
 

 

Abstract—Despite all the research being done in an attempt to 

bridge the gap between control systems and artificial 

intelligence, there is still an immense risk of failure and 

instability that exists. One particular application that this 

research will look into and expand on is aircraft control 

mechanisms. This paper will examine the existing uncertainties 

within these systems that could be suspected as the cause of 

failure in the artificial control operation of an aircraft. This 

study will act as a further extension of research on the 

feedback linearization of an aircraft’s control architecture 

using adaptive neural networks to decrease the probability of 

an uncontrolled error resulting from the nonlinearity of the 

aircraft’s dynamic characteristics. The stability of previously 

implemented mechanisms to control aircraft systems will also 

be investigated. This research will require a thorough 

approach and understanding of various possible areas of 

malfunction and instability caused by multiple factors, 

including, external interferences and inefficiencies that 

accumulate within the controller that can mislead or cause an 

undesirable effect on the system. Examining similar areas 

where this study may be used for further research, while also 

discussing opportunities to apply these procedures to relatable 

applications will be analyzed, as it is of key importance for 

progression of this technology. 

 
Index Terms—artificial intelligence, flight control systems, 

neural networks, operational amplifiers 

 

I.   INTRODUCTION 

Flight control systems have been around for many 

decades now and are a prime example of how important 

system design is for vehicular control. In fact, most 

commercial jumbo jets fly using autopilot for more than 90 

percent of the flight duration, while the pilot only takes 

control of the aircraft for less than 10 percent of it.  

Essentially, a pilot has to worry about two primary 

transitions of flying: the first being when the plane is taking 

off and the second being when the plane is landing. This is 

the crucial point in the flight where the FAA does not wish 

for the autopilot to be engaged, even if it were technically 

able to [1]. The reason for this is that during takeoff and 

landing, there is a very low margin for error in keeping the 

flight safe. All the nonlinear inputs that a control system has 

to process can cause massive delays leading to instability, 

and causing an undesirable outcome. During the rest of a 

flight, including but not limited to ascending, cruising, 

banking, and descending, it is quite safe for an aircraft to be 

controlled completely using avionic control systems. 
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This research takes a look at the ―takeoff‖ portion of a 

flight and attempts to integrate deep learning and control 

systems to improve flight performance for a standard 

commercial aircraft. When an aircraft is in the stage of 

taking off from the ground, it is in a vulnerable position as it 

has to deal with many uncertainties and disturbances that 

can cause the aircraft to lose control. It has been well 

understood that an implementation of a control system with 

an adaptive neural network can provide a favorable 

outcome, even when heavy constraints are put on the control 

architecture [2].  

A. Evolution of Artificial Intelligence 

Artificial intelligence is the term used to define the idea 

of providing intellect to a machine. This form of intellect 

varies depending on the use of the machine; however, the 

basic structure remains the same. This enables researchers 

and engineers to install similar systems into various 

applications allowing them to ―learn‖ from the tasks they are 

meant to complete [3]. Over the past several decades, 

artificial intelligence has grown into numerous fields 

including engineering, medicine, and data science.  

Deep learning has become a dominant choice for 

engineers and scientists attempting to extract commonalities 

from extensive amounts of data, and predict specific events 

before they occur by recognizing patterns in the complexity 

of the input data [4]. This type of artificial intelligence can 

help in a plethora of applications where humans may not be 

able to identify trends due to the nonlinearities and size of 

the data. The foundation of deep learning is built on neural 

networks and their ability to learn; they are stacked layers of 

neurons that are interconnected, giving them the ability to 

distinguish features in a given set of data. Neural networks 

have become exceptionally useful tools in applications from 

predicting the price of stocks to predicting seasonal rain 

patterns for agricultural purposes [5], [6]. Creating these 

algorithms using mathematical statements would have taken 

months if not years to develop, while the accuracy would 

still be below satisfactory. With the help of deep learning, 

there is no limit to the complexities a system can identify, 

and therefore, integrate into its predictions and functionality. 

B. Existing Flight Control 

Understanding faults in previous technology is important 

as innovation can only occur when proper requirements are 

met. One of those requirements is to be able to produce 

better results with research and development. On June 1, 

2009, a quite sad and unfortunate display of unstable flight 

control had caused a severe accident of a commercial flight. 

The system of the aircraft had lost control when severe 

turbulence struck the aircraft. Due to this, the autopilot 

pulled the aircraft into a steep incline and the aircraft lost its 

speed and began to stall. A last-minute effort by the flight 

crew to return the aircraft to a safe trajectory had failed and 

the flight ended in a terrible accident [7], [8]. The 

implementation of breakthrough and progressive technology 
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can help with the safety of aerial vehicles and diminish the 

possibility of an accident.  

Reference [9] was one of the first to use neural networks 

and deep learning in flight control systems. That research 

study used neural networks to manipulate various controls 

on an aircraft through a flight simulator, but the results 

achieved were not satisfactory for a safe flight. There is a 

strictly low margin of error that can exist for a flight to be 

considered safe, and that was not achieved in any previous 

research study. Since this research focuses on takeoff, that 

portion of flight should be directly compared to the results 

of previous research studies [9]. The issues they faced could 

possibly be caused by the neural network not having 

optimum control of the elevator, the training data being 

inaccurate, or having a slow response network. Any 

combination of these deficiencies, along with other 

unknown shortcomings, can result in an unstable and 

unreliable mechanism. 

There have also been implementations of neural networks 

in flight control using linearization techniques of nonlinear 

inputs in feedback loops. Since the problem statement was 

the same, the researchers attempted to derive linear models 

for use in their systems. The neural networks were trained 

on the linear models and integrated into the system; this 

allowed for faster response times as well as a more cost-

effective design. This research also used state-space models 

for linearization and included algorithms to counter 

inversion errors and bound dead-zone occurrences [10]. 

Various additional computations needed to be done in order 

to maintain a stable system after the linearization of the data. 

The use of neural networks here is not used precisely as a 

nonlinear control system, but rather as an algorithm for 

detecting trends in the data. This practice voids many of the 

advantages that are associated with the integration of neural 

networks; hence, it is not a justifiable utilization of the 

system. 

There are many attempts at flight control using various 

designs built on nonlinear control architecture. These 

developments have contributed significantly to the flight 

control systems available in aircraft used for commercial 

and private purposes. Due to the evolution of artificial 

intelligence, these previous control mechanisms are starting 

to become obsolete in their functionality. Modern aircraft 

are rapidly advancing in their technology and require 

exceptionally complex systems to operate, and there’s a 

certain limit to the ability that standard control systems can 

yield. Previous designs of control-based architecture in 

flight control systems have had issues with deviations in 

mathematical models and flight dynamics when faced with 

highly nonlinear inputs. In the case of simpler nonlinear 

inputs, standard control procedures have definitely had 

issues; however, they have at times, also been known for 

functioning considerably well [11].  

II.   METHODOLOGY 

The methodology of this research has been extended over 

the domain of deep learning to incorporate neural networks 

within the structure of the control system. Multiple software 

packages have been carefully selected to be used in this 

study to ensure an effective and meaningful result is 

obtained. 

A. Overall Structure 

The architecture of the system is rather simple. It consists 

primarily of a neural network, a controller, and a simulator 

that is used to collect the training data as well as test the 

system. It can be seen from Figure 1 that the structure is 

oversimplified as shown, and it is broken down into more 

detail later on. The core of the entire system is the brain, 

which is termed as the ―neural network,‖ and it is where 

most of the processing is done. The controller, on the other 

hand, is primarily for merging all the subsystems into one 

functioning system that is capable of operating in 

synchronization with the neural network and the simulator. 

The simulator was chosen specifically due to its accurate 

representation of aerodynamics in flight under various 

climate and weather conditions. It is a useful and well-

known tool for portraying the effect that nonlinear 

disturbances have on the system, and how the system will 

suppress these undesirable effects to allow for safe operation 

of the aircraft. 

 

 
Figure 1.  Overall structure of system depicting the flow of data. 

 

B. Software Used for Realization of System 

As this research focuses on the control of an aircraft 

through a simulator—a few applications were required to 

accurately construct the architecture of the system. This was 

exceptionally challenging as it was critical to ensure the 

software would be capable of cooperating with each other 

successfully in real-time. 

 

MATLAB 

The brain of the system which is comprised of neural 

networks used by the various components of the controller 

was developed through MATLAB. This software works 

specifically well for engineering applications that require 

low latency and high accuracy. MATLAB is a primary 

choice for systems that need to be linked through a 

controller and require a more dynamic characteristic when 

training using deep learning. It is also pre-equipped with 

various toolboxes that can help train and test numerous deep 

learning applications, and also fuse them with 

electrical/mechanical mechanisms [12], [13]. The neural 

network used in the system was trained in MATLAB using 

flight data extracted from the simulator. During the testing 

phase, the trained neural network was used to process inputs 

and produce outputs correlating to the data that it had been 

trained on.  

To realize a system capable of controlling an aircraft for 

takeoff, the proper readable inputs and controllable outputs 

need to be selected, as shown in Figure 2. The two primary 
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outputs that are being manipulated by the controller are the 

throttle of dual engines and the elevator yoke control. As for 

inputs, the optimum inputs for understanding proper vector 

control are altitude, speed, and climb-rate. By using these 

inputs, the network was able to anticipate the trajectory of 

flight, allowing it to make adjustments as needed to 

maneuver the aircraft in case of disturbances or deviations. 

 

 
Figure 2.  Neural network model. A theoretical representation of the neural 

networks’ inputs and outputs. The hidden layers can also be seen here. The 
number of hidden layers and nodes is much larger in the actual neural 

network; this figure is for representational purposes only. 

 

Simulink 

The controller of the system was developed using 

Simulink. As Simulink is integrated within MATLAB, the 

architecture of the network was able to directly 

communicate with Simulink and each model. This 

procedure allowed for a low latency connection functioning 

in real-time, so each model could execute its respective 

functions in synchronization with the rest of the system. Due 

to this, the system was able to produce outputs virtually 

instantly with varying inputs. Previous research papers 

indicate how developers used Simulink to create toolboxes 

within the software that are capable of allowing realism in 

network communication. This is essential when simulating a 

physical connection between nodes as it accounts for effects 

that would normally be negated [14]. This is an outstanding 

example of how accurately a designer could potentially 

produce a virtual system that can be used to simulate real-

world operations through Simulink. Countless realistic 

applications could be replicated with remarkable accuracy 

using Simulink, including electrical and mechanical 

systems. 

  

X-Plane 11 

The simulator or testing software that was used in this 

research is widely used by multiple aerospace firms to 

simulate their aircraft designs in flight by testing its 

aerodynamics and control [15], [16]. As this is one of the 

most accurate virtual representations of an aircraft in flight 

that can be virtually observed—it has become a popular 

choice for companies to test their aircraft and tweak the 

overall design before it is sent to the factory for production.  

―X-Plane 11‖ was used in this research for collecting the 

training data as well as testing the system. The aircraft had 

to be flown through the transition of taking off, so the 

required data could be collected to train the neural network 

to learn the procedure. It is then tested on the simulator to 

examine the accuracy in comparison to a human pilot. As 

the primary goal of this research was to suppress the effects 

that stormy weather, which includes wind gusts, heavy rain, 

and varying humidity levels have on the aircraft during 

takeoff, it was of utmost importance that an additional 

control system be integrated into the architecture. This 

would provide the neural network with a feedback loop that 

would monitor differences between the desired and current 

trajectory of flight. Then, it would react with an equal force 

to nullify the difference and bring the aircraft back on the 

desired trajectory. 

To add realism into the flight, the simulator needed to be 

adjusted. This was done by adding heavy rain and random 

wind gusts to the virtual world. These settings had a direct 

impact on the trajectory of the flight as the aircraft was 

constantly being forced off its commanded trajectory. ―X-

Plane 11‖ is an excellent software that adds realism to a 

simulated flight. This is extremely beneficial when studying 

effects caused by real-world circumstances on high-speed 

aerial vehicles. In Reference 9, it is shown that the research 

faced problems in the takeoff phase due to ―stormy 

weather.‖ It was recorded that the flight did a very 

insufficient job in taking off from the ground and 

maintaining a safe trajectory in the air. It is clear that the 

simulator did apply varying weather effects; however, the 

system was not able to react skillfully enough to neutralize 

the disturbance. 

III.   IMPLEMENTATION 

Successful implementation of the system is dependent 

upon the functionality and reliability of the different 

components in the system. As there are innovations and 

improvements in the architecture of the system—it is 

expected to give an admirable result that will show 

improvement with respect to previous studies done in this 

field.  

A. Input/Output Modules 

The initial part, as well as the final part of the system, 

consists of primarily two components respectively, the input 

port and the output port. These two core mechanisms are 

heavily relied upon for accurate communication in real-time 

between the system and the simulator. The transmission and 

reception of the signals are done in synchronization to 

ensure the internal system can compute the required values 

simultaneously. One important point to note is that all 

communication done between the simulator and the system 

is through UDP, or ―User Datagram Protocol,‖ and not TCP, 

or ―Transmission Control Protocol.‖ This system employs 

the use of UDP as it does not require a confirmation from 

the receiver to the transmitter to ensure proper values are 

being received. This was not necessary and would slow 

down the response time of the system significantly. As the 

system and simulator were both running on the same 

computer—there was a very low chance (if any) of 

miscommunication [17]. 

B. Neural Network Modules 

These modules are placed directly in the center of the 

system schematic and are made up of ―Neural Network‖ and 

―MATLAB function‖ blocks. Each module has been trained 

separately in accordance with the data that has been 

provided to it, and each module can produce outputs that 

correlate with the data it has been trained on [18]. These are 

the foundation of the entire system as they are responsible 

for the elevator and speed control of the aircraft. In this 

specific study, they have been trained to take off an aircraft 

and maintain an acceptable climb-rate throughout the 

―ascending‖ phase. This was exceptionally challenging as 

developing a neural network that can operate within 

extremely critical margins requires a highly responsive 

system that can read, process, and transmit a control signal 

to the simulator before the aircraft experiences instability.  
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This research study focused on the design of two neural 

networks, both working simultaneously to control two 

separate actuators on the aircraft. In Figure 3, the first and 

more complex artificial neural network can be seen. With an 

input of altitude and climb-rate—the network must output a 

corresponding value for the elevator yoke. The neural 

network calculates the required climb-rate from the altitude 

of the aircraft, and uses it to find the difference between the 

required and instantaneous climb-rate. That difference is 

then used to determine a suitable control signal for the 

elevator. The neural network uses this method to stabilize 

the climb-rate or it will vary depending on weather 

conditions at the time of flight. This network is trained on a 

commercial jet taking off on a standard runway in ―clear‖ 

weather conditions. This includes no disturbances of any 

kind that may cause undesired forces on the aircraft itself to 

push it off course. Climb-rate was introduced specifically 

into this system to account for disturbances that would cause 

the aircraft to deviate from its assigned trajectory. However 

the elevator yoke is set, the vector on which the aircraft is 

traveling cannot be understood by the yoke itself, so climb-

rate was opted as the primary indicator for determining the 

actual velocity vector of the aircraft. 

 

 
Figure 3.  Elevator control network. This part of the system is responsible 
for calculating a suitable required climb-rate from the instantaneous altitude 

of the aircraft. The difference of the required and instantaneous climb-rate 

is then used to determine a suitable elevator yoke signal. 

 

During the testing phase, the system was tested in clear as 

well as stormy weather conditions. The weather had many 

nonlinear effects on the aircraft that needed to be countered 

by the control system. Working against ―stormy weather‖ is 

definitely an arduous task that flight control systems have 

had to deal with since they were invented, and these systems 

are known to have had terrible failures [7]. 

The second neural network module in the system was 

used for throttle control of the aircraft. Although the throttle 

control that exists in the aircraft’s control system is flawless, 

it is important to demonstrate that each segment of an 

aircraft can be controlled by deep learning techniques while 

providing equal or better performance. As shown in Figure 

4, there are two limiters attached to the outputs of the neural 

network block. The purpose of these limiters is to ensure 

that under no circumstances should the throttle control 

signal ever be higher than the maximum or lower than the 

minimum permitted throttle. This is a safety feature that 

ensures the system does not overstress the aircrafts 

components. 

 

 
Figure 4.  Throttle control network. This neural network runs parallel to the 

elevator control network. It is responsible for calculating a throttle control 

value at any given instantaneous speed. 
 

 ( )   
 

     
                 (1) 

 

When a neural network is being trained to compute 

certain data, it needs to have an activation function attached 

to each node; its responsibility is to apply a transformation 

to the weighted input. As the data in this research was 

mostly nonlinear, a nonlinear activation function was chosen 

that provided the most accurate training to the neural 

network. The activation function is the ―sigmoid‖ function. 

In Equation (1), the mathematical statement of the activation 

function can be seen.  

C. The Operational Amplifier 

As mentioned earlier, the system was trained using data 

from the simulator under the conditions that the weather was 

clear; that ideally meant that there were no external effects 

due to rain, wind, or humidity on the aircraft. This did not 

seem to be a problem when the system was tested under 

these same weather conditions, however, when the simulator 

was configured for harsher weather, the flight failed rather 

quickly [9]. This was due to the fact that the aircraft had 

absolutely no idea of the effect that the weather had on it; as 

it was not able to identify the issue, it was not able to 

counter it.  

To allow the system to react against nonlinear 

disturbances, an operational amplifier was placed after the 

neural network responsible for elevator control. Figure 5 

shows the schematic representation of the operational 

amplifier used in this research. The input and output nodes 

are elevator control values and the variable resistor is 

manipulated by the subtractor. The purpose of the subtractor 

is to calculate the difference between the required and 

instantaneous climb-rate. That value is then used for ―R1.‖ 

The ideology here is to vary the gain of the amplifier in 

proportion to the difference between the required and 

current trajectory. This would apply a controlled gain to the 

elevator signal causing it to vary depending on the value of 

―R1.‖ 

 

Proceedings of the World Congress on Engineering 2021 
WCE 2021, July 7-9, 2021, London, U.K.

ISBN: 978-988-14049-2-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2021



 

 
Figure 5.  Operational amplifier control system. 
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The primary function of the amplifier represented in 

Figure 5 is for nonlinear adaptive control of the elevator. It 

is used to force amplification to the output elevator control 

signal based on the difference in the required climb-rate and 

instantaneous climb-rate. The required climb-rate is 

calculated from the ―Elevator Control Network,‖ and the 

instantaneous climb-rate is sent directly from the decoder 

after receiving a signal. The higher the difference, the more 

rapidly the difference is decreased due to the higher gain of 

the operational amplifier. In Equations (2) and (3), it should 

be known that the resistor ―R1‖ is the primary gain factor of 

the amplifier, as ―R2‖ is at a constant value; however, ―R2‖ 

can also be modified to scale the gain of the amplifier. This 

can be quite beneficial when tuning the amplifier to work 

with different types of aircraft, as it will directly adjust the 

sensitivity of the amplifier. 

IV.   RESULTS 

The results collected had been extracted from the flight 

simulator data log file after multiple successful test-runs in 

varying weather conditions [15]. This study aimed to 

improve on and extend the introduction of neural networks 

in flight control systems, and this was accomplished by 

incorporating a secondary control module through an 

operational amplifier. This architecture provided the system 

with the advanced control that was vital for its performance. 

In Figure 6, the result showing the altitude of the aircraft 

with respect to time can be seen, where two tests have been 

compared. The first test is when the flight had to take off 

during severe weather conditions, while the second test is 

when the weather conditions were clear. The curve for clear 

weather conditions is meant to be used as a reference as that 

is the curve on which the neural network was trained. In 

Figure 6, however, it quickly becomes clear that there is a 

slight deviation between the aircraft’s trajectory during 

stormy weather conditions vis-a-vis the trajectory during 

clear weather conditions. This study successfully produced a 

positive result for elevator control and achieved a massive 

improvement over the result that was achieved by 

previously completed studies [9]. That research study was 

lacking in outputting a satisfactory result for aircraft 

elevator control in stormy weather conditions, and that is 

what the primary motive of this study was founded upon.  

 

 
Figure 6.  Altitude vs. Time graph. The primary focus of this paper was on 

this portion as there was a need of improving the attitude control of the 

aircraft using deep learning. It depicts the vertical trajectory of the aircraft 

in clear and stormy weather conditions with respect to time. 
 

It is well understood that for safe travel in an aircraft, it is 

important that the aircraft be capable of controlling itself in 

case of any external disturbance including wind and rain. 

From the result that was obtained in this study, it is evident 

that there exists a minor deviation between the flight in 

stormy and clear conditions; however, it is also clear that the 

aircraft did manage to control itself after being affected by 

turbulence in mid-flight. This was a stunning display of 

responsive control in a crucial segment of the flight. There 

was another external effect throughout takeoff caused by 

varying air and rain resistance acting on the body of the 

aircraft. This is primarily what caused a slightly lower slope 

in the trajectory of flight. It is essential to note that the 

drifting effect significantly depends on the direction of the 

wind and it will almost always vary. In this case, it is 

assumed from the data, that the external disturbances were 

applying a downward force on the aircraft, and that is why it 

had a lower slope. 

Inputting external disturbances into the simulator to upset 

the attitude of the aircraft is an important step in examining 

nonlinearities that may offer challenges for flight control. 

One specific area that needs to be highlighted is how 

disturbances will vary and cause a distinct response in each 

case. A neural network based flight controller needs to be 

trained through multiple experiences in changing weather 

conditions for it to be able to react skillfully when faced 

with an unknown incident. Here the aircraft was trained in 

clear weather conditions and was competent enough to 

control its output for a smooth recovery when met with 

turbulence. A significant amount of additional training in 

numerous weather conditions should vastly improve the 

flight performance of the aircraft further.  

While the system was controlling the elevator for the 

aircraft, it was also trained to control the throttle 

simultaneously. Figure 7 portrays the ―actual speed‖ of the 

aircraft with respect to time. It can be seen that both curves 

shown are quite similar, but the aircraft in stormy weather 

did travel slightly faster at any instantaneous point aside 

from when the aircraft experienced mid-flight turbulence. 

This was most likely due to the lower climb-rate the aircraft 

was flying at, allowing for higher acceleration. Overall, the 

throttle control of the neural network remained trustworthy 

and reliable, leaving no doubt about its functionality 
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Figure 7.  Speed vs. Time graph. A representation of how the speed of the 

aircraft varies in stormy and clear weather conditions with respect to time. 

 

The first artificial neural network focused on elevator 

control, which is highly nonlinear, while the other was for 

speed control, which is relatively less complex. This data 

alone provides convincing evidence to the idea that 

practically all controls of an aircraft can be performed 

through the use of neural networks. Furthermore, the results 

achieved here invoke the possibility that with enough 

development, neural networks may even function 

considerably superior to humans in applications including 

flight control. 

V.   FUTURE ADVANCEMENTS & CONCLUSION 

Although this paper has successfully reached a milestone, 

it has not entirely concluded the process of taking off in an 

aircraft. Moreover, there are many other stages of flight that 

still need to be developed. The study done here has opened a 

path for future innovators to integrate deep learning into the 

remaining control infrastructure of the aircraft to enable the 

possibility of autonomous flight. There are numerous areas 

that should be researched, including navigation control, 

altitude adjustment for dodging turbulence in the 

troposphere, banking control, and landing [19]. Systems that 

can suppress nonlinear effects in flight should be researched, 

and the most important two stages of flight, namely takeoff 

and landing, need to be improved further. As this project has 

successfully improved the process of taking off, there needs 

to be an ample amount of research concentrated on 

developing autonomous landing as well. 

In conclusion, this research study turned out to be quite a 

success as it accomplished what it was designed to do. 

Realizing a system that can function normally with 

nonlinear disturbances is not a simple task in control 

systems; however, the use of neural networks has proved to 

be a sustainable option that can be implemented in flight 

control systems. Integrating control systems with deep 

learning is a type of adaptive control system; and by using 

neural networks to learn from training, it can allow for a 

significantly reduced response time in processing [20]. It has 

also been proven to operate with immense more stability 

than using deep learning without any additional control 

mechanism [9]. The main upside of this ideology is that it 

can be applied to practically any application, including the 

other stages of flight. Additional possibilities include 

integration into autonomous vehicles, including cars, trucks, 

and buses; as neural networks have been appearing in many 

studies involving driverless cars, there is a need for 

innovation in related vehicular control [21]. There are also 

theories for implementing artificial intelligence into 

robotics; however, that concept may not be ready to be 

realized as an actual system before conducting further 

research on improving the stability of neural networks. 
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