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Abstract—In this paper a BEM is used to solve a
variable coefficient modified Helmholtz type equation
numerically. Some examples are considered to show
the accuracy of the numerical solutions.
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1 Introduction

We will consider initial boundary value problems gov-
erned by a modified Helmholtz type equation with vari-
able coefficients of the form

∂

∂xi

[
κij (x)

∂μ (x, t)

∂xj

]
− β2 (x)μ (x, t) = α (x)

∂μ (x, t)

∂t
(1)

The coefficients [κij ] (i, j = 1, 2) is a real symmetric pos-
itive definite matrix. Also, in (1) the summation conven-
tion for repeated indices holds. Therefore equation (1)
may be written explicitly as

∂

∂x1

(
κ11

∂μ

∂x1

)
+

∂

∂x1

(
κ12

∂μ

∂x2

)

+
∂

∂x2

(
κ12

∂μ

∂x1

)
+

∂

∂x2

(
κ22

∂μ

∂x2

)
− β2μ = α

∂μ

∂t

Equation (1) is usually used to model infiltration prob-
lems (see for examples [1–8]).

During the last decade functionally graded materials
(FGMs) have become an important topic, and numer-
ous studies on FGMs for a variety of applications have
been reported. Authors commonly define an FGM as an
inhomogeneous material having a specific property such
as thermal conductivity, hardness, toughness, ductility,
corrosion resistance, etc. that changes spatially in a con-
tinuous fashion. Therefore equation (1) is relevant for
FGMs.
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Recently Azis and co-workers had been working on steady
state problems of anisotropic inhomogeneous media for
several types of governing equations, for examples [9–13]
for the diffusion convection equation, [14–20] for the
diffusion convection reaction equation, [21–25] for the
Helmholtz equation and [26–29] for the Laplace type
equation.

This paper is intended to extend the recently published
works in [3–8] for steady anisotropic modified Helmholtz
type equation with spatially variable coefficients of the
form

∂

∂xi

[
κij (x)

∂μ (x, t)

∂xj

]
− β2 (x)μ (x, t) = 0

to unsteady anisotropic modified Helmholtz type equa-
tion with spatially variable coefficients of the form (1).

Equation (1) will be transformed to a constant coefficient
equation from which a boundary integral equation will
derived. The analysis of this paper is purely formal; the
main aim being to construct effective BEM for class of
equations which falls within the type (1).

2 The initial-boundary value problem

Referred to a Cartesian frame Ox1x2 solutions μ (x, t)
and its derivatives to (1) are sought which are valid for
time interval t ≥ 0 and in a region Ω in R2 with boundary
∂Ω which consists of a finite number of piecewise smooth
closed curves. On ∂Ω1 the dependent variable μ (x, t)
(x = (x1, x2)) is specified and on ∂Ω2

P (x, t) = κij (x)
∂μ (x, t)

∂xi
nj (2)

is specified where ∂Ω = ∂Ω1 ∪ ∂Ω2 and n = (n1, n2)
denotes the outward pointing normal to ∂Ω. The initial
condition is taken to be

μ (x, 0) = 0 (3)

The method of solution will be to transform the variable
coefficient equation (1) to a constant coefficient equation,
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and then taking a Laplace transform of the constant coef-
ficient equation, and to obtain a boundary integral equa-
tion in the Laplace transform variable s. The boundary
integral equation is then solved using a standard bound-
ary element method (BEM). An inverse Laplace trans-
form is taken to get the solution c and its derivatives for
all (x, t) in the domain. The inverse Laplace transform is
implemented numerically using the Stehfest formula.

The analysis is specially relevant to an anisotropic
medium but it equally applies to isotropic media. For
isotropy, the coefficients in (1) take the form κ11 = κ22

and κ12 = 0 and use of these equations in the following
analysis immediately yields the corresponding results for
an isotropic medium.

3 The boundary integral equation

The coefficients κij , β
2, α are required to take the form

κij (x) = κijg(x) (4)

β2 (x) = β
2
g(x) (5)

α (x) = αg(x) (6)

where the κij , β
2
, α are constants and g is a differentiable

function of x. Further we assume that the coefficients
κij (x), β

2 (x) and α (x) are quadratically graded by tak-
ing g(x) as an quadratic function

g(x) = [c0 + cixi]
2

(7)

where c0 and ci are constants. Therefore (7) satisfies

κij
∂2g1/2

∂xi∂xj
= 0 (8)

Use of (4)-(6) in (1) yields

κij
∂

∂xi

(
g
∂μ

∂xj

)
− β

2
gμ = αg

∂μ

∂t
(9)

Let
μ (x, t) = g−1/2 (x)ψ (x, t) (10)

therefore substitution of (4) and (10) into (2) gives

P (x, t) = −Pg (x)ψ (x, t) + g1/2 (x)Pψ (x, t) (11)

where

Pg (x) = κij
∂g1/2

∂xj
ni Pψ (x) = κij

∂ψ

∂xj
ni

Also, (9) may be written in the form

κij
∂

∂xi

[
g
∂
(
g−1/2ψ

)
∂xj

]
− β

2
g1/2ψ = αg

∂
(
g−1/2ψ

)
∂t

which can be simplified

κij
∂

∂xi

(
g1/2

∂ψ

∂xj
+ gψ

∂g−1/2

∂xj

)
− β

2
g1/2ψ = αg1/2

∂ψ

∂t

Use of the identity

∂g−1/2

∂xi
= −g−1 ∂g

1/2

∂xi

implies

κij
∂

∂xi

(
g1/2

∂ψ

∂xj
− ψ

∂g1/2

∂xj

)
− β

2
g1/2ψ = αg1/2

∂ψ

∂t

Rearranging and neglecting the zero terms give

g1/2κij
∂2ψ

∂xi∂xj
− ψκij

∂2g1/2

∂xi∂xj
− β

2
g1/2ψ = αg1/2

∂ψ

∂t

Equation (8) then implies

κij
∂2ψ

∂xi∂xj
− β

2
ψ = α

∂ψ

∂t
(12)

Taking the Laplace transform of (10), (11), (12) and ap-
plying the initial condition (3) we obtain

ψ∗ (x, s) = g1/2 (x)μ∗ (x, s) (13)

Pψ∗ (x, s) = [P ∗ (x, s) + Pg (x)ψ
∗ (x, s)] g−1/2 (x)

(14)

κij
∂2ψ∗

∂xi∂xj
−
(
β
2
+ sα

)
ψ∗ = 0 (15)

where s is the variable of the Laplace-transformed do-
main. A boundary integral equation for the solution of
(15) is given in the form

η (x0)ψ
∗ (x0, s) =

∫
∂Ω

[Γ (x,x0)ψ
∗ (x, s)

−Φ (x,x0)Pψ∗ (x, s)] dS (x) (16)

where x0 = (a, b), η = 0 if (a, b) /∈ Ω∪∂Ω, η = 1 if (a, b) ∈
Ω, η = 1

2 if (a, b) ∈ ∂Ω and ∂Ω has a continuously turning
tangent at (a, b). The so called fundamental solution Φ
in (16) is any solution of the equation

κij
∂2Φ

∂xi∂xj
−
(
β
2
+ sα

)
Φ = δ (x− x0)

and the Γ is given by

Γ (x,x0) = κij
∂Φ (x,x0)

∂xj
ni

where δ is the Dirac delta function. For two-dimensional
problems Φ and Γ are given by

Φ (x,x0) =

⎧⎪⎨
⎪⎩

K
2π lnR if β

2
+ sα = 0

ıK
4 H

(2)
0 (ωR) if β

2
+ sα < 0

−K
2π K0 (ωR) if β

2
+ sα > 0

(17)

Γ (x,x0) =

⎧⎪⎨
⎪⎩

K
2π

1
Rκij

∂R
∂xj

ni

−ıKω
4 H

(2)
1 (ωR)κij

∂R
∂xj

ni

Kω
2π K1 (ωR)κij

∂R
∂xj

ni⎧⎪⎨
⎪⎩

if β
2
+ sα = 0

if β
2
+ sα < 0

if β
2
+ sα > 0
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where K = τ̈ /D, ω =

√
|β2

+ sα|/D,

D =
[
κ11 + 2κ12τ̇ + κ22

(
τ̇2 + τ̈2

)]
/2, R =√

(ẋ1 − ȧ)2 + (ẋ2 − ḃ)2, ẋ1 = x1 + τ̇x2, ȧ = a + τ̇ b,

ẋ2 = τ̈x2, and ḃ = τ̈ b. where τ̇ and τ̈ are respectively
the real and the positive imaginary parts of the complex
root τ of the quadratic

κ11 + 2κ12τ + κ22τ
2 = 0

and H
(2)
0 , H

(2)
1 denote the Hankel function of second kind

and order zero and order one respectively. K0, K1 denote
the modified Bessel function of order zero and order one
respectively, ı represents the square root of minus one.
The derivatives ∂R/∂xj needed for the calculation of the
Γ in (17) are given by

∂R

∂x1
=

1

R
(ẋ1 − ȧ)

∂R

∂x2
= τ̇

[
1

R
(ẋ1 − ȧ)

]
+ τ̈

[
1

R

(
ẋ2 − ḃ

)]

Use of (13) and (14) in (16) yields

ηg1/2μ∗ =

∫
∂Ω

[(
g1/2Γ− PgΦ

)
μ∗ −

(
g−1/2Φ

)
P ∗

]
dS

(18)
This equation provides a boundary integral equation for
determining μ∗ and its derivatives at all points of Ω.

Knowing the solutions μ∗ (x, s) and its derivatives
∂μ∗/∂x1 and ∂μ∗/∂x2 which are obtained from (18), the
numerical Laplace transform inversion technique using
the Stehfest formula is then employed to find the values
of μ (x, t) and its derivatives ∂μ/∂x1 and ∂μ/∂x2. The
Stehfest formula is

μ (x, t) � ln 2

t

N∑
m=1

Vmμ∗ (x, sm)

∂μ (x, t)

∂x1
� ln 2

t

N∑
m=1

Vm
∂μ∗ (x, sm)

∂x1
(19)

∂μ (x, t)

∂x2
� ln 2

t

N∑
m=1

Vm
∂μ∗ (x, sm)

∂x2

where

sm =
ln 2

t
m

Vm = (−1)
N
2 +m ×

min(m,N2 )∑
k=[m+1

2 ]

kN/2 (2k)!(
N
2 − k

)
!k! (k − 1)! (m− k)! (2k −m)!

A simple script is developed and embedded into the main
FORTRAN code to calculate the values of the coefficients
Vm,m = 1, 2, . . . , N for any number N .

4 Numerical examples

In order to justify the analysis derived in the previous
sections, we will consider two problems of an analytical
solution and without a simple analytical solution. For
both problems we take

g1/2 (x) = 0.75− 0.15x1 − 0.35x2

κij =

[
1 0.2
0.2 0.5

]

β
2

= 1

For a simplicity, a unit square (depicted in Figure 1) will
be taken as the geometrical domain.

�

�

x1

x2

D(0, 1)

A(0, 0) B(1, 0)

C(1, 1)

Figure 1: The domain Ω

4.1 Problem 1

Another aspect that will be justified is the accuracy of the
numerical solutions. The analytical solution is assumed
to be

μ (x, t) =
[1− exp (−1.75t)] (0.25− 0.15x1 − 0.1x2)

0.75− 0.15x1 − 0.35x2

We choose
α = −1/s

and a set of boundary conditions (see Figure 1)

P is given on side AB
P is given on side BC
μ is given on side CD
P is given on side AD

Table 1 shows the accuracy of the numerical solutions
μ and the derivatives ∂μ/∂x1 and ∂μ/∂x2 solutions in
the domain for Problem 1. The errors mainly occur in
the fourth decimal place for the μ, ∂μ/∂x1, ∂μ/∂x2 solu-
tions. The elapsed CPU time for the computation of the
numerical solutions at 19 × 19 spatial positions and 11
time steps is 3688.109375 seconds.
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Table 1: Comparison of the numerical (Num) and the an-
alytical (Anal) solutions at (x1, x2) = (0.5, 0.5) for Prob-
lem 1

t
μ ∂μ

∂x1

∂μ
∂x2

Num Anal Num Anal Num Anal
0.0005 0.0002 0.0002 -0.0002 -0.0002 -0.0000 -0.0000

0.5 0.1456 0.1458 -0.1312 -0.1312 -0.0144 -0.0146

1.0 0.2062 0.2066 -0.1859 -0.1859 -0.0204 -0.0207

1.5 0.2316 0.2319 -0.2086 -0.2087 -0.0230 -0.0232

2.0 0.2420 0.2425 -0.2182 -0.2182 -0.0239 -0.0242

2.5 0.2462 0.2469 -0.2222 -0.2222 -0.0241 -0.0247

3.0 0.2487 0.2487 -0.2240 -0.2238 -0.0248 -0.0249

3.5 0.2487 0.2495 -0.2246 -0.2245 -0.0243 -0.0249

4.0 0.2495 0.2498 -0.2250 -0.2248 -0.0247 -0.0250

4.5 0.2502 0.2499 -0.2251 -0.2249 -0.0252 -0.0250

5.0 0.2492 0.2500 -0.2250 -0.2250 -0.0243 -0.0250

 0

 0.5

 1

 1.5

 2

 2.5

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

mu

t

f(t) = 1

f(t) = 1-exp(-1.75t)

f(t) = t/5

f(t) = 0.16t(5-t)

Figure 2: Solutions μ at (x1, x2) = (0.5, 0.5) for Problem
2

4.2 Problem 2

We choose
α = 1

and boundary conditions (see Figure 1)

P = f(t) on side AB
P = 0 on side BC
μ = 0 on side CD
P = 0 on side AD

where f(t) takes four cases

Case 1: f(t) = 1
Case 2: f(t) = 1− exp (−1.75t)
Case 3: f(t) = t/5
Case 4: f(t) = 0.16t (5− t)

The results in Figure 2 are expected. The trends of the
solutions μ mimics the trends of the exponential function
f(t) = 1 − exp (−1.75t), the linear function f(t) = t/5

and the quadratic function f(t) = 0.16t (5− t) of the
boundary condition on side AB. Specifically, for the ex-
ponential function f(t) = 1−exp (−1.75t), as time t goes
to infinity, values of this function go to 1. So for big value
of t, the case of f(t) = 1− exp (−1.75t) is similar to the
case of f(t) = 1. And the two plots of solutions μ for
both cases in Figure 2 verifies this, they approach a same
steady state solution as t gets bigger.

5 Conclusion

A combined Laplace transform and standard BEM has
been used to find numerical solutions to initial boundary
value problems for anisotropic functionally graded mate-
rials which are governed by the modified Helmholtz type
equation (1). It is easy and accurate. It involves a time
variable free fundamental solution and therefore that is
why it would be more accurate. Unlikely, the methods
with time variable fundamental solution may produce less
accurate solutions as the fundamental solution usually
has singular time points.
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