



Abstract — The importance of reverse engineering in

engineering and related disciplines cannot be overemphasized.

In computer forensics, reverse engineering is widely applied in

the areas of digital, mobile and memory forensics except in

software forensics where automated tools are lacking but

undertaken manually by experts. Software forensics are

usually conducted on source codes to find evidence for legal

proceedings. Unfortunately, low correlation scores indicating

no infringement case are usually reported from genuine cases

where the infringer had exhaustively reworked the source code

to beat forensic analysis. Findings from this research indicate

that application of reverse engineering in software forensics

could reveal the modifications made by the infringer to produce

the alleged infringing software thereby empowering the

prosecuting team to prove the case beyond reasonable doubts in

courts, hence highly recommended for automation.

Index Terms — source code, software forensics analysis,

correlation scores, infringement pattern, reverse engineering

I. INTRODUCTION

 he continuous rise in source code theft and IP

infringement has threatened the global software industry

leading to financial loss to criminals up to about $500 billion

per annum. To recover from such loses, developers must

prosecute infringers. However, proving the ownership of

such stolen software and its similarity is usually difficult as

the infringer may have reworked the software to make it

appear completely different (Frantzeskou, 2018).

 With software forensic analysis, evidence could be

obtained from the alleged infringing software when the

codes are compared for correlations. The objective of

software forensic analysis is to find evidence for legal

proceedings by examining the literal expression and the

functionality of software Zeidman (2014). Software forensic

is a branch of Forensic Science which involves the use of

scientific or technical approaches to identify, collect,

analyse, and interpret evidence to support legal proceedings

(Arshad et al., 2018).

 Manuscript received September 26, 2020; revised May 5, 2021. This

work was supported in part by the Tertiary Education Trust Fund

(TETFund), Nigeria under Research Grant provision.

 Bassey Asuquo Ekanem is a Chief lecturer with Delta State Polytechnic

Ozoro, Nigeria where he teaches software engineering and related courses.

Phone number: +2348026905532; email address:

basseyekanem99@gmail.com.

 Jacob Meye is a Chief Lecturer and Researcher with Delta State

Polytechnic, Ozoro. He has participated as a team member in many

software engineering projects undertaken in the Institution. Email address:

dr.ma.jacob@gmail.com.

In most cases, forensic analysis from genuine

infringement cases usually result in low correlation scores

which points to no infringement case especially when the

infringement has exhaustively reworked the source code

making it appear different. With this most genuine cases are

usually dropped after forensic analysis when it appears that

such low correlation scores will not yield fruitful results in

proving the case in courts. Some experts usually take a step

further by applying reverse engineering in the forensic

analysis undertaken manually in attempt to gather additional

evidence need to prove the case.

 Cipresso and Stamp (2010) define software reverse

engineering as the process of analyzing a software system

to understand it as well as extract its design and

implementation information. In computer forensics,

reverse engineering is widely applied using automated tools

like IDA-pro, Sandboxie, Die and many others in the areas

of digital, mobile and memory forensics but not in software

forensics since automated tools for this are lacking

(Hendricks, 2020). In digital and mobile forensics, it is used

to retrieve evidence from computer and mobile devices

respectively by unearthing the actions performed by the

infringers whereas in memory forensics, it is used to analyze

volatile memory to unearth actions performed by malwares

in order to resolve attacks

In view of the above, this research work was

undertaken to examine the importance of reverse

engineering into software forensics and how it could be

incorporated into existing software forensic applications to

enhance the quality evidence generated for litigation

processes.

II. REVIEW OF RELETED WORKS

In Fakhar (2019), findings from a review on source code

infringements cases is presented showing continuous rise in

source code plagiarism and litigation cases in courts and

emphasizes the need for enhanced tools to effectively deal

with the situation. Also, a review of the impact of software

forensics tools indicate that they have come a long way in

terms of design, development, upgrading and enhancement

of applications used for forensic analysis which include

CodeSuite, Autopsy, EnCase and others (Upcounsel, 2020;

Comodo, 2018).

 Also, in Stim (2017) the use of these tools in forensic

analysis has been widely reported with successes and

failures experienced particularly with cases won in lower

courts but upturned at the upper courts due to technical

reasons not adequately addressed by the forensic analysis.

Application of Reverse Engineering Technique

in Software Forensic Analysis to Detect

Infringements

Bassey Asuquo Ekanem and Jacob Meye

T

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

In Chien and Lin (2016), and GreB Services (2020)

copyright registration issues and dishonest testimonies by

defendants’ team in courts are presented as additional

factors responsible for loss of genuine source code

infringement cases in courts.

The need for enhanced computer forensic methods

and techniques capable of providing valid and reliable

evidences to prove cases beyond reasonable doubts is

emphasized (Venčkauskas et al, 2015). Whereas in Ekanem

(2015) reengineering of legacy software used in modern

applications is recommended to incorporate enhanced

features. Kilinc (2015) identifies renaming of identifiers,

functions and parameters; adding and removal of comment

lines, and restructuring of code blocks as some of key

characteristics of stolen source codes and recommends a

methodology for calculating code similarity ratio based on

N-gram similarity, Vector Space Model (VSM) and Cosine

Normalization (CN) methods to detect such.

In Comodo (2020), application of reverse

engineering in computer forensics is reported as being

widely applied in in digital, mobile and memory forensics

whereas lacking automated tools to apply it in software

forensics, hence undertaken manually by experts. Where it

is applied, its capable of revealing the infringement made by

the infringer to make the source code appear different.

III. FINDINGS FROM THE REVIEW

The review reveals that reverse engineering techniques and

tools as applied in forensic science are mostly in areas of

digital, mobile and memory forensics whereas tools and

techniques for its application in software forensic are

lacking. If it were possible for investigators to perform

reverse code analysis on alleged stolen software to uncover

the exact changes that were made by the infringer to produce

the alleged infringing software, it will be a lot easier for the

prosecuting team to prove their case in court. It will help the

team to demonstrate in court convincingly how the infringer

modified the original software to produce the stolen copy.

But this is not the possible, as automated tools for these

important process are lacking.

 This is the focus of this research to consider how

reverse engineering could be effectively applied in software

forensic analysis to gather evidence for source code

infringement litigations.

IV. MATERIALS AND METHODS

The research work was designed as experimental research

with CodeSuite software used for the experiment and

analysis. The data used for the experiment is the original

source code of a result management software used in a

higher institution. Ten source files out of 47 were selected

for the exercise and coded as Case Software 1. Also, the

source code of the ten selected files were modified to

produce another copy of the software for the purpose of this

research which is coded Case Software 2.

The methods used in the research are outlined in the

following processes.

i. Review of Relevant Literature.

Research works and relevant literature were

reviewed to keep abreast with existing body of

knowledge in the area and gaps to fill.

ii. Pre-process stage

This involves acquisition and installation of

CodeSuite software selected as the software

forensic application for the research. It was

selected because of its ease of use and being one of

the best software forensic applications.

iii. Acquisition and Preservation stage

This involves the acquisition and preparation of

data needed for the analysis. In this case, Case

Software 1 and Case Software 2 were acquired.

iv. Code Analysis Stage

This involved the following activities:

a) checking for source file identity using the

FileIdentity program in CodeSuite.

b) Comparing Case Software 1 with Case

Software 2 for correlations and possible

infringements using CodeSimilarity and

Codematch programs in CodeSuite

Application.

c) code reverse engineering using static method

where the source codes were examined side-by-

side to detect identifiers and other program

elements in Case Software 1 that were replaced

in Code Software 2. Static (manual) method was

used since there are no reverse engineering tools

for software forensics.

v. Presentation Stage

This involves interpretation, presentation and

documentation of analysis results in a way that

contributes to the body of knowledge in Software

Forensic Analysis and success in IP infringement

litigations.

vi. Post-process Stage

This has to do the proper closing of the

investigation exercise (research) with proper

preservation of research data, documentation and

publishing of research finding.

TABLE I: Selected Source Files in Result Management Software (i.e.

Case Software 1)

S/n Filename Function of the file Lines

of

Code

1 userLogin.vb For user login process 19

2 Admin.vb Admin functions by the

administrator

16

3 lecturerRecords.vb Management of lecturers’

records

28

4 studentRecords.vb Management of students’

records

39

5 cgpaCompute.vb Computation of CGPA 101

6 courseMgt.vb Management of courses 67

7 resultsMgt.vb Management of results 86

8 scoresUpload.vb Uploading of raw scores 45

9 resultsPreview.vb Preview of results 39

10 recordsSearch.vb Searching of information in

the system

63

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

TABLE II: Source Files in Case Software 2 and Modifications effected

to create the file

S/n Filename Lines

of

Code

Type of Modifications

made

1 userLogin.vb 28 i) Renaming of identifiers

ii) Restructuring statements

sequence and code blocks

2 Admin.vb 26 ii) Modifying comment lines

ii) Renaming of identifiers

3 lecturerRecords.vb 41 i) Renaming of identifiers

ii) Modifying comment lines

iii) restructuring code blocks

4 studentRecords.vb 52 i) Renaming of identifiers

ii) Restructuring statements

sequence and code blocks

5 cgpaCompute.vb 135 i) Renaming of identifiers

ii) Modifying comment lines

6 courseMgt.vb 74 i) Renaming of identifiers

ii) Restructuring statements

sequence and code blocks

iii) Restructuring of code

7 resultsMgt.vb 114 i) Renaming of identifiers

ii) Modifying comment lines

iii) restructuring code blocks

8 scoresUpload.vb 63 i) Renaming of identifiers

ii) Modifying comment lines

ii) restructuring statement

sequence and code blocks

9 resultsPreview.vb 51 i) Renaming of identifiers

ii) Modifying comment lines

iii) restructuring code blocks

10 recordsSearch.vb 68 i) Renaming of identifiers

ii) Modifying comment lines

V. ANALYSIS AND RESULTS

Forensic analysis was conducted on the Case Software 1 and

Case Software 2 using CodeSuite following the steps below:

i) File identity analysis was performed which identified

the code files as Visual Basic program files with

extension .vb as shown in tables I and II.

ii) Filtering out of non-protectable elements (standard

keyword, procedures and methods etc.).as always

the case in source code infringement cases.

iii) File similarity analysis was performed using

CodeDiff program of CodeSuite which shows the %

similarity of files in both software as given in table

III.

iv) Codematch Analysis was performed using

CodeSuite to detect correlations in terms of

matching statements, comments & strings,

instruction sequence and identifiers. The results are

also presented in tables III.

TABLE III: Forensic Analysis Results after Standard Elements were

Filtered Out from Software Case Software 2

s/n Filename Similarity

- CodeDiff

(%)

Correlation -

CodeMatch

1 userLogin.vb

Admin.vb

4 3

2 lecturerRecords.vb 2 1

3 studentRecords.vb 3 2

4 cgpaCompute.vb 4 2

5 courseMgt.vb 2 2

6 resultsMgt.vb 3 4

7 scoresUpload.vb 1 3

8 resultsPreview.vb 2 2

9 recordsSearch.vb 2 4

10 userLogin.vb 3 5

Analysis also indicate none matching statement, comments

& Strings, instruction sequence and identifiers except for

some partial matching identifiers like cmdLItem matching

System, Parameters matching ebMaterial and ebwriter; and

others which are quite negligible.

v) Static Reverse Engineering (Manual)

Following the low correlation results as presented in

the above tables, static reverse analysis was

performed following the steps below:

a) line-by-line comparison of the source codes in

Case software 1 and Case Software 2 to

discover elements in Case Software 2 that were

used to replace program elements in Case

Software 1.

b) By using Find and Replace tool in a Code

Editor (in this case ATOM), identified program

elements in (a) above that were replaced in

Case Software 2 were correspondingly reversed

using the corresponding elements in Case

Software 1. The reverse engineering code

obtained through this process is coded as Case

Software 3. The code editor is used because,

reverse engineering features are not available in

existing software forensic applications.

c) Inspection (Manual) of the source codes in Case

Software 1 and Case Software 3 was performed.

This was done by side-by-side review and

comparison of the code for similarities.

vi) Repeat Forensic Analysis

Forensic analysis was repeated in this case on Case

Software 1 and Case Software 3 using CodeSuite.

The result of the analysis is presented in table IV.

TABLE IV: Forensic Analysis Results on Case Software 1 and Case

Software 3 after Static Reverse Engineering was performed

s/n Filename Similarity

- CodeDiff

(%)

Correlation -

CodeMatch

1 userLogin.vb

Admin.vb

100 100

2 lecturerRecords.vb 100 100
3 studentRecords.vb 100 100
4 cgpaCompute.vb 100 100
5 courseMgt.vb 100 100
6 resultsMgt.vb 100 100
7 scoresUpload.vb 100 100
8 resultsPreview.vb 100 100
9 recordsSearch.vb 100 100
10 userLogin.vb 100 100

vi) The correlation results were examined and

interpreted accordingly to determine their relevance

in proving alleged infringement.

vii) Research findings were documentation and

distributed accordingly.

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

VI. DISCUSSIONS

The low correlation scores from forensic analysis as shown

in Tables III and IV is misleading as they point to no source

code infringement case whereas the code were actually

copied from Case Software 1. However, following the

application of Code Reverse engineering to identify the

replaced elements and correspondingly reversing them, a

repeat of the forensic analysis resulted in high (100%)

correlation scores which confirm source code infringement.

In effect, application of reverse engineering in software

forensic as demonstrated in this research has clearly confirm

the importance of reverse engineering in software forensics.

It further emphasizes the need to incorporate code reverse

engineering features in software forensic applications to

assist investigators in revealing the modifications made by

infringers to create alleged infringing software. Algorithms

for this process could be designed and developed into code

reverse engineering programs to be incorporated into

existing software forensic software to fully automate the

process.

VII. CONCLUSION

The importance of reverse engineering in software forensics

cannot be overemphasized. It is capable of revealing the

changes that were made by the infringer to produce the

stolen software. With this tool, irrespective of the efforts by

infringers to rework the source code and make the stolen

software appear different, the changes will be uncovered and

used as evidence for litigations

VIII. RECOMMENDATIONS

The following recommendations are made based on the

research findings:

i. Application of reverse engineering in software

forensics is highly recommended as a process to

enhance the quality of forensic analysis reports.

ii. Research efforts towards designing algorithms

needed to apply reverse engineering in software

forensics and developing such algorithms into

computer programs to be incorporated into existing

software forensic applications are highly

recommended.

ACKNOWLEDGMENT

B. A. Ekanem thanks the Chairman of Software Analysis

and Forensic Engineering (SAFE) Corporation for guidance

and provision of free certification course on use of

CodeSuite to the researchers as well as free monthly license

to use the software for the research. Prof. Akpodiete, O. J.,

the Rector of Delta State Polytechnic, Ozoro is also

knowledge for creating the enabling environment for the

research to thrive.

REFERENCES

[1] G. Frantzeskou, S. Gritzalis, and S. G. MacDonell, Source Code

authorship analysis for supporting the cybercrime investigation

Process, 2005 Available:

https://pdfs.semanticscholar.org

[2] B. Zeidman, Software Forensics: Objectively Proving Infringement or

Misappropriation; IP WatchDog 2014. Available:

https://www.ipwatchdog.com/2014/10/27/software-forensics-

objectively-proving-infringement-or-Misappropriation/id=51825/

[3] H. Arshad, A. B. Jantan, and O. I. Abiodun, Digital Forensics:

Review of Issues in Scientific Validation of Digital Evidence; Journal

of Information Processing Systems; 14(2), 346-376, 2018.

https://www.researchgate.net/publication/327644306_Digital_Forensi

cs_Review_of_Issues_in_Scientific_Validation_of_Digital_Evidence

[4] T. Cipresso, and M. Stamp, Software Reverse Engineering. In:

Stavroulakis P., Stamp M. (eds) Handbook of Information and

Communication Security. Springer, Berlin, Heidelberg. pp 659-

696, 2010. Available:

https://doi.org/10.1007/978-3-642-04117-4_31

[5] B. Hendricks, Reverse Engineering in Digital Forensics; Chapter 4-

Lesson 9; Study.com, 2020. Available:

https://study.com/academy/lesson/reverse-engineering-in-digital-

forensics.html

[6] M. Fakhar, Computer Forensics: Overview of Software Forensics,

2019. Available:

https://resources.infosecinstitute.com/category/computerforensics/intr

oduction/areas-of- study/application-forensics/overview-of-software-

forensics

[7] Upcounsel.com, Software Forensics: Everything You Need to Know,

2020. Available

 https://www.upcounsel.com/software-forensics

[8] Comodo, What is Forensic Analysis? Comodo Group, 2018.

Available:

https://enterprise.comodo.com/blog/what-is-forensic-analysis/

[9] R. Stim, When Someone Steals Your Copyright Code or Software,

2017. Available:

https://www.nolo.com/legal-encyclopedia/how-do-you-know-if-you-

have-valid-claim- someone-stealing.html

[10] H. Chien, and E. Lin, Copyright Infringement Issues concerning

adaptations of computer software, Lee and Li Attorney at Law. 2016.

Available

https://www.lexology.com/library/detail.aspx?g=3802ceca-6595-

447d-93c4-c80d978ccb38

[11] GreB Services, 14 Famous Patent Infringement Cases that changed

US Patent Law; Greb Services, 2020. Available:

https://www.greyb.com/famous-patent-infringement-cases/

[12] A. Venčkauskas, J. Toldinas, S. Grigaliunas, R. Damasevicius, and

V. Jusas, Suitability of the digital forensic tools for investigation of

cyber crime in the Internet of Things and Services; The 3rd

International Virtual Research Conference in Technical Disciplines

(RCTD) 2015. Available:

https://www.researchgate.net/publication/299104454_Suitability_of_

the_digital_forensic_tools_for_investigation_of_cyber_crime_in_the

_Internet_of_Things_and_Services

 [13] B. A. Ekanem, Assessment of Component Stability for

Modernization Using Software Maturity Index, International Journal

of Scientific Research and Engineering Studies (IJSRES) 2(12),

2015. Available: www.ijsres.com

[14] D. Kilinc, F. Bozyiğit, A. Kut, and M. Kaya, Overview of Source

Code Plagiarism in Programming Course; International Journal of

Soft Computing and Engineering (IJSCE); ISSN:2231-2307, volume

5(2), 2015.

Author: Dr. Bassey Asuquo Ekanem is a holder of B. Sc. And M. Sc.

Degrees in Computer Science. He also obtained Ph. D. degree in

Engineering and Technology Management in 2017 with research interest in

Software Engineering – software components reusability. He is a member

of Computer Professionals of Nigeria (CPN), Nigeria Computer Society

(NCS) and IEEE. Ekanem is a certified Software Forensic expert using

CodeSuite Application. He is a lecturer with Delta State Polytechnic

Ozoro teaching software engineering and related courses. He has

published manner articles in the areas of software engineering with

particular note of “Legacy Components Stability Assessment and Ranking

Using Software Maturity Index”, Dealing with Components Reusability

Issues as Cutting-edge Applications Turn Legacy and many others.

Author: Dr. Jacob Meye is a Chief Lecturer and Researcher in Delta State

Polytechnic, Ozoro. Meye has undergone series of trainings in software

development and forensic analysis which prompted his interest as a

researcher in the area of software forensics. He has participated as a team

member in many software development and implementation projects where

he garnered practical experience in software development.

Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021

https://pdfs.semanticscholar.org/
https://www.ipwatchdog.com/2014/10/27/software-forensics-objectively-proving-infringement-or-Misappropriation/id=51825/
https://www.ipwatchdog.com/2014/10/27/software-forensics-objectively-proving-infringement-or-Misappropriation/id=51825/
https://www.researchgate.net/publication/327644306_Digital_Forensics_Review_of_Issues_in_Scientific_Validation_of_Digital_Evidence
https://www.researchgate.net/publication/327644306_Digital_Forensics_Review_of_Issues_in_Scientific_Validation_of_Digital_Evidence
https://doi.org/10.1007/978-3-642-04117-4_31
https://study.com/academy/lesson/reverse-engineering-in-digital-
https://study.com/academy/lesson/reverse-engineering-in-digital-
https://resources.infosecinstitute.com/category/computerforensics/introduction/areas-of-study/application-forensics/overview-of-software-forensics
https://resources.infosecinstitute.com/category/computerforensics/introduction/areas-of-study/application-forensics/overview-of-software-forensics
https://resources.infosecinstitute.com/category/computerforensics/introduction/areas-of-study/application-forensics/overview-of-software-forensics
https://www.upcounsel.com/software-forensics
https://enterprise.comodo.com/blog/what-is-forensic-analysis/
https://www.nolo.com/legal-encyclopedia/how-do-you-know-if-you-have-valid-claim-%20someone-stealing.html
https://www.nolo.com/legal-encyclopedia/how-do-you-know-if-you-have-valid-claim-%20someone-stealing.html
https://www.lexology.com/library/detail.aspx?g=3802ceca-6595-447d-93c4-c80d978ccb38
https://www.lexology.com/library/detail.aspx?g=3802ceca-6595-447d-93c4-c80d978ccb38
https://www.greyb.com/famous-patent-infringement-cases/
https://www.researchgate.net/profile/Algimantas_Venckauskas
https://www.researchgate.net/profile/Jevgenijus_Toldinas
https://www.researchgate.net/profile/Sarunas_Grigaliunas
https://www.researchgate.net/profile/Robertas_Damasevicius
https://www.researchgate.net/publication/299104454_Suitability_of_the_digital_forensic_tools_for_investigation_of_cyber_crime_in_the_Internet_of_Things_and_Services
https://www.researchgate.net/publication/299104454_Suitability_of_the_digital_forensic_tools_for_investigation_of_cyber_crime_in_the_Internet_of_Things_and_Services
https://www.researchgate.net/publication/299104454_Suitability_of_the_digital_forensic_tools_for_investigation_of_cyber_crime_in_the_Internet_of_Things_and_Services
http://www.ijsres.com/

