Proceedings of the World Congress on Engineering 2021
WCE 2021, July 7-9, 2021, London, U.K.

On the Free Boundary Problem for the Creeping
Flow

Nino Khatiashvili, Member, IAENG

Abstract— In the paper the fluid flow of large viscosity and
low Reynolds number is considered in bounded areas. The
linearized 2D Navier-Stokes equation (Stokes system) is studied
in the rectangular area partly filled with the heavy fluid. The
case of the solenoidal body force is considered. The solutions of
the Stokes system are obtained with the appropriate boundary
conditions. It is proved that for the given pressure the solution
is uniquely defined. The profiles of free surfaces are
constructed for the different pressure.

Index Terms—Stokes-Flow, Free-Boundary

I. INTRODUCTION

WE study 2D viscous fluid flow in a bounded reservoir
partly filled with the very viscous fluid (oil or
polymers for example) for the low Reynolds number
(Re<<1). This type of fluids are widely used in MEMS
(microelectromechanical systems) devices [11], [12], [14].
In this case the Navier-Stokes equation can be linearized
and reduced to the Stokes system [1], [3], [11], [12], [13],
[14], [15], [16], [17], [28], [19], [20]. The flow is called the
Stokes flow. We consider the stationary system when the
body force is solenoidal and the pressure is a harmonic
function and is constant at the free boundary, the normal
components of the tension are also constant at the free
boundary. The Stokes system is reduced to the stationary
system.
Our purpose is to define pressure, velocity and free
surface.

Il. STATEMENT OF THE PROBLEM

In the Cartesian coordinate system OXy we consider the

area D bounded by the lines
X=-a,X=a, y=0,a=const >0, and the unknown

line y=¢(X),o(x)>0, o(x)eC'[-a,a]. It is
assumed that D is filled with a fluid of large viscosity. In
this case the velocity components of the flow satisfy the
following system (Stokes system) [1], [3], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20]
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where \7 (V. ,V, ) is the velocity, E (F, ,F,) isthe

body force, P is the pressure, o is the density,v is the
viscosity.

We admit, that body force is solenoidal i.e.
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and consider the stationary case of (1), (2), (3) for the

5
stationary pressure, velocity V 0(\/XO,VyO) and body force

E O(FXO, FyO)

lg_P =F)+1AV), (5)
p OX
i% =F) +1AV), (6)
Yo,

VAR
a_x_,__y:o. @)
OX oy

The system (5), (6), (7) is valid in the domain D and the
following boundary conditions hold [1], [3], [11], [12],
[13], [14], [15], [26], [17], [18], [19], [20]

VXO X:iazvyo x:ia:on y=0" Vyo‘y:o: 0, (8)
Plia=Pl, . = fo(¥); P, o=Co >0,

F" y=o0= Po =const <C, )
Om y=<p(X):_P0; One|y=p(x) = 0 (10)

where o, and o, are the tension’s normal and tangential

components  correspondingly, f,(y) is some continues
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function, f,(0)=C,, C, isa given constant. Taking into

account [1], [3], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20]

T = 1D
oV
~P+2u Ny cosn, +| —P+2u—> |cosn,,

OX oy

where

cosn, = —L; cosn, = ;.(12)
1+(p,)? V1+(p,)?

From (4), (5), (6), (7), one obtains
AP = pdivF = 0. (13)

We have to solve the following

PROBLEM 1. Tofind in D the functions VXO,Vy0 having
continues first order derivatives and satisfying the system
of equations (5), (6), (7) with the boundary conditions (8),
(9), (10).

By (13) we obtain AP =0, i.e. P is a harmonic function
in D satisfying conditions (9) [1], [3], [11], [12], [13],
[14], [15], [16], [271, [28], [19], [20].

The function P, = P —C, is also harmonic in D and

according to (9) satisfies the boundary conditions

P P, —C,.

=P ;P

x=a’

x—-a y-=0, P‘ y=0() =

Hence, we can continue the function P, (X, Y) through the

lines X =—aand X = a and we obtain the harmonic
periodic function in the stripe bounded with the lines
y = 0 and periodic line

@ (X) (9,(X) = p(x);—a< x < a). The
function P (X, y) is also periodic in this stripe.

Let P, = P (X, y) — C,be an imaginary part of the
holomorphic complex function y(z);

2, =y (2) =Q(X, y) +iP (X, y) —iCy; z = x+1y,
®_Q  R_ N

ox oy oy Ox
Q

x—a— Oy, Q| x=a— @1,

The function z, = /() is a conformal mapping of the

area D on the rectangle

D, ={-®/2<Q< /2P, -C, <P, <0},
@, = CONSt;
of Z, plane. The inverse function

Z:‘//o(zo):‘//:l(z); (14)

is also holomorphic and satisfies the boundary conditions
=1 . =1 .
Imy (Z)| po=0; Imy (Z)‘ p-p-c,= Po:  (19)

By using the Villa formula and (15) one obtains [4], [5],
[71, [10], [19]

vo(2) == [l O1K(L2) dt+C, (9
72.0

where

K(t,z,) =[s(t -z, —iw,) —c(t—iw,)]. 17)

@, = (¥, (2,)), isunknown function of the Muskhe-

lishvili-Kveselava H " class [2]. [15], ¢ is the Weierstrass

“zeta-function” for the fundamental periods 2, and
2iw,, w, =C, —P,, ®, andC, are the real constants,

@, is a point corresponding to the point X = 2a [4], [5],

[15], [19].
From (16) one obtains the relationship between the pressure
and the free boundary

P(%y)~Co=Im > [Ipy 1K (t 2,) .
T 9

Hence from the viewpoint of mathematics the pressure can
be any periodic harmonic function.

REMARK 1. When the body forces vector is not
solenoidal, the pressure satisfies the Poisson equation

) bd

AP = pdivF
Analogously to the previous results by means of the
conformal mapping (14) and Poisson’s formula we can find

the inverse function P, (X, Y) [2]
PA(xy) = -2 x
2

IG(X*, Y X, yo*)‘z//(')‘zdivE dx,dy,” +P(x,y)

Dy

where G(X*, y*, XO*, yo*) is the Green function for the

rectangle D, which is given below by the formula (32).
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I1l. SorLutioN OF THE PROBLEM

Let us suppose that P (X,Y)is known function.
Consequently, the profile of a free boundary can be

obtained
from the formula P(X, ¢(X)) = P,

By (5), (7), (8), (11) for the definition of V.’ (X, y) we
have to solve the following Poisson equation

1orP 1

pV X v
with the boundary conditions

AV = ZF=d,(x,Y), (18)

= V0

X

y0=0, (19)

Xx=ta

0

oV
241 p (cosn, —cosn, )=

—P, +P, cosn, + P, cosn,, ong(x),
or

y “(L+g,)= ;;(1—¢;+\/1+(¢;)2)- (20)

For the definition of VyO (X, y) we have to solve the
following Poisson equation

AV, = ia—P—EFO_CD (X, Y), (1)
pv oy
with the boundary conditions
0 0
Vo ea=V|,0=0, 22)

0
Zyﬁy(cos n, —cosn, )=

—P, + P, cosn, + P, cosn,, on ¢(x),

or
ag/y L+g,)= @ 9, +1+(p,)? ) (23)

0

By (7), (18), (19), (20) the function X satisfies the

equation

A oV, oD, (x,Y)

= 24
OX 19)4 @

with the boundary conditions
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By means of the mapping /,(Z,) given by the formula
(14) we can consider system (24), (25), (26) in Z, plane

AV, =y, (z,)] @], @)

*

\Y

X

*

=0, (28)

Q=ay

Q:0= X
v =- ﬂ;—w)(l 0, + 1+ (p)7 )=

2 (x(Q,P))on P =P, -C,,

(29)

where

V* — aVXO (Q’ P) . (D* — a(I)l(x((g’ P)! y(Q’ P))
" x X '
Hence, by means of the conformal mapping ¥/, (ZO) the

problem (24), (25), (26) is equivalently reduced to problem
(27), (28), (29). The solution of the problem (27), (28), (29)
is well-known and is given by the formula [2], [15]

vV, = —% DI G,y % vo') [l @} e, dy,

+U, (30)
where
\ 1%
Ul =Re— [[p: 01 K(t.2,) . (31)
0

is a harmonic function, K (t, z,) is given by (17), and G

is the Green function for the rectangle D,
G(X !y 'XO 1y0 ):

llog (x" - Xo*)2 +(y + YO*)Z
2 (X*_Xo )2+(y*_y0 )?

: (32)

where
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7" = sn( o +iy”
C* 1

X, +iy, .
sn| +—~1 *yl =X, +iY,
C

SN is the Jakobi “sinus” with the periods 4K, and 2K,

* C_P
4],[5],[15], C" = —2 2
[4], [5], [15] 2K,

w, =2C"K,; w,=C, —P, =C'K,.

Analogously to the previous results for the definition of the

0

function V, = in Z, plane by (7), (21), (22), (23)

we obtain the following system

* . 2 .
AV) =yo(z,)| @, (33)
Vyloo=Vylo=0. (34)
V; =-¢,(X(Q,P)),on P=P, -C,, (35)

_ 20, (xQP).YQP)

where @, = 5
X

The solution of problem (33), (34), (35) is

*

Vy = %iG(X*,y*,XO*,yo*)‘l/f(l)‘z (D; d)(1*dy1*

~-U’, (36)

where U | is given by (31), K(t,z,) is given by (17),

G(X*, Yy, XO*, yo*) is the Green function for the
rectangle
D, given by (32).

Hence, having find V, and V; we can define V, and

V, by the formulas
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@37)

V2= IV @y dt- IV @yt

(38)

V) = T[\/y* (x,t)] dt.

THEOREM: For the given harmonic pressure P the
components of the velocity V, , V, of Stokes flow are

uniquely defined and are given by formulas (37) and (38),
where VX* and V; are given by (30) and (36).

REMARK 2.Having find V,,V,  the vortex will be

defined by the formula [1], [3], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20]

N,
ox oy

REMARK 3. The formula (32) can be simplified . As the

parameter @, of the conformal mapping (//O(ZO) can be

chosen arbitrary, we can choose @, in such a way that the

quantity g = exp (— 71;() =0, y = T s
infinitely

small and the following formula is valid [4], [5], [15]

(zo j |z,
sn[ =% |=sin .
C C,—PR,

For example, q = 0; for @, =5(C, —PR,);

(39)

K, =16; K, = 7,9;or for o, =3.3x(C, - F,);
K, =16; K, = 5,2 [4], [5], [14].
By means of the formula (39) and
sin z = sin xcochy +icos xcosh y
one obtains [4], [5], [15]

(X =% )2+ (Y +Y, )
(X* _Xo )2 +(y* - yo )2

Gx",y" %", yo*)=%log
where
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(X" =%, )2 +(y +Y, )2 =sin®x+cosh? y
+sin® x; +cosh?y; +2cos xcos x, cochy cosh y,
+ 2sin xsin x; cosh ycochy,,

(X" =%, )2 +(y -y, )* =sin® x+cosh?y
+sin? x; +cosh?y; —2cos xcos x, cochy cosh y;
— 2sin xsin x, cosh ycochy; .

REMARK 4. We can consider the non-stationary case,

when the velocity components, body forces and the pressure
are representable in the form

V, =exp(-at) V.2 (x,Y), V, =exp(-at) V.,
F, =exp(-at) F/(x,y), F, =exp(-at) F,
P(t, X, y) = exp(—at) P(X,y),

where t is the time, « > Ois the definite constant, the
system (1), (2), (3) will be reduced to the system

EZ_P S FO AV +aV?, (40)
£ OX
i% =F) +VAV, +aV/, (41)
yo,
0o aVv°
% + _ Yy _ 0 , (42)
OX oy

with the boundary conditions (8), (9), (10). From (40), (41),
(42) for the definition of V.* (X, y) and V) (X, y) we
obtain the Helmholtz equations

ave &y o L P 1po 43)
1% pV OX Vv
VARSCAVE I S 3} (@4)

1% pv oy v
with the boundary conditions (19), (20), (22), (23).
By means of the conformal mapping (14) we can reduce
the system (40), (41), (42) to the singular integral equations
with the weakly singular kernel [2]

Vi DIOG(X*, Y %" ye ) ol Vi dxdy,” (45)

== 60y v ) ol 0 ke U
Do
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v +% J G,y %" yo ) || vy dx,dy,” (46)

*

= _% IG(X*, Yy, Xo*’ YO*) “//(-)‘2(1); Xm*dyl* -U,,
Do

where U: and G(x*, v, xo*, yo*) are given by (31)(32).

By means of the Banach theorem we obtain [2]:

a 1 . %
If —— < —, where for (X, eD,,
oy M (x,y) 0

”G(X*, y*, Xo*' yo*l ‘1//;)‘2 dxl*dyl* <M;
Dy

then there exists the unique solution of equations (45)
(46).

Hence, for any harmonic pressure the solution of the Stokes
system also exists in the non-stationary case.

REMARK 5. The free boundary problem for the ideal fluid
was consider by the author in [6],[8],[9],[10]. In this works
has been investigated the waves with peaks -Stokes waves.

IV. CONCLUSION

For any harmonic pressure satisfying the condition (9)
there exist the unique solution of the Stokes system. Any
level line of harmonic pressure represents some wave in the
creeping flow (this fact is very similar to the case of perfect
fluid).

Below 2 type of waves for the different harmonic
pressures are constructed by means of “Maple”.

V. EXAMPLES
Here we consider two cases:
1)

P=Im (% ar cos[cos(zd) /coch(dh)]j, (47)

where d = 7z/a, h (h>0) is some parameter. After simple
transformations we obtain

4cosh?(Pd) x coch?(dh) = —2b +

/b, —2cos(2xd) x coch(2dh) x coch(2yd ),

b = coch?(dh) —cosh?(yd) +sin?(xd), (48)
b, = coch?(2dh) +cosh?(2yd) + cos? (2xd).

By the formula (48) it is easy to construct the profile of a
free boundary for the different parameters by means of

“Maple”. In Fig. 1. and Fig. 2.the profilis of the free
boundaries are given for the different parameters
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Fig. 1. The profile of the free boundary for the pressure (47) in case

of P,=1,C,=2,a=5,h=1.
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Fig. 2. The profile of the free boundary for the pressure (47) in case

ofP,=1,C, =5a=5,h=2.

2) P=1Im \/snzﬁJrsnz(ih), (49)
a

where h (h>0) is some parameter and sn is the Jakobi
function with the periods 4K, and 2K, .

After simple transformations we obtain

4P’ =b+

\/cz +cosh?(2yd) + cos?(2xd) — 2¢ x cos(2xd ) x coch(2yd ),

b = coch(2yd) x cos(2xd) — ¢, ¢ =1+ 2sin?h, d = % (50)

By formula (50) it is easy to construct the profile of a free
boundary for the different parameters by means of
“Maple”. In Fig. 3.and Fig. 4, the free boundary is given for
different parameters.

0.0

Fig. 3. The profile of the free boundary for the pressure (49) in case of

P,=LC,=8a=Lc=2,K =16;K,=7.9.
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Fig. 4. The profile of the free boundary for the pressure (49) in case of

P, =5C,=8a=Lc=2K, =16K, =79.
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