
 

  

Abstract — A simple efficient method for computing modular 

multiplicative inverse is presented. This approach has the 

advantage that the backward substitutions commonly adopted 

for the Extended Euclidean Algorithm (EEA) can be avoided. 

The modular multiplicative inverse can be computed effectively 

by the successive quotients obtained in the Euclidean Algorithm 

(EA). Some illustrative examples are provided. 

 
IndexTerms—modular multiplicative inverse, Euclidean 

Algorithm, Extended Euclidean Algorithm, Chinese Remainder 

Theorem. 

 

I. INTRODUCTION 

HE Euclidean Algorithm (EA) and the Extended 

Euclidean Algorithm (EEA) have important applications 

in number theory, discrete mathematics, computer sciences 

and cryptography [1-7], etc. In this paper, we present a simple 

efficient approach for computing modular multiplicative 

inverse via EA. However, the backward substitutions 

commonly involved in the EEA can be avoided, The modular 

multiplicative inverse can be computed effectively by the 

successive quotients obtained by EA [3, 4, 6]. This new 

approach is based on the author’s recent works on solving 

linear Diophantine equations in two variables [8, 9] and it is 

highly suitable for either hand calculation or computer 

programming. 

 

The whole paper is organized like this. The mathematical 

background is described in section 2. Then, the new approach 

is introduced in section 3, followed by some examples in 

section 4. Finally, some concluding remarks are described in 

section 5. 

II. MATHEMATICAL BACKGROUND 

Consider two positive integers a, b such that a < b. Their 

greatest common divisor GCD (a, b) can be computed by the 

Euclidean Algorithm as follows: 

 

b = aq1 + r1 

a = r1 q2 + r2 

r1 = r2 q3 + r3 

. 

. 

rn-3 = rn-2 qn-1 + rn-1 

rn-2 = rn-1 qn  

 

where qi, ri are the successive quotients and remainders 

obtained by the divisions involved in the Euclidean 

Algorithm, and rn-1 is equal to GCD (a, b). Moreover, if we 
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are required to solve the Diophantine equation ax + by = c, 

where c is divisible by GCD (a, b), then backward 

substitutions can be adopted for finding a particular solution, 

which is known as the Extended Euclidean Algorithm. In 

particular, if a and b are coprime, namely GCD(a, b) = 1, the 

linear Diophantine equation ax + by = 1 is solvable, which is 

equivalent to the problem of finding the multiplicative 

inverse such that it satisfies ax  1 (mod b). Here is an 

example for illustrating how the backward substitution 

approach works.  

 

Example 1. Solve 8x  1 (mod 11).  

 

Solution. This problem is equivalent to solving the 

Diophantine equation 8x + 11y =1. Using the Euclidean 

Algorithm, we obtain 

11 = 1  8 + 3 

8 = 2  3 + 2 

3 = 1  2 + 1 

2 = 2  1. 

 

Starting from the second last equation and working backward, 

we have 

                                     1 = 3 − 2 

        = 3 − (8  − 2 3) 

   = 3  3 − 8 

   = 3  (11 − 8) − 8 

   = 3  11 − 4  8. 

 

Hence, x  −4  7 (mod 11) is a particular solution of 8x  1 

(mod 11) and the general solution is x = 7 + 11k, where k is an 

arbitrary integer. 

 

From this example, we can see that backward substitutions 

involve the tasks of removing brackets and collecting the 

integer multiples of the given numbers in order to find the 

modular multiplicative inverse. Can we compute it by an 

alternative approach without using backward substitutions? 

In the next section, we will introduce such an approach for 

finding modular multiplicative inverse. 

III. ALTERNATIVE APPROACH 

Using the above notations, we have 

 

           r1 = b − aq1 

           r2 = a − r1q2 = a − (b  − aq1)q2 = -bq2 + a (1 + q1q2) 

       r3 = r1 − r2q3 = (b  − aq1) − q3[-bq2 + a (1 + q1q2)] 

          = b (1 + q2q3) − a [q1 + q3 (1 + q1q2)]  

       r4 = r2 − r3q4  

= -bq2 + a (1 + q1q2) − q4[b (1 + q2q3) − a(q1 + q3 (1 + q1q2))] 

= -b [q2 + q4 (1 + q2q3)] + a [q1 q4 + (1 + q1q2) (1 + q3q4)] 
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and so on. According to the pattern of the coefficients, we can 

deduce the recurrence relations (see [8, 9]) for finding a 

solution of ax + by = 1 or the multiplicative inverse of ax  1 

(mod b) as follows: 

 

         x0 = 1, x1 = q1 and xi = xi-2 + qi xi-1 for 1 < i < n, 

y0 = 0, y1 = 1 and yi = yi-2 + qi yi-1 for 1 < i < n. 

 

Let x’ = (-1)n xn-1 and y’ = (-1)n-1 yn-1. Then, (x’, y’) is a 

particular solution of ax + by = 1 and x’ mod b is the 

multiplicative inverse of ax  1 (mod b). 

 

We can see that the tedious task of backward substitutions 

can be avoided and the alternative procedure only involves 

the successive quotients obtained by the Euclidean algorithm. 

Thus, it is very convenient for hand calculation or computer 

programming. 

 

IV. EXAMPLES 

Example 2. Solve 8x  1 (mod 11) by the alternative approach 

described above.  

 

Solution. According to Example 1, the successive quotients 

(except the last one) obtained by the Euclidean algorithm are 

1, 2 and 1 respectively. Following the alternative procedure 

described above, we obtain: 

 

i 0 1 2 3 

qi  1 2 1 

xi 1 1 3 4 
 

   

    

Hence, x  −4  7 (mod 11) is a solution of 8x  1 (mod 11). 

 

Example 3. Find the multiplicative inverse of 797 mod 

15936.  

 

Solution. Consider 797x  1 (mod 15936). Applying the 

Euclidean algorithm, the successive quotients (except the last 

one) obtained are 19, 1 and 198 respectively. 

 

i 0 1 2 3 

qi  19 1 198 

xi 1 19 20 3979 
 

   

    

Hence, x  −3979  11957 (mod 15936), which is the 

multiplicative inverse required. 

 

The following example shows this approach can also be used 

to solve a system of linear congruences via the use of the 

Chinese Remainder Theorem (CRT). 

 

Theorem (Chinese Remainder Theorem). Let n1, n2, …, nk be 

positive integers such that GCD (ni, nj) = 1 for i  j. Then the 

system of linear congruences 

 

x  a1 (mod n1) 

x  a2 (mod n2) 

 

x  ak (mod nk) 

 

has a simultaneous solution, which is unique modulo the 

product of n1, n2, …, nk. 

 

Reader can refer to [2] for the proof of this important theorem 

in number theory. We now illustrate how to apply the 

alternative approach described in this paper for solving a 

system of linear congruences by means of the Chinese 

Reminder Theorem. 

 

Example 4. Solve the following system of linear congruences 

 

x  4 (mod 5) 

x  3 (mod 7) 

x  5 (mod 11) 

 

Solution. First, let us compute the followings: 

 

n = lcm (5, 7, 11) = 385 

N1 = n / 5 = 77   

N2 = n / 7 = 55 

N3 = n / 11 = 35 

 

Next, consider the linear congruences 77y  1 (mod 5), 55y  

1 (mod 7) and 35y  1 (mod 11). Applying the alternative 

approach, we can easily obtain their solutions, namely y1 = 3, 

y2 = 6 and y3 = 6 respectively. Thus, we can obtain the 

following solution for the given system of linear 

congruences: 

 

x = 77(3)(4) + 55(6)(3) + 35(6)(5) = 2964. 

 

Hence, x = 2964  269 (mod 385) is the unique solution of the 

given system modulo 385. 

 

V. CONCLUDING REMARKS 

In this paper, we have introduced a simple efficient 

approach for computing modular multiplicative inverse, 

which can avoid using backward substitutions. This approach 

can be used to solve a system of linear congruences via the 

Chinese Remainder Theorem (CRT). Since the latter has 

wide applications in various areas such as scientific 

computing, number theory, coding theory and cryptography, 

we anticipate that this new approach will be found useful for 

reference by researchers in related disciplines, as well as 

lecturers involved in teaching number theory, discrete 

mathematics or computer programming, etc. 
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