

Abstract—Recommender systems are commonly used for

Internet-based activities to assist users in making decisions on

what items to select. One very common use of recommender

systems is in electronic commerce purchases. The need for

recommender systems in electronic commerce is due to the vast

amounts of items to choose from. Due to this vast amount of

items, generation of recommendations for recommender

systems is a computationally intensive activity. This paper

reports on studies that were conducted to investigate methods

for speeding up the computations for generating

recommendations when the data that is used to generate

recommendations is stored in a graph database. The proposed

methods involve the pre-computation and storage of values that

are used in the generation of recommendations. This leads to a

speed-up of the computations for generating recommendations.

Index Terms–-collaborative filtering, Cypher, graph

database, Neo4j, recommender system

I. INTRODUCTION

ecommender systems are commonly used for Internet-

based activities to assist users in making decisions on

what items to select. One very common use of recommender

systems is in electronic commerce (e-commerce) purchases.

Many e-commerce businesses, e.g. Amazon.com, use

recommender systems to provide customers with lists of

automatically generated recommendations of items to

purchase. Examples of items are: books, music, movies. The

recommendations are based on historical data on item

purchases. The historical data typically consists of previous

customers purchases and product ratings by other customers

[1]. The need for recommender systems in e-commerce is

due to the vast amounts of items to choose from, which leads

to information overload. E-commerce traders, e.g.

Amazon.com may have millions of item categories and

thousands of item types in each category. This makes it

extremely difficult for customers to examine all items in a

given category in order to make informed decisions on

which items to purchase. Various approaches exist for

implementing recommender systems. Jannach, et al. [2] and

Felfernig et al. [3] have observed that collaborative-filtering

systems, content-based systems, and knowledge-based

systems are the three basic approaches to recommender

systems implementation. The research reported in this paper

is based on collaborative-filtering recommender systems.

Generation of recommendations for collaborative-filtering

systems is a computationally intensive activity.

Manuscript received March 23, 2020; revised July 08, 2020.

Patricia. E. N. Lutu is a Senior Lecturer in the Department of Computer

Science, University of Pretoria, Pretoria 0002, Republic of South Africa,

phone: +27124204116; fax:+27123625188; e-mail:

Patricia.Lutu@up.ac.za; web: http://www.cs.up.ac.za/~plutu;

Experiments were conducted on methods for speeding up

the computations for generating recommendations for the

user-based collaborative-filtering method, when the data is

stored in a graph database. The experimental results

demonstrate that, for a graph database, it is easy to pre-

compute and store various values that are needed for

generating recommendations. These values are subsequently

used to generate recommendations for active users at a much

faster rate. The rest of the paper is organised as follows:

Section II provides the background to the reported research.

Section III provides a discussion of the implementation of

user-based collaborative-filtering recommender systems.

Section IV presents the methods that were studied for

speeding up computations. Section V provides a discussion

of the experimental methods that were used. Section VI

presents the experimental results. Section VII concludes the

paper.

II. BACKGROUND

A. Collaborative Filtering Recommender Systems

According to Ricci, et al. [1], collaborative filtering is the

most commonly used approach for recommender systems.

Collaborative filtering consists of two categories of

recommender systems. These are: neighbourhood-based and

model-based systems. Felfernig et al. [3] and Jannach et al.

[2] have reported two different approaches to

neighbourhood-based collaborative filtering. These are user-

based systems and item-based systems. Neighbourhood-

based collaborative filtering recommender systems rely on

users’ past behaviour to be able to recommend items [4].

The past behaviour is in the form of purchases and ratings of

items by users. The two categories of collaborative filtering

are user-based and item-based collaborative filtering. For

user-based collaborative filtering, the data for users with

similar preferences is used to suggest items to the active user

[3]. Given an active user U, who is interacting with the

system and requires recommendations, the first step of user-

based collaborative-filtering is to identity users with similar

ratings to U. This step is done using the k-nearest neighbour

algorithm, which identifies the k most similar users to U [5].

The ratings and purchases for these k users are then used to

determine the recommendations which are presented to the

user U. For item-based collaborative filtering, the rating of

the active user U for an item I is predicted based on the

ratings of U for items similar to I [5]. Two items are

considered to be similar if several users of the system have

rated these items in a similar fashion.

Methods for Speeding up Recommender System

Computations Using a Graph Database

Patricia E.N. Lutu

R

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

mailto:Patricia.Lutu@up.ac.za
http://www.cs.up.ac.za/~plutu

B. Computations for user-based collaborative filtering

The user-based approach takes the ratings of other users

for an item, and uses this information to make a

recommendation for the active user [5]. A common measure

that is used for this approach is Pearson correlation

coefficient of similarity [5]. Given two users Ua and Ub, a

set of items Iset, and item I, (I Iset), that is rated by both

Ua and Ub, the Pearson correlation coefficient of similarity

sim(Ua, Ub) between users Ua and Ub is given by

 (1) (1)

In equation (1), rUa,I denotes the rating for item I by

user Ua and rUb,I denotes the rating for item I by user Ub.

 and denote the mean ratings by Ua and Ub

respectively. The possible values of similarity range between

-1 and 1, where 1 represents perfect similarity, and -1

represents maximum dis-similarity.

The users with similarity values closest to 1 are then

selected. These are the k-nearest neighbours (e.g. k = 20) for

the active user Ua. The final task of the recommender system

is to predict item ratings for the active user Ua. These ratings

are for items that were purchased and rated by a similar user

Ub but not yet purchased or rated by user Ua. Given the set

of k-nearest users Uset, the rating prediction of an item I, not

yet purchased by Ua is computed as

 (2)

After the rating predictions are computed, the last step is

to select the items to be recommended to the active user.

These are the top n items (e.g. n = 20) with the highest

predicted ratings.

III. IMPLEMENTATION OF NEIGHBOURHOOB-BASED

COLLABORATIVE FILTERING RECOMMENDER SYSTEMS

A. Data storage for recommender systems

Recommender system data may be stored in a relational

database. As an example, for the Movies recommender

system, three tables may be used for users, items, and ratings

data. However, several researchers (e.g. [6]) have observed

that when there are very large numbers of users and items

(e.g. millions), and a large number of ratings in the relational

database tables, it is impossible or prohibitively expensive to

perform the necessary computations for recommendations in

real time. Alternatively, a ratings matrix is commonly used

to store the ratings of items by users [5]. The matrix has one

row for each user and one column for each item. Complex

matrix operations are performed on the ratings matrix [5] in

order to generate recommendations for the active user. There

are two graph-based approaches for the implementation of a

recommender system. The first approach uses the graph data

structure which is implemented as adjacency matrices [1],

[5]. The second approach uses a graph database [7], [8], [9].

B. Graph databases

Recommender systems data for millions of user item

ratings and millions of items is categorised as Big Data. Two

current solutions for storing and querying Big Data are

NoSQL databases and New SQL databases [10]. Graph

databases are one category of NoSQL databases. These

databases have been used to store data for recommender

systems [8], [9]. A graph database can store data entities and

relationships using simple concepts derived from

mathematical graph theory [11]. Nodes represent the graph

data entities. Relationships are implemented as edges which

connect the nodes (data entities). A graph database is ideal

for storing data for a neighbourhood-based collaborative

filtering recommender system because entities and

relationships of interest are users, items to recommend,

‘rating’ relationships between users and items, ‘similar’

relationships between users, and ‘similar’ relationships

between items [5].

Examples of graph database systems are Neo4j and

Apache Spark [7], [11]. Neo4j is an open source NoSQL

database system which supports ACID and database

transactions [7], [11]. This database system was used for the

research reported in this paper. Neo4j use labels and

properties. Labels are used to categorise graph nodes. For

example, the Movies database has two categories of nodes,

namely user nodes and movie nodes. So, the node labels are

‘User’ and ‘Movie’. Properties are attributes that are

associated with data entities (nodes) and relationships, and

are expressed as key-value pairs, e.g. (movieID: 1432).

Neo4j provides a query language called Cypher, which is

specifically designed for working with graph data. Cypher is

a declarative language like SQL. It uses patterns to describe

graph data, and it uses familiar SQL-like clauses.

C. Methods for speeding up computations for

neighbourhood-based collaborative filtering systems

The main computations for user-based collaborative

filtering were presented in Section II-B as equations (1) and

(2). The computation of similarity suffers from two major

problems. Firstly, the mean values for ratings for each user

in equation (1) need to be computed each time the equation

is computed. For the user-based approach, when there are

many users (thousands or hundreds of thousands) who have

rated the same items as the active user, then the

computations of the mean values will take a significant

amount of time. Secondly, the computation of equation (1)

involves the computation of products, squares, and square

roots. For the user-based approach, when there are many

users who have rated the same items as the active user, then

the computations of these terms will take a significant

amount of time. The computation of predictions for equation

(2) suffers from the following problem: the values of

similarity have to be computed whenever equation (2) is

evaluated. Several authors have reported that for user-based

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

and item-based recommendation, various values can be pre-

computed and stored in the recommender system database.

Linden et al. [12] have reported that, for the item-based

recommender system that Amazon.com was using in 2003, a

similar-items table holding the similarity values for item

pairs was created off-line. This resulted in major speed-ups

for generating recommendations online.

IV. METHODS THAT WERE STUDIED FOR

SPEEDING UP COMPUTATIONS

Graph databases were used for user-based collaborative

recommender systems for item recommendations. The

solutions for speeding up recommendations that were

studied and are reported in this paper are as follows: (1)

Each graph database consisted of two types of nodes: users

and items, and two types of relationships: RATED and

SIMILAR. For user-based recommendation, the SIMILAR

relationship was between two user nodes. (2) For user-based

recommendation the mean rating for each user was

computed and stored in the user’s graph node so that it did

not have to be computed repeatedly. (3) The similarity

values for user node pairs were computed based on equation

(1). SIMILAR relationships were then created, and the

similarity values were attached to the relationships. The

similarity values that were stored were limited to be very

high values (correlation >= 0.8). It should be noted that, in

practice, the values of the mean ratings and similarity should

be periodically updated. (4) Demographic data [13] was also

used to determine its effect on the speed of computation for

recommendations.

V. EXPERIMENTAL METHODS

A. Objectives of the experiment

The first objective of the experiments was to demonstrate

that the methods presented in Section IV are easy to

implement when a graph database is used to store the data

for a neighbourhood-based collaborative recommender

system. The second objective was to demonstrate that the

methods provide a significant speed up in the computation of

recommendations.

B. Data and algorithms for the experiments

The MovieLens dataset (ml-latest-small) which was

generated on 26 September, 2018, was used for the

experiments [14]. The dataset consists of four files:

movies.csv, ratings.csv, tags.csv and links.csv. The

movies.csv file contains 9,742 records and has the attributes:

movieId, title, genres. The ratings.csv file contains 100,836

records and has the attributes: userId, movieId, rating,

timestamp. The range for the ratings is [0.5, 1, 1.5, 2,…, 4.5,

5]. The tags.csv file consists of 3,683 records, and the

links.csv consists of 9,742 records. The files that were used

for the experiments are: movies.csv, ratings.csv and

persons.csv. The persons.csv file consists of 610 records and

has the attributes: userId, age, gender. The userId values

were obtained from the ratings.csv file. The age and gender

attribute values were randomly generated. The data was

stored in Neo4j Community Edition databases and the Neo4j

Cypher query language was used for processing the data.

VI. EXPERIMENTS

A. Creation of the Neo4j graph databases for the movies

data

For purposes of studying recommendation performance,

two Neo4j graph databases were created. The databases are

referred to as database 1 and database 2 in this discussion.

Neo4j Cypher queries were used to load the data into the

databases. For the two databases, nodes were created for

each person (user) and each movie (item), and relationships

of the form p-RATED-m were created between the person

(p) nodes and the movie (m) nodes based on the data in the

ratings.csv file. For database 2, mean values for ratings by

each person were pre-computed and stored in the person

nodes. Similarity values between person nodes were also

pre-computed and relationships of the form p1-SIMILAR-p2

were created between the person nodes (p1, p2) based on the

data in the ratings.csv file. The computed similarity values

were then attached to the SIMILAR relationships as

properties. The p1-SIMILAR-p2 relationships were only

created for person node pairs with a similarity value of at

least 0.8.

The Cypher queries for loading the data into the two

databases are given in Fig. 1.

 Fig. 1: Cypher queries for loading data into the graph databases

Query 1 was used to read data from the movies.csv file,

create movie nodes in the graph database, and then store the

movies data in the nodes. Query 2 was used to read data

from the persons.csv file, create person nodes in the graph

database, and then store the persons data in the nodes. Query

3 was used to read data from the ratings.csv file, locate the

person node and movie node for each data record, and create

the RATED relationship in the graph database, for the

(person, movie) pair.

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

The Cypher queries for storing pre-computed values in

database 2 are given in Fig. 2. Query 4 was used to compute

the average rating values and store them in the person nodes

of database 2. Query 5 was used to compute similarity

values between pairs of person nodes, create the SIMILAR

relationships and store the similarity values as properties for

the SIMILAR relationships in database 2.

Fig. 2: Cypher queries for pre-computations for database

B. Computation of recommendations

Recall that the second objective of the experiments was to

determine whether the methods proposed in Section IV

provide a speed up in the computations for

recommendations. To this end, experiments for generating

recommendations were conducted on the two graph

databases described in Section VI-A. Fig. 3 shows the query

for generating recommendations from database 1. Fig. 4

shows the query for generating recommendations from

database 2.

The main difference between Query 6 and Query 7 is that

Query 6 has to compute the average ratings and similarity

values before generating the recommendations, while Query

7 uses pre-computed average ratings and similarity values.

Due to variability in execution times, each of the queries of

Fig. 3 and Fig. 4 was executed 10 times for each of 10

selected person nodes. The <personID value> that were used

for the queries were: 50, 100, 150, 200, 250, 300, 350, 400,

450, 500. These are the users personIDs for whom

recommendations were generated.

Table I gives the mean values for the execution times of

the queries for each of the 10 person nodes. Column 2 shows

the mean execution times in milliseconds, for each of the 10

users for the execution of Query 6 on database 1 (method

A). This is the database for which no pre-computed values

are stored. On average, this method takes 2,102.6ms to

generate 40 recommendations for a user.

Fig. 3: Cypher query for generating recommendations from database 1

Fig. 4: Cypher query for generating recommendations from database 2

Column 3 shows the mean execution times in

milliseconds, for each of the 10 users for the execution of

Query 7 on database 2 (method B). This is the database for

which the average rating and similarity values for person

nodes were pre-computed and stored. On average, this

method takes 137.6ms to generate 40 recommendations for a

user. Column 4 shows the ratio of method A mean time to

method B mean time (TMA/TMB) for each user. The values

clearly indicate that it is much faster to generate

recommendations using method B (database 2) compared to

the use of method A (database 1). On average, method B is

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

15.3 times faster than method A.

TABLE I

MEAN EXECUTION TIMES FOR THE GENERATION OF RECOMMENDATIONS

PersonID

of user U

Mean times for generation of

40 recommendations

(milliseconds)

Method B is

n times

faster than

Method A

n =

TMA/TMB

Method A:

Database 1

TMA

Method B:

Database 2

TMB

50 3406 132 25.8

100 2502 122 20.5

150 1708 136 12.6

200 3229 110 29.4

250 1511 147 10.3

300 1608 179 9.0

350 1682 182 9.2

400 1721 117 14.7

450 1712 134 12.8

500 1947 117 16.6

Mean 2102.6 137.6 15.3

A second experiment was conducted to assess the benefits

of using demographic data in the generation of

recommendations. Database 1 was used for this experiment.

The query that was used to generate recommendations used

criteria based on gender and age difference. The rationale

here is that persons who are of the same gender and same

age group as the active user are more likely to have the same

tastes as the active user. Query 8 of Fig. 5 was used for the

computation of recommendations.

Fig. 5: Cypher query for generating recommendations from database 1

using demographic data

Table II gives the mean values for the execution times of

Query 6 and Query 8 for each of the 10 person nodes.

Column 2 shows the mean execution times in milliseconds,

for each of the 10 users for the execution of Query 6 on

database 1 (method A). Column 3 shows the mean execution

times in milliseconds, for each of the 10 users for the

execution of Query 8 on database 1 (method C). On average,

this method takes 568ms to generate 40 recommendations

for a user. Column 4 shows the ratio of method A mean time

to method C mean time (TMA/TMC) for each user. The

values clearly indicate that it is faster to generate

recommendations using method C compared to the use of

method A. On average, method C is 4 times faster than

method A.

TABLE II

MEAN EXECUTION TIMES FOR THE GENERATION OF RECOMMENDATIONS FOR

METHODS A AND C

PersonID

of user U

Mean times for generation of

40 recommendations

(milliseconds)

Method C is

R times faster

than Method

A by R times

R =

TMA / TMC

Method A:

Database 1

No limit to

nodes:

TMA

Method C:

 Database 1

Use

demographic

info: TMC

50 3406 1117 3

100 2502 682 4

150 1708 350 5

200 3229 1007 3

250 1511 415 4

300 1608 364 4

350 1682 325 5

400 1721 463 4

450 1712 439 4

500 1947 520 4

Mean 2103 568 4

VII. CONCLUSIONS

The objectives of the experiments reported in this paper

were to investigate methods for speeding up the

computations for generating recommendations for the user-

based collaborative filtering method. The data for generating

recommendations was stored in a Neo4j graph database.

Values that are required for the computations were pre-

computed and also stored in the graph database. The results

of the experiments have demonstrated that the methods

proposed in Section IV, result in a faster computations for

the generation of recommendations. The experimental

results for the comparison of method A (database 1 with

only RATED relationships) and database 2 (which

additionally has SIMILAR relationships, similarity values

and average rating values) demonstrated that when average

ratings, SIMILAR relationships and similarity values are pre-

computed, the speed of execution to compute

recommendations is significantly increased. The

experimental results for the comparison of method A

(database 1 with only RATED relationships) and database 1

(using demographic data) demonstrated that the use of

demographic data results in faster computation of

recommendations. However, the computation is not as fast

as method B which uses pre-computed values. The final

conclusion is that, when data for generating

recommendations is stored in a graph database, it is easy to

pre-compute and store values that are needed for the

generation of recommendations. This speeds up the real-time

generation of recommendations.

REFERENCES

[1] F. Ricci, L. Rokach and B. Shapira, “Introduction to recommender

systems”, in: Recommender Systems Handbook, F. Ricci, L. Rokach,

B. Shapira, P.B. Kantor eds. New York: Springer New York,

Dordrecht, Heidelberg, London, 2011, pp. 1-29.

[2] D. Jannach, M. Zanker, A. Felfernig and G. Friedrich, Recommender

Systems : An Introduction. 1st ed. New York: Cambridge University

Press, 2010.

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

[3] A. Felfernig, G. Friedrich, D. Jannach and M. Zanker, “Developing

constraint-based recommenders”, in: Recommender Systems

Handbook, F. Ricci, L. Rokach, B. Shapira, P.B. Kantor eds. New

York: Springer New York, Dordrecht, Heidelberg, London, 2011, pp.

187-212.

[4] M. Jones, “Recommender systems, Part 1: introduction to approaches

and algorithms”, IBM DeveloperWorks, 2013, pp. 1-8.

[5] C. Desrosiers and G. Karypis, “A comprehensive survey of

neighborhood-based recommendation methods”, in: Recommender

Systems Handbook, F. Ricci, L. Rokach, B. Shapira, P.B. Kantor eds.

New York: Springer New York, Dordrecht, Heidelberg, London,

2011, pp. 107-144.

[6] H. Lee and J. Kwon, “Efficient recommender system based on graph

data for multimedia application”, International Journal of

Multimedia and Ubiquitous Engineering, vol. 8, no. 4, July 2013.

[7] I. Robinson, J. Webber, E. Eifrem, Graph Databases, 2nd Edition,

O’Reilly Media Inc., 2015.

[8] F. Zi, N. Jin, L. Bi and J. Shen, “Design of movie recommender

system based on graph database”, Journal of Software Guide, vol. 15,

pp. 144-146, 2016.

[9] N. Yi, C. Li, X. Feng and M. Shi, “Design and implementation of

movies recommender system based on graph database”, Proceedings

of the IEEE 14th Web Information Systems and Applications

Conference, 2017, pp. 132-135.

[10] A. B. M. Moniruzzaman and S. A. Hossain, “NoSQL Database: New

era of databases for big data analytics - classification, characteristics

and comparison”, International Journal of Database Theory and

Application, vol. 6, no. 4. 2013.

[11] M. Needham and A.E. Hodler, Graph Algorithms: Practical

Examples in Apache Spark and Neo4j, O’Reilly Media Inc.,

California, USA, 2019.

[12] G. Linden, B.Smith and J. York, “Amazon.com recommendations:

Item-to-item collaborative filtering”, IEEE Internet Computing,

Jan.Feb 2003, pp. 76-80.

[13] M.J. Pazzani, “A framework for collaborative, content-based and

demographic filtering”. Artificial Intelligence Review vol. 13, pp.

393–408, 1999.

[14] F. Maxwell Harper and J.A. Konstan, “The MovieLens Datasets:

History and Context”. ACM Transactions on Interactive Intelligent

Systems (TiiS) vol. 5, no. 4, 2015 <https://doi.org/10.1145/2827872>

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

