
 

  

Abstract— In this study, a bridge position determination 

technique was validated using real-world data. The results can 

visually judge the location of some bridges. We also performed 

supervised binary classification for bridge location estimation 

using C-LSTM. Although the accuracy is not high, it is possible 

to estimate the approximate location of the bridge. 

 

Index Terms—on-going monitoring, VBI system, CNN, 

LSTM 

 

I. INTRODUCTION 

ridges play an essential role in the transportation system. 

However, it is not efficient to perform maintenance and 

inspection of a large number of bridges uniformly. Therefore, 

we decided to prioritize the inspection of bridges with a high 

possibility of damage after conducting a simple screening in 

advance. To achieve this, the condition of the bridges needs 

to be easily and quickly understood. 

As a way to do this, vibration-based monitoring methods 

are being considered. They fall into two categories. The first 

is "direct bridge monitoring technology," in which sensors 

are installed on the bridge. Although this method can monitor 

the bridge's condition with high accuracy, it is 

time-consuming and costly because it requires the installation 

of multiple sensors on a single bridge. Besides, even if we 

build a system to monitor a bridge's condition from the 

acceleration data obtained, it is not easy to apply it to other 

bridges. The second approach is an indirect bridge 

monitoring technique, in which sensors are installed only on 

vehicles. Yang et al. [1] proposed a vehicle response analysis 

to estimate a bridge's vibration from the vibration obtained 

when a vehicle equipped with an accelerometer runs over the 

bridge. Recent studies on vehicle response analysis include 

estimation of natural frequencies of bridges [2], damage 

detection [3, 4], and position estimation [5]. 

However, there are challenges in socially implementing a 

bridge monitoring system using vehicle response analysis. 

One of the challenges in socially implementing a bridge 

monitoring system using vehicle response analysis is to 
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identify the bridge's location from the vehicle vibration data. 

In most of the previous studies, only the data on the bridge 

was analyzed. Therefore, the technology to extract only the 

bridge part from the vehicle acceleration data is one of the 

technical challenges for the social implementation of vehicle 

response analysis. 
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Fig. 1 Conceptual Diagram of Bridge Screening 

 

Murai et al. [5] have verified the bridge position estimation 

from vehicle vibration data by numerical simulation. 

Acceleration sensors are installed in the unsprung masses of 

the front and rear axles. The paper shows that the bridge can 

be detected by synchronizing and subtracting two-vehicle 

vibration data in the spatial domain using GPS data. This is 

based on the vehicle-bridge interaction (VBI) when a vehicle 

travels over a bridge. The effect of noise has also been 

studied. As noise increases, the difference between the 

acceleration data obtained on the bridge and the acceleration 

data obtained on the road becomes smaller. It is pointed out 

that it is impossible or difficult to determine the bridge's 

response from the measured data because the data obtained 

from field experiments contain various noises. Therefore, the 

selection of vibration waveforms requires personnel and 

incurs new costs, which is not desirable. 

In recent years, deep learning has been widely used in 

image recognition and signal processing [6]. There are two 

main types of deep learning methods: convolutional neural 

networks (CNN) used for image recognition and recurrent 

neural networks (RNN) mainly used for natural language 

processing and speech recognition. CNN can learn local 

responses from spatial and temporal data, but they cannot 

learn sequential correlations. On the other hand, RNNs are 

characterized by sequential modeling, but they are not 

suitable for parallel processing [7]. To deal with gradient 

explosion and disappearance that occurs in general RNNs, we 

introduce the Long Short-Term Memory (LSTM) unit. This 

enables analysis, including past information [8]. Zhou et al. 

[9] proposed C-LSTM, which combines CNN and LSTM to 

learn temporal and spatial features. Various researches have 

been conducted using this model, such as prediction [8] and 

anomaly detection [6] in data with temporal and spatial 

features. Acceleration data of a vehicle passing over a bridge 

Field Experiments and Predicting using 

C-LSTM Networks of Bridge Position 

Estimation 

Shin Ryota, Yamamoto Kyosuke, Okada Yukihiko 

B 

Proceedings of the World Congress on Engineering 2021 
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021



 

is time-series data containing temporal and spatial features. 

Therefore, we thought that by using C-LSTM, we could 

create a model that can distinguish only the part of the vehicle 

running on the bridge from the vehicle's acceleration data. 

Therefore, we decided to focus on two things: first, to 

validate the bridge location estimation technique in field 

experiments. Murai et al. [5] have validated bridge position 

estimation with numerical simulations, but not with field 

experiments. The second is developing a technique to extract 

only the part of the vehicle running on the bridge from the 

vehicle acceleration data using C-LSTM. If these are realized, 

it is expected that the social implementation of bridge 

monitoring technology using vehicle response analysis will 

become more realistic. 

II. METHOD/BASIC THEORY 

A. C-LSTM neural networks 

The combination of CNN and LSTM has been studied to 

obtain spatial and temporal features [9]. The schematic 

diagram of C-LSTM is shown in Figure 2. This study's 

C-LSTM model is based on Kim and Cho [6] and Kim and 

Cho [8] and consists of Convolution, Activation, Pooling, 

LSTM, and Dense. Kernel size, stride size, and activation 

function were adjusted to minimize the loss function's value 

calculated from the learning data. The resulting model is 

presented in Table 1. CNN has two layers: a Convolution 

layer and a Pooling layer. The LSTM has 64 units, and the 

Dense layer has 32 units selected. 

 

 
Fig. 2 Conceptual Image of C-LSTM 

 

Table 1 

THE C-LSTM ARCHITECTURE 

Type Kernel size Stride Param. 

Convolusion 2×1 1 192 

Activation(relu) - - 0 

Pooling 2×1 2 0 

Convolusion 2×1 1 8,256 

Activation(relu) - - 0 

Pooling 2×1 2 0 

LSTM(64) - - 180,480 

Activation(relu) - - 0 

Dence(32) - - 2,080 

Dence(1) - - 33 

Activation(softmax) - - 0 

 

B. Signal processing for vehicle vibration 

VBI is the contact force and the bridge vibrations under the 

vehicle axes. When a vehicle enters a bridge, the vehicle 

shakes the bridge, and the bridge shakes the vehicle. The 

vehicle vibration is also excited by road surface unevenness. 

Only the bridge response is obtained when the vehicle 

vibration data is taken, and the bridge position is 

discriminated by using it in Murai et al. [5]. Fig. 3 shows a 

conceptual diagram of VBI occurring when a vehicle is 

traveling on a bridge, and Fig. 4 shows a conceptual diagram 

of VBI occurring when a vehicle is passing on a road. 

 

 
Fig. 3 Conceptual Image of VBI on the bridge 

 

 
Fig. 4 Conceptual Image on the road 

 

Table 2 

EXTRACTED FEATURES 
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In this study, accelerometers were installed unsprung-mass 

of the front and rear wheels of the vehicle. This is because the 

vibration component of the high frequency of road surface 

and bridge can be measured directly. The obtained 

acceleration data are subjected to position synchronization 

and subtracted in a space region. As a result, the unevenness 

of the road surface included in the measurement data can be 

reduced. The experimental data were then normalized using 

Eq (1) before being input to C-LSTM. 

 

 
 

Then, to reduce the computation time of C-LSTM, the 

feature quantities used by Jiang et al. [10] are calculated. A 

table summarizing the feature values used is shown in Table 

2. The respective feature values were calculated for each 1 

step with a window size of 1000. 

III. FIELD EXPERIMENTS 

A. Experimental Settings 

Field experiments were conducted on the Tomei 

Expressway. Trucks used for essential delivery services in 

Japan were used as test vehicles, and accelerometers were 

installed unsprung-mass of the front and rear wheels for 

measurement. The sampling rate of the accelerometer was 

300 Hz. The test truck has two axes at the front and one at the 

rear before the front are treated as one axis. GPS sensors were 

introduced to synchronize the vehicle position with the front 

and rear wheel positions. In this study, the acceleration data 

of nine bridges were measured. The data of passing on each 

bridge are used. The bridge position in each acceleration data 

was confirmed by the author and labeled. A label of 1 was 

given on the bridge, and 0 was given on the road. The target 

section of the acceleration data was determined for each 

bridge. The bridge's length and the road before and after the 

bridge were twice the lengths of the bridge. The maximum 

speed and minimum speed in the section were about 85.1 

km/h and about 68.8 km/h, and the average speed was about 

77.2 km/h. The total number of data finally obtained is 

162,695, and it consists of 9 different files. The bridge part is 

45,627 of them. For each file, 16 feature values were 

calculated with a window size of 1000, and the number of 

analysis data was 39,343,600. 

B. The results and discussions of field experiments 

Unlike numerical experiments, the spacing of data points 

in the spatial domain is different because the vehicle speed is 

not constant [2]. Therefore, the acceleration data measured 

unsprung-mass of the front wheels and the rear wheels are 

interpolated simultaneously. Then, the mutual correlation of 

the front axis's acceleration and the rear axis was obtained, 

and the difference was obtained at the position where the two 

waveforms matched most [5]. As an example of the 

difference after the position synchronization, acceleration 

data measured under the springs of the front and rear wheels 

near the bridge over the K River and vibration data after the 

position synchronization are shown in Fig. 5-6. 

 
Fig. 5 Vibration data of upsprung-mass front and rear wheels measured at a 

bridge over the K River 
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Fig. 6 Subtractions of front and rear vibration measured at a bridge over the 

K River 

 

In the numerical simulation conducted by Murai et al. [5], 

the bridge response could be observed by taking the 

difference between the front and rear wheels. However, the 

results of this study are masked by noise and cannot be 

visually identified. The results for other bridges are shown in 

Fig. 7-9. 
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Fig. 7 Subtractions of front and rear vibration measured at a bridge over the 

O River 
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Fig. 8 Subtractions of front and rear vibration measured at a bridge over the 

A River 
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Fig. 9 Subtractions of front and rear vibration measured at a bridge over the P 

River 

 

In Fig. 7, peaks appeared at both the entry and exit positions. 

Compared with the results obtained in Fig. 6, it can be seen 

that the peak amplitude at the position of entry or exit to the 

bridge is approximately the same. In Fig. 8, a peak can be 

observed only at the time of penetration. Besides, no peak 

was observed in Fig. 9. Finally, two of the nine bridges 

peaked at in and out, and two bridges peaked at either in or 

out. Although bridges could not observe peaks at many 

bridges, the bridge response was theoretically included in the 

difference data. Therefore, it can be assumed that the bridge 

response could not be visualized because it was affected by 

other noises. The method of obtaining the difference after the 

position synchronization corresponds to the processing for 

removing the road surface unevenness. Therefore, the vehicle 

response may be visualized if the noise generated by the 

influence of temperature, wind, bridge damage, etc. other 

than the road surface irregularity can be removed. 

C. The results and discussions of Prediction 

We performed supervised learning of binary classification 

using C-LSTM. 70% of the analysis data were used as 

learning data and 30% as verification data. The epoch size is 

500, and the batch size is 512. Mean Squared Error was used 

as the loss function, and accuracy was used as the evaluation 

value. The training data loss after learning was 0.1998, and 

the correct answer rate was 71.7%. On the other hand, the test 

data showed a loss of 0.216, and the correct answer was 

70.86%. Each bridge was fitted using the learned model. 

When the predicted value obtained exceeds the threshold 

value 0.5, 3 of the obtained predicted values giving 1 are 

shown in Fig. 10. The acceleration data is normalized by Eq 

(1). Further, it is determined that the predicted value 

exceeding the threshold σ from Eq (2) exists on the bridge. 

0.5 was set in this study. 
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Fig. 10 Subtractions of front and rear vibration measured at a bridge over the 

F River and prediction result 

Fig. 11 Subtractions of front and rear vibration measured at a bridge over the 

S River and prediction result 
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Fig. 12 Subtractions of front and rear vibration measured at a bridge over the 

B River and prediction result 

 

Although it cannot be said that the accuracy is high, it is 

possible to specify the bridge position roughly. In this study, 

the window size was determined to be 1000 regardless of the 

bridge length. The closer the bridge is to the center, the more 

it swings. Therefore, the structure learned by C-LSTM may 

differ depending on the length of the bridge. In order to 

improve this, it is necessary to change the window size for 

each bridge. The data used for the analysis is only the data 

obtained by taking the difference between the front axis and 

the rear axis under the spring in one trial. A study conducted 

by Locke et al. [4], which examined the relationship between 

various noises and bridge damage detection using CNN, 

combined various data such as vehicle weight, vehicle speed, 

and time of day. Malekjafarian et al. [11] used 100 measured 

data to develop bridge damage detection technology using 

neural networks. These studies may help improve prediction 

accuracy. 

IV. CONCLUSION 

In this study, the verification of the bridge position 

estimation technique verified in the simulation was carried 

out in the field experiment. In this study, we focused only on 

eliminating the effects of road surface irregularities so that 

noise reduction from temperature, wind, bridge damage, Etc., 

remains as a research subject. We also performed supervised 

binary classification for bridge location estimation using 

C-LSTM. The analytical results showed that it was possible 

to roughly specify the bridge position, though the accuracy 

was not high. However, since the window size is constant, the 

structure learned by C-LSTM may differ depending on the 

length of the bridge. There are also still issues with the 

quantity and quality of learning data. 
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