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Abstract— In the paper the fluid flow of large viscosity and 

low Reynolds number is considered in bounded areas. The 

linearized 2D Navier-Stokes equation (Stokes system) is studied  

in the rectangular area partly filled with the heavy fluid.  The 

case of the solenoidal body force is considered. The solutions of 

the Stokes system are obtained with the appropriate boundary 

conditions. It is proved that for the given pressure the solution 

is uniquely defined. The profiles of free surfaces are 

constructed for the different pressure. 

 

Index Terms—Stokes-Flow, Free-Boundary 

 

I. INTRODUCTION 

E study 2D viscous fluid flow in a bounded reservoir 

partly filled with the very viscous fluid (oil or 

polymers for example) for the low Reynolds number 

(Re<<1). This type of fluids are widely used in MEMS 

(microelectromechanical systems) devices [11], [12], [14]. 

In this case the Navier-Stokes equation can be linearized 

and reduced to the Stokes system [1], [3], [11], [12], [13], 

[14], [15], [16], [17], [18], [19], [20]. The flow is called the 

Stokes flow. We consider the stationary system when the 

body force is solenoidal and the pressure is a harmonic 

function and is constant at the free boundary, the normal 

components of the tension are also constant at the free 

boundary. The Stokes system is reduced to the stationary 

system. 

Our purpose is to define pressure, velocity and free 

surface.  

II. STATEMENT OF THE PROBLEM  

   In the Cartesian coordinate system xy0  we consider the 

area D  bounded by the lines 

0,0,,  constayaxax , and the unknown 

line ],[)(,0)(),( 1 aaCxxxy   . It is 

assumed that D is filled with a fluid of large viscosity. In 

this case the velocity components of the flow satisfy the 

following system (Stokes system) [1], [3], [11], [12], [13], 

[14], [15], [16], [17], [18], [19], [20] 
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where ),( yx VVV


 is the velocity, ),( yx FFF


 is the 

 

 body force, P is the pressure,  is the density,  is the 

viscosity. 

  We  admit , that body force is solenoidal i.e. 
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and consider the stationary case of (1), (2), (3) for the  

stationary pressure, velocity ),( 000

yx VVV


 and body force 

),( 000

yx FFF
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The system (5), (6), (7) is valid in the domain D and the 

following boundary conditions hold  [1], [3], [11], [12], 

[13], [14], [15], [16], [17], [18], [19], [20] 
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where nn and  n  are the tension’s normal and tangential 

components  correspondingly, )(0 yf  is some continues 
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function, 00 )0( Cf  , 0C  is a given constant. Taking into 

account  [1], [3], [11], [12], [13], [14], [15], [16], [17], [18], 

[19], [20] 
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From (4), (5), (6), (7),  one obtains  

                       .0


FdivP                                 (13) 

We have to solve the following  

 

PROBLEM 1. To find in D  the functions 
00 , yx VV  having 

 continues first order derivatives and satisfying the system 

of equations (5), (6), (7) with the boundary conditions (8), 

(9), (10). 

   By (13) we obtain 0P , i.e. P is a harmonic function 

in D  satisfying  conditions (9) [1], [3], [11], [12], [13], 

[14], [15], [16], [17], [18], [19], [20]. 

 

  The function 01 CPP   is also harmonic in D and  

 

according to (9) satisfies the boundary conditions 
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Hence, we can continue the function ),(1 yxP through the 

lines ax  and ax   and we obtain the harmonic 

periodic function in the stripe bounded with the lines 

0y  and periodic line 

)(0 x ));()(( 0 axaxx  . The 

function ),( yxP is also periodic in this stripe. 

   Let 01 ),( CyxPP  be an imaginary part of the  
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The function )(0 zz   is a conformal mapping of the 

area D on the rectangle  
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 of  0z plane. The inverse function       
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is also holomorphic and satisfies the boundary conditions 
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   By using the Villa formula and (15) one obtains [4], [5], 

[7], [10], [19]                                

,),()]([
1

)( 30

2

0

000

1

CdtztKtz  





         (16)                          

where   
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  )),(( 000 z    is unknown function of the Muskhe-

lishvili-Kveselava 
*H class [2], [15],   is the Weierstrass 

“zeta-function” for the  fundamental periods 12  and  

 

0022 ,2 PCi  , 1  and 3C  are the real constants, 

 

 1  is a point corresponding to the point ax 2  [4], [5], 

[15], [19]. 

From (16) one obtains the relationship between the pressure 

and the free boundary 
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Hence from the viewpoint of mathematics the pressure can 

be any periodic harmonic function.     

REMARK 1. When  the body forces vector is not 

solenoidal, the pressure satisfies the Poisson equation   

                                  


 FdivP     .                                                                

Analogously to the previous results by means of the 

conformal mapping (14) and Poisson’s formula we can find 

the inverse function ),(1

* yxP
 [2] 
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where   *

0

*

0

** ,,, yxyxG  is the Green function for the 

 rectangle 0D  which is given below by the formula (32). 
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III. SOLUTION OF THE PROBLEM 

  Let us suppose that ),( yxP is known function. 

Consequently, the profile of a free boundary can be 

obtained  

 

 from the formula 0))(,( PxxP  . 

  By (5), (7), (8), (11) for the definition of ),(0 yxVx we 

 have to solve the following Poisson equation   
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By  (7), (18), (19), (20) the function 
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  By means of the mapping )( 00 z  given by the formula 
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  Hence, by means of the conformal mapping )( 00 z  the 
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THEOREM: For the given harmonic pressure P the 

components of the velocity yx VV ,  of Stokes flow are 

uniquely defined and are given by formulas (37) and (38), 

where 
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yV  are given by (30) and (36). 

REMARK 2.Having find yx VV ,  the vortex will be 

defined by the formula [1], [3], [11], [12], [13], [14], [15], 

[16], [17], [18], [19], [20] 
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REMARK 4.  We can consider the non-stationary case, 

when the velocity components, body forces and the pressure 
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By means of the Banach theorem we obtain [2]: 
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 then there exists the unique solution of  equations (45) 

,(46). 

Hence, for any harmonic pressure the solution of the Stokes 

system also exists in the non-stationary case. 

REMARK 5. The free boundary problem for the ideal fluid 

was consider by the author in [6],[8],[9],[10]. In this works 

has been investigated  the waves with peaks -Stokes waves. 

IV. CONCLUSION 

   For any harmonic pressure satisfying the condition (9) 

there exist the unique solution of the Stokes system. Any 

level line of harmonic pressure represents some wave in the 

creeping flow (this fact  is very similar to the case of perfect 

fluid). 

  Below 2 type of waves for the different harmonic 

pressures are constructed by means of “Maple”. 

V. EXAMPLES 

Here we consider two cases: 

1) 

  )47(,)()cos(cos
1

Im 







 dhcochzdar

d
P                                                             

where ,/ ad  h (h>0) is some parameter. After simple 

transformations we obtain 

).2(cos)2(cosh)2(

)48(),(sin)(cosh)(

),2()2()2cos(2

2)()(cosh4

222

0

222

0

22

xdyddhcochb

xdyddhcochb

ydcochdhcochxdb

bdhcochPd









         

By  the formula (48) it is easy to construct the profile of a 

free boundary for the different parameters  by means of 

“Maple”. In Fig. 1. and Fig. 2.the profilis of the free 

boundaries are given for the different  parameters 
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Fig. 1.  The profile of the free boundary for the pressure (47) in case                                                  

of 1,5,2,1 00  haCP . 

 
   Fig. 2.  The profile of the free boundary for the pressure (47) in case                                                      

of 2,5,5,1 00  haCP .   

2) ,)(
2

Im 212 ihsn
a

zK
snP                          (49)                        

where h (h>0) is some parameter and sn is the Jakobi 

function with the periods 14K  and 22K . 

After simple transformations we obtain 

)50(.,sin21,)2cos()2(

),2()2cos(2)2(cos)2(cosh

4

2

222

2

a
dhccxdydcochb

ydcochxdcxdydc

bP







      

  By formula (50) it is easy to construct the profile of a free 

boundary for the different parameters  by means of 

“Maple”. In Fig. 3.and Fig. 4, the free boundary is given for 

different parameters.  

 
Fig. 3.  The profile of the free boundary for the pressure (49) in case of                                                      

9.7;6.1;2;1;8;1 2100  KKcaCP .   

                                        

 
Fig. 4.  The profile of the free boundary for the pressure (49) in case of                                                      

9.7;6.1;2;1;8;5 2100  KKcaCP .   
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