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Abstract—There is always a need to study the resistance of 

structural building components, to bending force, to angular 

acceleration or even to twist, in order to guide against failure. 

This study attempts to investigates flexural rigidity and 

torsional rigidity of hendecagon irregular orthotropic beam. A 

numerical analysis of the beam’s flexural and torsional rigidity 

was carried out and graphs plotted with the help of computer 

software – MAPLE. The results show that torsion of the 

hendecagon beam is a function of the angle of twist and 

distance along the beam. The flexural rigidity of the beam is 

asymptotic at the end point of beam and cannot take value zero 

at any point along the hendecagon beam. 

 
Index Terms— Flexural Rigidity; Torsional Rigidity; 

Orthotropic Hendecagon Beam; Mathematical investigation. 

 

I. INTRODUCTION 

R IGIDITY is the maximum resistance an object can 

offer before it deforms [1]. Torsion is the action of twisting 

on an object or in relation to another. Torsional rigidity is 

the resistance to twist. The product of the torsion constant 

and shear modulus gives torsional rigidity [2]. Torsional 

rigidity a solid beam therefore is how much the cross 

section of the beam resists the torsional deformation.  The 

resistance of the the beam’s cross section increases as the 

rigidity increases, in other words there is a positive 

correlation between the rigidity and the resistance of the 

beam. The following have effect on the torsional rigidity of 

the beam: the shape of the cross sectional area of the beam, 

the length of the beam, the shear modulus of the material the 

beam is made of, and the support conditions [2,3].  
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       On the other hand, Flexural rigidity is the resistance to 

bending deformation. It is depends on the elastic modulus, 

the second moment of area, the beam cross-section, length 

of the beam and the support conditions, just like in torsional 

rigidity. Flexural rigidity is also known as bending rigidity. 

[4,5,6]. Materials are considered to be orthotropic if the 

properties depend on the direction. An orthotropic material 

is unique in that material properties are dependent upon 

orientation.  In addition to wood, as a good example of 

orthotropic material, other examples include composite 

laminates and some heavily processed metals [7].  

         In geometry, a hendecagon or 11-gon is an eleven-

sided polygon [8]. The total effect of all the forces acting on 

the beam is to produce shear forces and bending moments 

within the beam, that in turn induce internal stresses, strains 

and deflections of the beam [8,9,10,11]. Beams are 

characterized by their manner of support, shape of cross-

section, length, and their material. Structural systems 

usually, contain beam structures that are designed to carry 

lateral loads  [12, 13, 14, 15, 16]. 

         This paper investigates, mathematically, the flexural 

and torsional rigidity of wood beam whose cross section is 

an irregular polygon with eleven sides. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Torsion of an orthotropic square section beam  
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II. PROBLEM FORMULATION  

A. Flexural rigidity of beam problem 

The resulting curvature of the beam resulting from the 

applied bending moment are governed by the following 

equations [9]: 
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                                                                     (2)

M EI

d w
M EI

dx




 

Where, 

 

w= deflection 

x = distance along the beam 

E = young modulus 

I = second moment of area 

M = bending moment  

 

Integrating equation (2) two times gives the deflection of 

the beam under the applied force. In turn the flexural 

rigidity can be computed using the following equation; 
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Where, 

K= Flexural rigidity 

P = Applied force 

 

B. Torsional Rigidity of Beam Problem 

       The torsion of a shafts of uniform cross-section is given 

as: 
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Where, 

T is the applied torque  

  is the maximum shear stress at the outer surface 

 JT is the torsion constant for the section.  

 r is the distance between the rotational axis  

 ℓ is the length of the beam. 

 φ is the angle of twist 

 G is the shear modulus,  

 The product JT G is called the torsional rigidity wT. 

 

III. ANALYSIS  

      For the purpose of investigation and analysis, an oak 

wood beam with hendecagon cross section was considered. 

The following parameter values were assumed: applied 

force (P), 10 Newton, length of beam (x), 5 meters, young 

modulus (E) of oak wood (along the grain), 11 GPa, 

bending moment.(M) 12.5, shear modulus( modulus of 

rigidity)(G) of wood is 13 GPa. 

A. Area moment of inertia  for the hendecagon  

     The area moment of inertia for the hendecagon on the 

XY axis – plane can be computed in general by summing 

contributions from each segment of the polygon. In this case 

the polygon has eleven vertices. When the desired reference 

axis is the x-axis, the area moment of inertia  is given as 

[10]. 
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Where, 
,i ix y

 are the coordinates of the i-th polygon 

vertex, for1 i n  . Also, 1 1,n nx y   are assumed to be 

equal to the coordinates of the first vertex, i.e., 1 1nx x 
 

and 1 1ny y 
.Considering the irregular hendecagon cross 

section with following vertices coordinates: 

   1 1, 1,2x y   

   2 2, 2,1x y   

   3 3, 3,2x y   

   4 4, 4,3x y   

   5 5, 4,4x y   

   6 6, 3,5x y   

   7 7, 2,6x y   

   8 8, 1,8x y   

   9 9, 1,6x y    

   10 10, 2,5x y    

   11 11, 2,4x y  
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  2 2

1 1 1 10.083 i i i i i i i iI y y y y x y x y        

 

  I = 1, 2, 3,…, 11 

 

        0.083[ 4 2 1 1 4 1 2 4 4 3 4 4 4 6 2 ]             

 

I 459.42                                                                 (7)       

 

From equation (2): 
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0.00125                                    (16)x C w 

 

 

When x = 5 at time t=0, w=0 

 
20.00125(5) 0                                (17)

0.03125      

C

C

 

 
 

 

Equation (16) becomes 

 
20.00125 0.03125                            (18)x w   

 

From equation (3), the flexural rigidity of the beam under 

consideration is given as follows: 
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From equation (5): 
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When x = 5; 
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When 


= 30: 
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IV. RESULT AND DISCUSSION 

 

           Results of the investigation are represented in figure 

4 through figure 13. From figure 4, it can be seen that the 

deflection of the hendecagon beam increases as the distance 

along the beam, x, increases. The deflection is however 

relatively small under the external force.  

 

           Torsion at different angles of twist, as shown in 

figure 5 through figure 8, revealed that there is a positive 

correlation between the torsion of the hendecagon beam and 

the angle of twist. Also, the torsion of the beam decreases as 

the distance along the beam increases. It is observed from 

figure 9 that the torsion of the beam at angle of twist of 900, 

represented by series 5, has the maximum amplitude, 

followed by torsion with angle of twist of 600. It continues 

that way till the torsion with angle of twist of 300. The 

flexural rigidity of the beam, represented in figures 10 and 

11, show that its value is asymptotic to the vertical at x = 5 

and asymptotic to the horizontal at value zero.  

 

          This implies that the flexural rigidity of the 

hendecagon beam cannot value zero at any point along the 

beam. In particular, the flexural rigidity cannot be 

determined at end point of the beam (x=5). The deflection at 

that is zero, confirmed in figure 4. It can therefore be 

deduced from the results that the higher the angle of twist, 

the more the hendecagon beam is subject to twisting as a 

result of applied load (torque). Also, the resistance of the 

beam against bending deformation tends to infinity at the 

end point of the hendecagon beam.  

 

            The flexural rigidity of the beam decreases along the 

lenght of the beam, but cannot be determined at the end of 

the beam (x = 5). 

 

 
 Figure 4: Deflection (w) of the beam at different lengths (x) 
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Figure 5: Torsion at angle 10 and different lengths (x) of the 

beam. 

 

 

 

 
Figure 6: Torsion at angle 300 and different lengths (x) of 

the beam. 

 
Figure 7: Torsion at angle 600 and different lengths (x) of 

the beam. 

 

 

 

 

 
Figure 8: Torsion at angle 900 and different lengths (x) of 

the beam. 

 

 

 
 

Figure 9: Torsion of the beam at different angles 

 

 

 
 

Figure 10: Flexural rigidity of the beam for distance along 

the beam x=1,2,…6. 
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Figure 11: Flexural rigidity of the beam for distance along 

the beam x=1,2,…10. 

V.  CONCLUSION   

 

         The flexural and Torsional Rigidity of Orthotropic 

irregular Hendecagon beam was investigated analytically in 

this paper. The area moment of inertia, deflection of the 

beam, torsion of the beam at different angles of twist, and 

the flexural rigidity of the beam were computed. The results 

are well represented on graphs.  

 

           The torsion of the hendecagon beam is a function of 

the angle of twist and distance along the beam. The flexural 

rigidity of the beam is asymptotic at the end point of beam 

considered. It was observed that it cannot take the value 

zero at any point along the hendecagon beam. The 

deflection of the beam under the applied force is zero at the 

end of the beam (x = 5).            
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