final task of the recommender system 

is to predict item ratings for the active user Ua. These ratings 

are for items that were purchased and rated by a similar user 

Ub but not yet purchased or rated by user Ua. Given the set 

of k-nearest users Uset, the rating prediction of an item I, not 

yet purchased by Ua  is computed as 

 

      

               

         (2) 

 

After the rating predictions are computed, the last step is 

to select the items to be recommended to the active user. 

These are the top n items (e.g. n = 20) with the highest 

predicted ratings.  

III. IMPLEMENTATION OF NEIGHBOURHOOB-BASED 

COLLABORATIVE FILTERING RECOMMENDER SYSTEMS 

A. Data storage for recommender systems 

Recommender system data may be stored in a relational 

database. As an example, for the Movies recommender 

system, three tables may be used for users, items, and ratings 

data. However, several researchers (e.g. [6] ) have observed 

that when there are very large numbers of users and items 

(e.g. millions), and a large number of ratings in the relational 

database tables, it is impossible or prohibitively expensive to 

perform the necessary computations for recommendations in 

real time. Alternatively, a ratings matrix is commonly used 

to store the ratings of items by users [5]. The matrix has one 

row for each user and one column for each item. Complex 

matrix operations are performed on the ratings matrix [5] in 

order to generate recommendations for the active user. There 

are two graph-based approaches for the implementation of a 

recommender system. The first approach uses the graph data 

structure which is implemented as adjacency matrices [1], 

[5]. The second approach uses a graph database [7], [8], [9].  

B. Graph databases 

Recommender systems data for millions of user item 

ratings and millions of items is categorised as Big Data. Two 

current solutions for storing and querying Big Data are 

NoSQL databases and New SQL databases [10]. Graph 

databases are one category of NoSQL databases. These 

databases have been used to store data for recommender 

systems [8], [9]. A graph database can store data entities and 

relationships using simple concepts derived from 

mathematical graph theory [11]. Nodes represent the graph 

data entities. Relationships are implemented as edges which 

connect the nodes (data entities). A graph database is ideal 

for storing data for a neighbourhood-based collaborative 

filtering recommender system because entities and 

relationships of interest are users, items to recommend, 

‘rating’ relationships between users and items, ‘similar’ 

relationships between users, and ‘similar’ relationships 

between items [5].  

Examples of graph database systems are Neo4j and 

Apache Spark [7], [11]. Neo4j is an open source NoSQL 

database system which supports ACID and database 

transactions [7], [11]. This database system was used for the 

research reported in this paper. Neo4j use labels and 

properties. Labels are used to categorise graph nodes. For 

example, the Movies database has two categories of nodes, 

namely user nodes and movie nodes. So, the node labels are 

‘User’ and ‘Movie’. Properties are attributes that are 

associated with data entities (nodes) and relationships, and 

are expressed as key-value pairs, e.g. (movieID: 1432).   

Neo4j provides a query language called Cypher, which is 

specifically designed for working with graph data. Cypher is 

a declarative language like SQL. It uses patterns to describe 

graph data, and it uses familiar SQL-like clauses.  

C. Methods for speeding up computations for 

neighbourhood-based collaborative filtering systems 

The main computations for user-based collaborative 

filtering were presented in Section II-B as equations (1) and 

(2). The computation of similarity suffers from two major 

problems. Firstly, the mean values for ratings for each user 

in equation (1) need to be computed each time the equation 

is computed. For the user-based approach, when there are 

many users (thousands or hundreds of thousands) who have 

rated the same items as the active user, then the 

computations of the mean values will take a significant 

amount of time. Secondly, the computation of equation (1) 

involves the computation of products, squares, and square 

roots. For the user-based approach, when there are many 

users who have rated the same items as the active user, then 

the computations of these terms will take a significant 

amount of time. The computation of predictions for equation 

(2) suffers from the following problem: the values of 

similarity have to be computed whenever equation (2) is 

evaluated. Several authors have reported that for user-based 
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and item-based recommendation, various values can be pre-

computed and stored in the recommender system database. 

Linden et al. [12] have reported that, for the item-based 

recommender system that Amazon.com was using in 2003, a 

similar-items table holding the similarity values for item 

pairs was created off-line. This resulted in major speed-ups 

for generating recommendations online.  

IV. METHODS THAT WERE STUDIED FOR 

SPEEDING UP COMPUTATIONS 

Graph databases were used for user-based collaborative 

recommender systems for item recommendations. The 

solutions for speeding up recommendations that were 

studied and are reported in this paper are as follows: (1) 

Each graph database consisted of two types of nodes: users 

and items, and two types of relationships:  RATED and 

SIMILAR. For user-based recommendation, the SIMILAR 

relationship was between two user nodes. (2) For user-based 

recommendation the mean rating for each user was 

computed and stored in the user’s graph node so that it did 

not have to be computed repeatedly. (3) The similarity 

values for user node pairs were computed based on equation 

(1). SIMILAR relationships were then created, and the 

similarity values were attached to the relationships. The 

similarity values that were stored were limited to be very 

high values (correlation >= 0.8). It should be noted that, in 

practice, the values of the mean ratings and similarity should 

be periodically updated. (4) Demographic data [13] was also  

used to determine its effect on the speed of computation for 

recommendations. 

V. EXPERIMENTAL METHODS    

A. Objectives of the experiment 

The first objective of the experiments was to demonstrate 

that the methods presented in Section IV are easy to 

implement when a graph database is used to store the data 

for a neighbourhood-based collaborative recommender 

system. The second objective was to demonstrate that the 

methods provide a significant speed up in the computation of 

recommendations. 

B. Data and algorithms for the experiments 

The MovieLens dataset (ml-latest-small) which was 

generated on 26 September, 2018, was used for the 

experiments [14]. The dataset consists of four files: 

movies.csv, ratings.csv, tags.csv and links.csv. The 

movies.csv file contains 9,742 records and has the attributes:   

movieId, title, genres. The ratings.csv file contains 100,836 

records and has the attributes:   userId, movieId, rating, 

timestamp. The range for the ratings is [0.5, 1, 1.5, 2,…, 4.5, 

5]. The tags.csv file consists of 3,683 records, and the 

links.csv consists of 9,742 records. The files that were used 

for the experiments are: movies.csv, ratings.csv and 

persons.csv. The persons.csv file consists of 610 records and 

has the attributes:  userId, age, gender. The userId values 

were obtained from the ratings.csv file. The age and gender 

attribute values were randomly generated. The data was 

stored in Neo4j Community Edition databases and the Neo4j 

Cypher query language was used for processing the data. 

VI. EXPERIMENTS 

A. Creation of the Neo4j graph databases for the movies 

data 

For purposes of studying recommendation performance, 

two Neo4j graph databases were created. The databases are 

referred to as database 1 and database 2 in this discussion. 

Neo4j Cypher queries were used to load the data into the 

databases. For the two databases, nodes were created for 

each person (user) and each movie (item), and relationships 

of the form p-RATED-m were created between the person 

(p) nodes and the movie (m) nodes based on the data in the 

ratings.csv file. For database 2, mean values for ratings by 

each person were pre-computed and stored in the person 

nodes. Similarity values between person nodes were also 

pre-computed and relationships of the form p1-SIMILAR-p2 

were created between the person nodes (p1, p2) based on the 

data in the ratings.csv file. The computed similarity values 

were then attached to the SIMILAR relationships as 

properties. The p1-SIMILAR-p2 relationships were only 

created for person node pairs with a similarity value of at 

least 0.8.  

The Cypher queries for loading the data into the two 

databases are given in Fig. 1.  

 

 
 Fig. 1:  Cypher queries for loading data into the graph databases 

 

Query 1 was used to read data from the movies.csv file, 

create movie nodes in the graph database, and then store the 

movies data in the nodes. Query 2 was used to read data 

from the persons.csv file, create person nodes in the graph 

database, and then store the persons data in the nodes. Query 

3 was used to read data from the ratings.csv file, locate the 

person node and movie node for each data record, and create 

the RATED relationship in the graph database, for the 

(person, movie) pair.  
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The Cypher queries for storing pre-computed values in 

database 2 are given in Fig. 2. Query 4 was used to compute 

the average rating values and store them in the person nodes 

of database 2. Query 5 was used to compute similarity 

values between pairs of person nodes, create the SIMILAR 

relationships and store the similarity values as properties for 

the SIMILAR relationships in database 2.  

 

 
Fig. 2:  Cypher queries for pre-computations for database 

 

B. Computation of recommendations 

Recall that the second objective of the experiments was to 

determine whether the methods proposed in Section IV 

provide a speed up in the computations for 

recommendations. To this end, experiments for generating 

recommendations were conducted on the two graph 

databases described in Section VI-A.  Fig. 3 shows the query 

for generating recommendations from database 1. Fig. 4  

shows the query for generating recommendations from 

database 2. 

The main difference between Query 6 and Query 7 is that 

Query 6 has to compute the average ratings and similarity 

values before generating the recommendations, while Query 

7 uses pre-computed average ratings and similarity values. 

Due to variability in execution times, each of the queries of 

Fig. 3 and Fig. 4 was executed 10 times for each of 10 

selected person nodes. The <personID value> that were used 

for the queries were: 50, 100, 150, 200, 250, 300, 350, 400, 

450, 500. These are the users personIDs for whom 

recommendations were generated.  

Table I gives the mean values for the execution times of 

the queries for each of the 10 person nodes. Column 2 shows 

the mean execution times in milliseconds, for each of the 10 

users for the execution of Query 6 on database 1 (method 

A). This is the database for which no pre-computed values 

are stored. On average, this method takes 2,102.6ms to 

generate 40 recommendations for a user. 

 

 
Fig. 3:  Cypher query for generating recommendations from database 1 

 

 
Fig. 4:  Cypher query for generating recommendations from database 2 

 

Column 3 shows the mean execution times in 

milliseconds, for each of the 10 users for the execution of 

Query 7 on database 2 (method B). This is the database for 

which the average rating and similarity values for person 

nodes were pre-computed and stored. On average, this 

method takes 137.6ms to generate 40 recommendations for a 

user. Column 4 shows the ratio of method A mean time to 

method B mean time (TMA/TMB) for each user. The values 

clearly indicate that it is much faster to generate 

recommendations using method B (database 2) compared to 

the use of method A (database 1). On average, method B is 
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15.3 times faster than method A. 

 
TABLE I 

MEAN EXECUTION TIMES FOR THE GENERATION OF  RECOMMENDATIONS 

 

PersonID  

of user U 

Mean times for generation of 

40 recommendations 

(milliseconds) 

Method B is  

n times 

faster than 

Method A 

n = 

TMA/TMB 

Method A: 

Database 1 

TMA 

Method B: 

Database 2 

TMB 

50 3406 132 25.8 

100 2502 122 20.5 

150 1708 136 12.6 

200 3229 110 29.4 

250 1511 147 10.3 

300 1608 179 9.0 

350 1682 182 9.2 

400 1721 117 14.7 

450 1712 134 12.8 

500 1947 117 16.6 

Mean 2102.6 137.6 15.3 

 

A second experiment was conducted to assess the benefits 

of using demographic data in the generation of 

recommendations. Database 1 was used for this experiment. 

The query that was used to generate recommendations used 

criteria based on gender and age difference. The rationale 

here is that persons who are of the same gender and same 

age group as the active user are more likely to have the same 

tastes as the active user. Query 8 of Fig. 5 was used for the 

computation of recommendations.  

 

 
Fig. 5:  Cypher query for generating recommendations from database 1 

using demographic data 

 

Table II gives the mean values for the execution times of 

Query 6 and Query 8 for each of the 10 person nodes. 

Column 2 shows the mean execution times in milliseconds, 

for each of the 10 users for the execution of Query 6 on 

database 1 (method A). Column 3 shows the mean execution 

times in milliseconds, for each of the 10 users for the 

execution of Query 8 on database 1 (method C). On average, 

this method takes 568ms to generate 40 recommendations 

for a user. Column 4 shows the ratio of method A mean time 

to method C mean time (TMA/TMC) for each user. The 

values clearly indicate that it is faster to generate 

recommendations using method C compared to the use of 

method A. On average, method C is 4 times faster than 

method A. 

 

TABLE II 

MEAN EXECUTION TIMES FOR THE GENERATION OF RECOMMENDATIONS FOR 

METHODS A AND C 

 

 

 

PersonID  

of user U 

Mean times for generation of 

40 recommendations 

(milliseconds) 

Method C is  

R times faster 

than Method 

A by R times 

R =  

TMA / TMC 

Method A: 

Database 1 

No limit to 

nodes:  

TMA 

Method C: 

 Database 1 

Use 

demographic 

info: TMC 

50 3406 1117 3 

100 2502 682 4 

150 1708 350 5 

200 3229 1007 3 

250 1511 415 4 

300 1608 364 4 

350 1682 325 5 

400 1721 463 4 

450 1712 439 4 

500 1947 520 4 

Mean 2103 568 4 

 

VII. CONCLUSIONS 

The objectives of the experiments reported in this paper 

were to investigate methods for speeding up the 

computations for generating recommendations for the user-

based collaborative filtering method. The data for generating 

recommendations was stored in a Neo4j graph database. 

Values that are required for the computations were pre-

computed and also stored in the graph database. The results 

of the experiments have demonstrated that the methods 

proposed in Section IV, result in a faster computations for 

the generation of recommendations. The experimental 

results for the comparison of method A (database 1 with 

only RATED relationships) and database 2 (which 

additionally has SIMILAR relationships, similarity values 

and average rating values) demonstrated that when average 

ratings, SIMILAR relationships and similarity values are pre-

computed, the speed of execution to compute 

recommendations is significantly increased. The 

experimental results for the comparison of method A 

(database 1 with only RATED relationships) and database 1 

(using demographic data) demonstrated that the use of 

demographic data results in faster computation of 

recommendations. However, the computation is not as fast 

as method B which uses pre-computed values. The final 

conclusion is that, when data for generating 

recommendations is stored in a graph database, it is easy to 

pre-compute and store values that are needed for the 

generation of recommendations. This speeds up the real-time 

generation of recommendations. 
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