
 

 
Abstract—A new Hermite basis function was proposed for the 

pure bending problem of Kirchhoff-Love bent plate elements. 
Finite element analysis was performed on a square flat plate 
model. The results were not as good as the existing known basis 
functions. 
 

Index Terms— FEM, Kirchhoff-Love plates, Hermite 
elements, The basis function 
 

I. INTRODUCTION 
EM (Finite Element Method) is the most popular 
method of numerical simulation for solving partial 
differential equations. Solutions of partial differential 

equations are always continuous functions, while numerical 
schemes treat them as discrete. The discretization process in 
FEM is realized by interpolation using a Lagrangian or 
Hermite basis. The former is a preferred choice in many FEM 
codes but has many problems in terms of computational 
accuracy and stability. On the other hand, despite its 
complications, the latter is an effective way to avoid these 
problems and to improve results. However, the study of 
Hermitian bases in high-dimensional spaces has not been 
very active. Thus, this study aims to find new Hermitian bases 
and examines their performances. 

In this study, Kirchhoff-Love Plate Problem is solved by 
using a traditional base [1] and new Hermitian bases, 
respectively, and the obtained solutions are compared with 
the analytical solution. The performance of each basis is 
evaluated by errors from the analytical solution. 
  

II. THEORY 

1. Kirchhoff-Love Plate Theory 
Kirchhoff-Love Plate is a plate satisfying the following 

three conditions: 
 

1)  A line segment that was perpendicular to the neutral 
plane before deformation is kept perpendicular after 
deformation. 

2)  The length of the line segment does not change after 
deformation. 

3)  The normal stress acting on the surface parallel to the 
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neutral plane can be ignored. 
From these assumptions, parallel displacements can be 

expressed by the differential of vertical displacement. Let the 
displacements of 𝑥𝑥 -, 𝑦𝑦 - and 𝑧𝑧 -directions be 𝑈𝑈(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) , 
𝑉𝑉 (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) and 𝑊𝑊(𝑥𝑥, 𝑦𝑦, 𝑧𝑧), respectively.  

 

𝑈𝑈(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = −𝑧𝑧
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

 (1) 

𝑉𝑉 (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = −𝑧𝑧
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

 (2) 

𝑊𝑊(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝜕𝜕(𝑥𝑥, 𝑦𝑦) (3) 
where 𝜕𝜕  indicates the vertical displacement of the neutral 
plane. The neutral plane is at 𝑧𝑧 = 0. 

The components of strain tensor are as follows:  

𝜀𝜀𝑥𝑥 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝑥𝑥

= −𝑧𝑧
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2  (4) 

𝜀𝜀𝑦𝑦 =
𝜕𝜕𝑉𝑉
𝜕𝜕𝑦𝑦

= −𝑧𝑧
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2  (5) 

𝛾𝛾𝑥𝑥𝑦𝑦 =
1
2
�
𝜕𝜕𝑈𝑈
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑉𝑉
𝜕𝜕𝑥𝑥

� = −
𝑧𝑧
2

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

 (6) 

In the Kirchhoff-Love theorem, 𝜀𝜀𝑧𝑧 = 𝛾𝛾𝑦𝑦𝑧𝑧 = 𝛾𝛾𝑧𝑧𝑥𝑥 = 0 . Let 
Young’s modulus and Poisson’s ratio be 𝐸𝐸  and 𝜈𝜈 , 
respectively. The components of stress tensor can be related 
to the components of strain tensor as follows: 

�
𝜎𝜎𝑥𝑥
𝜎𝜎𝑦𝑦
𝜏𝜏𝑥𝑥𝑦𝑦

� =
𝐸𝐸

1 − 𝜈𝜈2
⎣
⎢⎡

1 𝜈𝜈
𝜈𝜈 1

1 − 𝜈𝜈⎦
⎥⎤�

𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝛾𝛾𝑥𝑥𝑦𝑦

� (7) 

The bending moments tensor are as follows. 

⎩�
⎨
�⎧

𝑀𝑀𝑥𝑥
𝑀𝑀𝑦𝑦
𝑀𝑀𝑥𝑥𝑦𝑦⎭�

⎬
�⎫

= � �
𝜎𝜎𝑥𝑥
𝜎𝜎𝑦𝑦
𝜏𝜏𝑥𝑥𝑦𝑦

�𝑧𝑧 d𝑧𝑧
ℎ/2

−ℎ/2
 (8) 

Let shear forces of  𝑥𝑥-, 𝑦𝑦-directions and load be 𝑄𝑄𝑥𝑥, 𝑄𝑄𝑦𝑦, and 
𝑞𝑞 , respectively. Then, the equations of equilibrium are shown 
as follows:  

𝜕𝜕𝑀𝑀𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑀𝑀𝑥𝑥𝑦𝑦

𝜕𝜕𝑦𝑦
− 𝑄𝑄𝑥𝑥 = 0 (9) 

𝜕𝜕𝑀𝑀𝑦𝑦

𝜕𝜕𝑦𝑦
+

𝜕𝜕𝑀𝑀𝑥𝑥𝑦𝑦

𝜕𝜕𝑥𝑥
− 𝑄𝑄𝑦𝑦 = 0 (10) 

𝜕𝜕𝑄𝑄𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑄𝑄𝑦𝑦

𝜕𝜕𝑦𝑦
+ 𝑞𝑞 = 0 (11) 

In summary, the following equation is obtained. 
𝜕𝜕2𝑀𝑀𝑥𝑥
𝜕𝜕𝑥𝑥2 + 2

𝜕𝜕2𝑀𝑀𝑥𝑥𝑦𝑦

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
+

𝜕𝜕2𝑀𝑀𝑦𝑦

𝜕𝜕𝑦𝑦2 = −𝑞𝑞 (12) 

Let the flexural rigidity of the plate be 𝐷𝐷(=  𝐸𝐸ℎ3/12(1 +
𝜈𝜈)(1 − 𝜈𝜈)). Putting all the equations together, the equation 
becomes 
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𝐷𝐷 �
𝜕𝜕2

𝜕𝜕𝑥𝑥2 �
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2 � + 𝜈𝜈 

𝜕𝜕2

𝜕𝜕𝑥𝑥2 �
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2 �

+ 2(1 − 𝜈𝜈)
𝜕𝜕2

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
�

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

�

+
𝜕𝜕2

𝜕𝜕𝑦𝑦2 �
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2 �

+ 𝜈𝜈 
𝜕𝜕2

𝜕𝜕𝑦𝑦2 �
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2 �� = 𝑞𝑞 

(13) 

When 𝜔𝜔 , 𝑆𝑆  and 𝑅𝑅  denote the weight, surface area, and 
residual, respectively, the Galerkin Method can be written as 
follows: 

� 𝜔𝜔𝑅𝑅d𝑆𝑆
 

𝑆𝑆
= 0 (14) 

When the deflection 𝜕𝜕 is approximated as 𝜕𝜕 = 𝒘𝒘 ⋅ 𝑵𝑵 , by 
substituting the basis function 𝑵𝑵  and Eq. (13) into 𝑅𝑅, Eq. 
(14) can be rewritten as  

�� 𝐷𝐷(𝐊𝐊1 + 𝐊𝐊2 + 𝐊𝐊3 + 𝐊𝐊4 + 𝐊𝐊5)
 

𝑺𝑺
d𝑨𝑨�  𝒘𝒘

= � 𝑵𝑵𝑵𝑵 d𝑨𝑨
 

𝑺𝑺
 

(15) 

where 

𝐊𝐊1 = 
𝜕𝜕2𝑵𝑵
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝑵𝑵𝑇𝑇

𝜕𝜕𝑥𝑥2  

(16) 

  𝐊𝐊2 = 𝜈𝜈
𝜕𝜕2𝑵𝑵
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝑵𝑵𝑇𝑇

𝜕𝜕𝑦𝑦2  

𝐊𝐊3 =  2(1 − 𝜈𝜈)
𝜕𝜕2𝑵𝑵
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

𝜕𝜕2𝑵𝑵𝑇𝑇

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
 

𝐊𝐊4 = 
𝜕𝜕2𝑵𝑵
𝜕𝜕𝑦𝑦2

𝜕𝜕2𝑵𝑵𝑇𝑇

𝜕𝜕𝑦𝑦2  

   𝐊𝐊5 = 𝜈𝜈
𝜕𝜕2𝑵𝑵
𝜕𝜕𝑦𝑦2

𝜕𝜕2𝑵𝑵𝑇𝑇

𝜕𝜕𝑥𝑥2  

Summarizing with the stiffness matrix 𝐊𝐊, vector 𝒘𝒘, and 
external force vector f, the simultaneous equation 𝐊𝐊𝒘𝒘 = 𝒇𝒇  
is obtained. 

 

2. About Hermite Elements 
The normalized coordinate system of elements is 𝜉𝜉 (-1≤

𝜉𝜉 ≤1). The condition of the basis functions 𝐻𝐻  is expressed as 
follows:  

𝐻𝐻2𝑖𝑖−1�𝜉𝜉𝑗𝑗� = 𝛿𝛿𝑖𝑖𝑗𝑗，
𝜕𝜕𝐻𝐻2𝑖𝑖
𝜕𝜕𝜉𝜉

�𝜉𝜉𝑗𝑗� = 𝛿𝛿𝑖𝑖𝑗𝑗 (17) 

where 𝛿𝛿𝑖𝑖𝑗𝑗 is Kronecker's delta, and 𝑖𝑖  and 𝑗𝑗  both take the 
values 1 and 2. The nodal positions are 𝜉𝜉1 = −1 and 𝜉𝜉2 =1. 
The Hermite basis function satisfying the condition can be 
obtained as follows: 

𝐻𝐻1 =
1
4
(𝜉𝜉 − 1)2(𝜉𝜉 + 2) 

(18) 
𝐻𝐻2 =

1
4
(𝜉𝜉 − 1)2(𝜉𝜉 + 1) 

𝐻𝐻3 =
1
4
(𝜉𝜉 + 1)2(𝜉𝜉 − 2) 

𝐻𝐻4 =
1
4
(𝜉𝜉 + 1)2(𝜉𝜉 − 1) 

We will assume that there are two nodes 𝑥𝑥1  and 𝑥𝑥2  in the 
global coordinate system 𝑥𝑥. The displacements at the nodes 

are 𝑢𝑢1  and 𝑢𝑢2 , and the rotation angles are 𝜃𝜃1  and 𝜃𝜃2 . The 
displacement and rotation angle are given as 𝑢𝑢(𝑥𝑥)  and 
𝜃𝜃(𝑥𝑥) = 𝜕𝜕𝑢𝑢/𝜕𝜕𝑥𝑥 , respectively. 𝑢𝑢(𝑥𝑥)  and 𝜃𝜃(𝑥𝑥)  can be 
approximated by the Hermite basis function as follows. 

𝑢𝑢(𝑥𝑥) = 𝑵𝑵(𝑥𝑥) ⋅ 𝒖𝒖 = 𝐀𝐀𝑯𝑯(𝜉𝜉) ⋅ 𝒖𝒖 (19) 

𝜃𝜃(𝑥𝑥) =
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝑵𝑵
𝜕𝜕𝑥𝑥

⋅ 𝒖𝒖 = �
𝜕𝜕𝑥𝑥
𝜕𝜕𝜉𝜉

�
−1

𝐀𝐀
𝜕𝜕𝑯𝑯
𝜕𝜕𝜉𝜉

⋅ 𝒖𝒖 (20) 

where 𝑯𝑯𝑇𝑇 = {𝐻𝐻1 𝐻𝐻2 𝐻𝐻3 𝐻𝐻4} , 𝒖𝒖T = [𝑢𝑢1 𝜃𝜃1 𝑢𝑢2 𝜃𝜃2] , 
and 𝐀𝐀 is the correction matrix for dimensionality matching.  
In summary, the correction matrix 𝐀𝐀 can be written as 

𝐀𝐀 =

⎣
⎢
⎢
⎢
⎢
⎡

1 0

0
(𝑥𝑥2 − 𝑥𝑥1)

2
𝑰𝑰

𝑰𝑰
1 0

0
(𝑥𝑥2 − 𝑥𝑥1)

2 ⎦
⎥
⎥
⎥
⎥
⎤

 (21) 

 
The two-dimensional function 𝑯𝑯  is obtained as follows:  

𝑯𝑯𝑇𝑇 = {𝑯𝑯(1)
𝑇𝑇  𝑯𝑯(2)

𝑇𝑇  𝑯𝑯(3)
𝑇𝑇  𝑯𝑯(4)

𝑇𝑇 } (22) 
where 𝑯𝑯(𝑘𝑘)

𝑇𝑇 = {𝐻𝐻3𝑘𝑘−2 𝐻𝐻3𝑘𝑘−1 𝐻𝐻3𝑘𝑘 } . By multiplying 
Hermite basis functions shown in Eq. (18) in each dimension, 
the content of 𝑯𝑯(𝑘𝑘)

𝑇𝑇  is as follows: 
𝐻𝐻3𝑘𝑘−2(𝜉𝜉, 𝜂𝜂) = 𝐻𝐻2𝑖𝑖−1(𝜉𝜉) ⋅ 𝐻𝐻2𝑗𝑗−1(𝜂𝜂) 

(23) 𝐻𝐻3𝑘𝑘−1(𝜉𝜉, 𝜂𝜂) = 𝐻𝐻2𝑖𝑖(𝜉𝜉) ⋅ 𝐻𝐻2𝑗𝑗−1(𝜂𝜂) 

𝐻𝐻3𝑘𝑘(𝜉𝜉, 𝜂𝜂) = 𝐻𝐻2𝑖𝑖−1(𝜉𝜉) ⋅ 𝐻𝐻2𝑗𝑗(𝜂𝜂) 

where 𝜂𝜂 is -1≤ 𝜂𝜂 ≤1 and the normalized coordinate system 
of elements, and the combinations of 𝑘𝑘 , 𝑖𝑖 , and 𝑗𝑗  are as 
follows: 

(𝑘𝑘, 𝑖𝑖, 𝑗𝑗) = (1,1,1), (2,2,1), (3,2,2), (4,1,2) (24) 
 
The displacement of the z-direction is 𝜕𝜕(𝑥𝑥, 𝑦𝑦) , and the 
rotation angles in the 𝑥𝑥- and 𝑦𝑦 -directions are 𝜃𝜃𝑥𝑥(𝑥𝑥, 𝑦𝑦) and 
𝜃𝜃𝑦𝑦(𝑥𝑥, 𝑦𝑦) . The 𝜕𝜕(𝑥𝑥, 𝑦𝑦) , 𝜃𝜃𝑥𝑥(𝑥𝑥, 𝑦𝑦) , and 𝜃𝜃𝑦𝑦(𝑥𝑥, 𝑦𝑦)  can also be 
approximated by the Hermite basis function as follows. 

𝜕𝜕(𝑥𝑥, 𝑦𝑦) = 𝑵𝑵 ⋅ 𝒘𝒘 = 𝐀𝐀𝑯𝑯(𝜉𝜉, 𝜂𝜂) ⋅ 𝒘𝒘 

(25) 
𝜃𝜃𝑥𝑥(𝑥𝑥, 𝑦𝑦) =

𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕(𝑥𝑥, 𝑦𝑦) = 𝐀𝐀
𝜕𝜕𝑯𝑯
𝜕𝜕𝑥𝑥

⋅ 𝒘𝒘 

𝜃𝜃𝑦𝑦(𝑥𝑥, 𝑦𝑦) =
𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕(𝑥𝑥, 𝑦𝑦) = 𝐀𝐀
𝜕𝜕𝑯𝑯
𝜕𝜕𝑦𝑦

⋅ 𝒘𝒘 

where 𝒘𝒘𝑇𝑇 = [𝜕𝜕1 𝜃𝜃𝑥𝑥1 𝜃𝜃𝑦𝑦1 𝜕𝜕2 𝜃𝜃𝑥𝑥2 𝜃𝜃𝑦𝑦2 𝜕𝜕3 𝜃𝜃𝑥𝑥3 𝜃𝜃𝑦𝑦3 𝜕𝜕4 𝜃𝜃𝑥𝑥4 𝜃𝜃𝑦𝑦4]. 
In summary, the equations look like follows: 

⎩�
⎨
�⎧𝜕𝜕(𝑥𝑥, 𝑦𝑦)

𝜃𝜃𝑥𝑥(𝑥𝑥, 𝑦𝑦)
𝜃𝜃𝑦𝑦(𝑥𝑥, 𝑦𝑦)⎭�

⎬
�⎫

=

⎣
⎢
⎢
⎢
⎡

1 0 0

0
𝜕𝜕𝜉𝜉
𝜕𝜕𝑥𝑥

𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥

0
𝜕𝜕𝜉𝜉
𝜕𝜕𝑦𝑦

𝜕𝜕𝜂𝜂
𝜕𝜕𝑦𝑦⎦

⎥
⎥
⎥
⎤

⎩
��
⎨
��
⎧ 𝑯𝑯 ⋅ 𝒘𝒘

𝐀𝐀
𝜕𝜕𝑯𝑯
𝜕𝜕𝜉𝜉

⋅ 𝒘𝒘

𝐀𝐀
𝜕𝜕𝑯𝑯
𝜕𝜕𝜂𝜂

⋅ 𝒘𝒘
⎭
��
⎬
��
⎫

 (26) 

By using the 𝑥𝑥-coordinates 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, and 𝑦𝑦-coordinates 
𝑦𝑦1, 𝑦𝑦2, 𝑦𝑦3, 𝑦𝑦4  of the nodes of a quadrangle element, the 
correction matrix 𝐀𝐀 is as follows: 

𝐀𝐀 =

⎩�
�⎨
��
⎧𝐀𝐀1 0 

0 𝐀𝐀2

 0   0  
 0   0  

0  0
0  0

𝐀𝐀3 0 
0 𝐀𝐀4 ⎭�

�⎬
��
⎫

 (27) 

where 𝐀𝐀k (k = 1,2,3,4) is as follows: 
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𝐀𝐀1

=

⎣
⎢
⎢⎢
⎡

1 0 0

0
(𝑥𝑥2 − 𝑥𝑥1)

2

�𝑦𝑦2 − 𝑦𝑦1�
2

0
(𝑥𝑥4 − 𝑥𝑥1)

2

�𝑦𝑦4 − 𝑦𝑦1�
2 ⎦

⎥
⎥⎥
⎤
 

𝐀𝐀2

=

⎣
⎢
⎢
⎢
⎡

1 0 0

0
(𝑥𝑥2 − 𝑥𝑥1)

2

�𝑦𝑦2 − 𝑦𝑦1�
2

0
(𝑥𝑥3 − 𝑥𝑥2)

2

�𝑦𝑦3 − 𝑦𝑦2�
2 ⎦

⎥
⎥
⎥
⎤
 

𝐀𝐀3

=

⎣
⎢
⎢
⎢
⎡

1 0 0

0
(𝑥𝑥3 − 𝑥𝑥4)

2

�𝑦𝑦3 − 𝑦𝑦4�
2

0
(𝑥𝑥3 − 𝑥𝑥2)

2

�𝑦𝑦3 − 𝑦𝑦2�
2 ⎦

⎥
⎥
⎥
⎤
 

𝐀𝐀4

=

⎣
⎢
⎢
⎢
⎡

1 0 0

0
(𝑥𝑥3 − 𝑥𝑥4)

2

�𝑦𝑦3 − 𝑦𝑦4�
2

0
(𝑥𝑥4 − 𝑥𝑥1)

2

�𝑦𝑦4 − 𝑦𝑦1�
2 ⎦

⎥
⎥
⎥
⎤
 

(28) 
 
3. Proposal of a New Basis Function 

The two new basis functions are proposed. Using 12 
unknown coefficients 𝛼𝛼𝑘𝑘𝑘𝑘 , the basic function is given as 
follows: 

𝐻𝐻𝑖𝑖
(𝑡𝑡)(𝜉𝜉, 𝜂𝜂) = � � 𝛼𝛼𝑘𝑘𝑘𝑘

(𝑡𝑡)𝜉𝜉𝑘𝑘𝜂𝜂𝑘𝑘
3

𝑘𝑘=0

3

𝑘𝑘=0
 (29) 

where 𝑖𝑖 is from 1 to 12, and 𝑘𝑘 and 𝑙𝑙 are the order of the terms, 
and 𝑡𝑡 indicates the function number used in this paper. When 
creating the basis function 𝑯𝑯 , three conditions are given as 
follows at the four nodes of the flat plate element. 

If 𝑚𝑚 = 3𝑘𝑘 − 2 

(30) 

𝐻𝐻𝑚𝑚�𝜉𝜉𝑖𝑖, 𝜂𝜂𝑗𝑗� = 1 and the others = 0 
If 𝑚𝑚 = 3𝑘𝑘 − 1 

𝜕𝜕𝐻𝐻𝑚𝑚�𝜉𝜉𝑖𝑖,𝜂𝜂𝑗𝑗�
𝜕𝜕𝜉𝜉 = 1 and the others = 0 

If 𝑚𝑚 = 3𝑘𝑘 
𝜕𝜕𝐻𝐻𝑚𝑚�𝜉𝜉𝑖𝑖,𝜂𝜂𝑗𝑗�

𝜕𝜕𝜂𝜂 = 1 and the others = 0 

where 𝑚𝑚  is from 1 to 12, and  𝑘𝑘  is from 1 to 4, and 
𝑖𝑖 and 𝑗𝑗 both take the values 1 and 2. 𝜉𝜉1 = −1 and 𝜉𝜉2 =1, 
and 𝜂𝜂1 = −1 and 𝜂𝜂2 =1. 
 

III. NUMERICAL CALCULATION CONDITIONS 
There are three basic functions. Each of them will be used 

to verify the flat plate under a uniformly distributed load. 
Numerical calculations were performed for two boundary 
conditions. The material parameters are shown in TABLE I 
and the boundary conditions are shown in Eq (31) and Eq (32). 
In the finite element method, the Gaussian quadrature is used 
for integration. There are 25 (5x5) integration points in the 
Gaussian quadrature. 

 
TABLE I 

PARAMETER OF MODEL 
Symbol Quantity Unit Value 

𝐸𝐸 Young’s modulus MPa 200 × 103 
𝑣𝑣 Poisson's ratio  0.3 
𝐿𝐿 A side of square mm 400 
𝑡𝑡 Thickness of the 

plate 
mm 10 

𝐷𝐷 Flexural rigidity 𝑁𝑁 ⋅ 𝑚𝑚𝑚𝑚 1.83 × 107 
 
 

1, 4-sided simply supported (B.C.1) 
At 𝑥𝑥 = 0, 𝐿𝐿 

(31) 
𝜕𝜕 = 0, 𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦 = 0 

At 𝑦𝑦 = 0, 𝐿𝐿 
𝜕𝜕 = 0,  𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥 = 0 

A uniformly distributed load 𝑞𝑞(𝑥𝑥, 𝑦𝑦) = 𝑞𝑞0 (= -0.2) (MPa) is 
applied to the entire plate. The theoretical solution [2] of the 
maximum displacement in the z-direction was obtained 
from 𝜕𝜕 = 0.00406𝑞𝑞0𝐿𝐿4/D=1.1349(mm). 

 
2, 4-sided fixed (B.C.2) 

At 𝑥𝑥,𝑦𝑦 = 0, 𝐿𝐿 
(32) 

𝜕𝜕 = 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 = 0, 𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦 = 0 

The load is 𝑞𝑞0= -0.1 (MPa). The theoretical solution [2]  𝜕𝜕 =
0.00126𝑞𝑞0𝐿𝐿4/D=1.7611(mm). 
 

IV. RESULTS AND DISCUSSIONS 
A. Simple Hermite (𝑡𝑡 = 1) 

This function is not a new discovery and is originally 
known. From Eq. (22), the function can be found. TABLE II 
shows the results of the two boundary conditions. Each result 
is a different number of elements. TABLE III shows the 
coefficients of that function. The term 𝜉𝜉2𝜂𝜂2 is not used. Fig.1 
and Fig.2 is the figure of the deformed plate under B.C.1 and 
B.C.2. The number of elements in those diagrams is 
400(20x20). Also, the number of elements in the diagrams 
that will be displayed in this paper is the same and those 
figures show a magnified deformation in the z-direction. 
 

TABLE II 
RESULTS OF SIMPLE HERMITE (𝑡𝑡 = 1) 

B.C. 1 2 
NUM.ELEM MAXIMUM DIPLACEMENT 

4x4 0.9657 1.6932 
6x6 1.0294 1.7054 
8x8 1.0523 1.7144 

10x10 1.0630 1.7194 
20x20 1.0774 1.7268 
40x40 1.0810 1.7287 

 
 

Fig .1 Deformed plate under B.C.1 (𝑡𝑡 = 1) 
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TABLE III 
COEFFICIENTS OF BASIS FUNCTIONS 𝛼𝛼𝑘𝑘𝑘𝑘 

(1): Simple Hermite 
(𝑡𝑡 = 1) 𝑖𝑖 

𝑘𝑘 𝑙𝑙 1 2 3 4 5 6 7 8 9 10 11 12 
0 0 1/4 1/8 1/8 1/4 -1/8 1/8 1/4 -1/8 -1/8 1/4 1/8 -1/8 
 1 -3/8 -3/16 -1/8 -3/8 3/16 -1/8 3/8 -3/16 -1/8 3/8 3/16 -1/8 
 2 0 0 -1/8 0 0 -1/8 0 0 1/8 0 0 1/8 
 3 1/8 1/16 1/8 1/8 -1/16 1/8 -1/8 1/16 1/8 -1/8 -1/16 1/8 

1 0 -3/8 -1/8 -3/16 3/8 -1/8 3/16 3/8 -1/8 -3/16 -3/8 -1/8 3/16 
 1 9/16 3/16 3/16 -9/16 3/16 -3/16 9/16 -3/16 -3/16 -9/16 -3/16 3/16 
 2 0 0 3/16 0 0 -3/16 0 0 3/16 0 0 -3/16 
 3 -3/16 -1/16 -3/16 3/16 -1/16 3/16 -3/16 1/16 3/16 3/16 1/16 --3/16 

2 0 0 -1/8 0 0 1/8 0 0 1/8 0 0 -1/8 0 
 1 0 3/16 0 0 -3/16 0 0 3/16 0 0 -3/16 0 
 2 0 0 0 0 0 0 0 0 0 0 0 0 
 3 0 -1/16 0 0 1/16 0 0 -1/16 0 0 1/16 0 

3 0 1/8 1/8 1/16 -1/8 1/8 -1/16 -1/8 1/8 1/16 1/8 1/8 -1/16 
 1 -3/16 -3/16 -1/16 3/16 -3/16 1/16 -3/16 3/16 1/16 3/16 3/16 -1/16 
 2 0 0 -1/16 0 0 1/16 0 0 -1/16 0 0 1/16 
 3 1/16 1/16 1/16 -1/16 1/16 -1/16 1/16 -1/16 -1/16 -1/16 -1/16 1/16 

 
Fig .2 Deformed plate under B.C.2 (𝑡𝑡 = 1) 

 

B. New Hermite 1 (𝑡𝑡 = 2) 
This function is the first of the two newly proposed 

functions. TABLE IV shows the results of the two boundary 
conditions. The results were a different number of elements. 
TABLE V shows the coefficients of this function. All 
coefficients of the four terms (𝜂𝜂2 , 𝜉𝜉𝜂𝜂, 𝜉𝜉𝜂𝜂2 ,  𝜉𝜉2𝜂𝜂) are zero. 
Because there are three more of those terms than (𝑡𝑡 = 0), the 
accuracy of (𝑡𝑡 = 1) is reduced. Fig.3 and Fig.4 is the figure 
after deformation of the plate under B.C.1 and B.C.2. 
 

TABLE IV 
RESULTS OF NEW HERMITE 1 (𝑡𝑡 = 2) 

B.C. 1 2 
NUM.ELEM MAXIMUM DIPLACEMENT 

4x4 0.7608 1.5208 
6x6 0.7878 1.4857 
8x8 0.7968 1.4569 

10x10 0.8009 1.4334 
20x20 0.8065 1.4257 
40x40 0.8079 1.4214 

 

 
Fig .3 Deformed plate under B.C.1 (𝑡𝑡 = 2) 

 
 

 
Fig .4 Deformed plate under B.C.2 (𝑡𝑡 = 2) 
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TABLE V 
COEFFICIENTS OF BASIS FUNCTIONS 𝛼𝛼𝑘𝑘𝑘𝑘 

(2): New Hermite 1 
(𝑡𝑡 = 2) 𝑖𝑖 

𝑘𝑘 𝑙𝑙 1 2 3 4 5 6 7 8 9 10 11 12 
0 0 1/4 1/8 0 1/4 -1/8 0 1/4 -1/8 0 1/4 1/8 0 
 1 -3/8 0 -1/8 -3/8 0 -1/8 3/8 0 -1/8 3/8 0 -1/8 
 2 0 0 0 0 0 0 0 0 0 0 0 0 
 3 1/8 -1/8 1/8 1/8 1/8 1/8 -1/8 -1/8 1/8 -1/8 1/8 1/8 

1 0 -3/8 -1/8 0 3/8 -1/8 0 3/8 -1/8 0 -3/8 -1/8 0 
 1 0 0 0 0 0 0 0 0 0 0 0 0 
 2 0 0 0 0 0 0 0 0 0 0 0 0 
 3 3/8 1/8 0 -3/8 1/8 0 3/8 -1/8 0 -3/8 -1/8 0 

2 0 0 -1/8 1/8 0 1/8 1/8 0 1/8 -1/8 0 -1/8 -1/8 
 1 0 0 0 0 0 0 0 0 0 0 0 0 
 2 0 0 -1/8 0 0 -1/8 0 0 1/8 0 0 1/8 
 3 0 1/8 0 0 -1/8 0 0 1/8 0 0 -1/8 0 

3 0 1/8 1/8 -1/8 -1/8 1/8 1/8 -1/8 1/8 -1/8 1/8 1/8 1/8 
 1 3/8 0 1/8 -3/8 0 -1/8 3/8 0 -1/8 -3/8 0 1/8 
 2 0 0 1/8 0 0 -1/8 0 0 1/8 0 0 -1/8 
 3 -1/2 -1/8 -1/8 1/2 -1/8 1/8 -1/2 1/8 1/8 1/2 1/8 -1/8 

C. New Hermite 2 (𝑡𝑡 = 3) 
This function is the second of the two newly proposed 

functions. TABLE VI shows the results of the two boundary 
conditions, with different number of elements. TABLE VII 
shows the coefficients of this function. All coefficients of the 
term 𝜉𝜉3𝜂𝜂3 is zero. Compared to (𝑡𝑡 = 1), zero coefficients in 
the higher order terms make the results inaccurate. Fig.5 and 
Fig.6 is the figure after deformation of plate under B.C.1 and 
B.C.2. 
 

TABLE VI 
RESULTS OF NEW HERMITE 2 (𝑡𝑡 = 3) 

B.C. 1 2 
NUM.ELEM MAXIMUM DIPLACEMENT 

4x4 0.8584 1.5050 
6x6 0.9150 1.5159 
8x8 0.9354 1.5239 

10x10 0.9449 1.5284 
20x20 0.9577 1.5349 
40x40 0.9609 1.5366 

 

 
Fig .5 Deformed plate under B.C.1 (𝑡𝑡 = 3) 

 

 

Fig .6 Deformed plate under B.C.2 (𝑡𝑡 = 3) 
 

Fig.7 and Fig.8 are the graphs showing the errors between 
the numerical results and the theoretical solution for each of 
the three functions. The 𝑥𝑥-axis of the graphs is the number of 
elements in the 𝑥𝑥-direction, and the 𝑦𝑦-axis is the errors (%). 
The logarithmic scale is used for 𝑥𝑥-axis. Under the B.C.1, 
with 20x20 elements, the errors of Simple (𝑡𝑡 = 1)  is 5.07% 
while New Hermite 1 (𝑡𝑡 = 2) and New Hermite 2 (𝑡𝑡 = 3) are 
28.93 and 15.61%. These results are not good. Under the 
B.C.2, with 20x20 elements, the errors of Simple (𝑡𝑡 = 1)  is 
1.95% while New Hermite 1 (𝑡𝑡 = 2) and New Hermite 2 (𝑡𝑡 =
3) are 19.29 and 12.75%. They are also bad results. Under 
B.C.1, all cases showing poor accuracy are caused by the 
inability to correctly represent the boundary conditions. The 
New Hermite 1 had the worst results in both conditions and 
the New Hermite 2 was not better than the Simple precision.  
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TABLE VII 
COEFFICIENTS OF BASIS FUNCTIONS 𝛼𝛼𝑘𝑘𝑘𝑘 

(3): New Hermite 2 
(𝑡𝑡 = 3) 𝑖𝑖 

𝑘𝑘 𝑙𝑙 1 2 3 4 5 6 7 8 9 10 11 12 
0 0 3/16 0 0 3/16 0 0 3/16 0 0 3/16 0 0 
 1 -5/16 -1/16 -1/16 -5/16 1/16 -1/16 5/16 -1/16 -1/16 5/16 1/16 -1/16 
 2 1/16 1/8 0 1/16 -1/8 0 1/16 -1/8 0 1/16 1/8 0 
 3 1/16 -1/16 1/16 1/16 1/16 1/16 -1/16 -1/16 1/16 -1/16 1/16 1/16 

1 0 -5/16 -1/16 -1/16 5/16 -1/16 1/16 5/16 -1/16 -1/16 -5/16 -1/16 1/16 
 1 1/2 1/8 1/8 -1/2 1/8 -1/8 1/2 -1/8 -1/8 -1/2 -1/8 1/8 
 2 -1/16 1/16 1/16 1/16 -1/16 -1/16 1/16 -1/16 1/16 -1/16 -1/16 -1/16 
 3 -1/8 0 -1/8 1/8 0 1/8 -1/8 0 1/8 1/8 0 -1/8 

2 0 1/16 0 1/8 1/16 0 1/8 1/16 0 -1/8 1/16 0 -1/8 
 1 -1/16 1/16 -1/16 -1/16 -1/16 -1/16 1/16 1/16 -1/16 1/16 -1/16 -1/16 
 2 -1/16 -1/8 -1/8 -1/16 1/8 -1/8 -1/16 1/8 1/8 -1/16 -1/8 1/8 
 3 1/16 1/16 1/16 1/16 -1/16 1/16 -1/16 1/16 1/16 -1/16 - 1/16 1/16 

3 0 1/16 1/16 -1/16 -1/16 1/16 1/16 -1/16 1/16 -1/16 1/16 1/16 1/16 
 1 -1/8 -1/8 0 1/8 -1/8 0 -1/8 1/8 0 1/8 1/8 0 
 2 1/16 1/16 1/16 -1/16 1/16 -1/16 -1/16 1/16 1/16 1/16 1/16 -1/16 
 3 0 0 0 0 0 0 0 0 0 0 0 0 

 

 
Fig .7 The errors of numeric calculation under B.C.1 

 

 
Fig .8 The errors of numeric calculation under B.C.2 

 

V. CONCLUSION 
In this study, the two basis functions were proposed. But 

they are inferior in accuracy to the existing basis functions.  
This time, it was found once again that the existing basis 
functions are excellent. 
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