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On the Stokes Flow In Pipes with the Polygonal
Cross-Section

Nino Khatiashvili

Abstract—In the paper an unsteady incompressible fluid
flow in a prismatic pipe is studied for the low Reynolds
number. The linearized Navier-Stokes equation (the Stokes
equation) is considered with the suitable initial-boundary
conditions. It is assumed that the pressure exponentially
depends on time . The Stokes equation is reduced to the system
of linear integral equations with the weakly singular kernel.
The existence and uniqueness of the solutions of those
equations is proved and the approximate solutions are obtained
by means of the conformal mapping and the stepwise
approximation methods. The example of the pipe with the
hexagonal cross-section is considered.

Index Terms—Conformal mapping, Integral
Stokes flow in pipes, Step-wise approximation

equations,

. INTRODUCTION

HE pipes with the polygonal cross-section are widely

used in technological processes. However, it is
important to define the velocity of the fluid flow in such
pipes not only experimentally, but also analytically.

Study of the Stokes system for the pipes begins in the XIX
century. The solutions of the Stokes system for the
incompressible fluid flow in pipes with circular, elliptical,
rectangular, triangular cross-sections were obtained by
Poiseuille (1840), and Boussinesq (1868), [2], [6], [20].
Exact solutions for the flow in porous circular pipes were
derived by S. Tsangaris, D. Kondaxakis and, N. Vlachakis
in 2007 [30]. Exact solutions for the axi-symmetric Stokes
system for the fluid flow over the ellipsoidal bodies in the
infinite channel are given in [11, 13]. By means of those
solutions, transportation of oxygen with the help of the
single erythrocyte in a capillary was described [13]. We
obtained non-smooth solutions of the Stokes system for the
fluid flow over and inside the rectangular infinite prism in
[17]. The numerical treatment of the Stokes system is given
in [4], [7], [24], [25], [28], [29].

As we know, solutions of Stokes system for pipes with an
arbitrary polygonal cross-section have not been obtained yet
and this is our goal.

Manuscript received February 26, 2022; revised March 11, 2022. This work
was supported in part by the Iv. Javakhishvili Thilisi State University.

N. Khatiashvili is with the 1.Vekua Institute of Applied Mathematics of Iv.
Javakhishvili Thilisi State University, 0143Thilisi, GEORGIA (phone: 995-
598-37-09-78; e-mail: ninakhatia@ gmail.com).

ISBN: 978-988-14049-3-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

, Member, IAENG

We assume that the pressure is controlled and the fluid flow
in a pipe is slow with a low Reynolds number. In this case
the flow is called the Stokes flow and the velocity
components of the flow subject to the Stokes system [1],
[2],

[5], [6], [15], [16], [18], [20]—{[30]
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where t is a time, V (V,,V,,V, ) is the velocity of the

fluid, F (F,,F,,F,) is the body force, P s the
pressure, o is the density, v is the viscosity of the fluid.

We consider the system (1), (2), (3) with the initial-
boundary conditions

Vx|S:Vy‘S:Vz|S:O ! (5)
V,(xy,2,0)=V,(xy,2,0),
V,(x,y,2,00 =V, (x,Y,2,0), (6)

V,(xy,2,00 =V, (x,y,0),
where S is the boundary of the
0 0 0
V, (X,y,2,0), v, (x,¥,2,0),V, (x,y,0),
are some double-differentiable functions.
The pressure P satisfies the equation [1], [2], [5]. [6].
[15], [16], [18], [20]—([30]

AP = pdivF. @)

pipe,

In the paper, the specific pressure (depends on time
exponentially) is considered. Using the Poisson formula and
conformal mapping methods we reduce the system (1), (2),
(3), (4) to the system of Fredholm integral equations [3],
[8], [10], [19], [23]. We solve this system by the stepwise
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approximation method and obtain the velocity components.

Hence, we define the velocity of the fluid. The example is
given for a pipe with a hexagonal cross-section (the pipes
that have hexagonal cross-sections are more convenient for
transportation).

We will solve Problem 1 by means of two different
methods: in Chapter 3 we obtain the solution directly in
Oxyz space, while in Chapter 4 we use the conformal
mapping method and obtain the solution in new variables
(from our viewpoint this method is more convenient for the
numerical treatment).

Il. STATEMENT OF THE PROBLEM

We study 3D Stokes flow in the finite prismatic pipe.

In the cartezian coordinate system OXyz we consider the
prismatic area D, ={D, x[0,1]};0<z <I;1 > 0; with
the boundary S and with the cross-section D, , where
D, is the simply connected region of XOy plane bounded

by a piecewise-smooth line @(X, Y).
Let us suppose

P(x,y,zt) =aexp(—at)(I —z)P, (X, y), (8)

F, =exp(—at)(I - 2)F2(x, y),
F, = exp(—at)(I - 2)F) (x, y),
F, = exp(—at)F, (X, y), ©)
where F (X, y), Fyo (%Y, F2(xy) are

functions , and Pjis the double differentiable function

continuous

inD,, aand >0
Besides, we admit

V, = exp(-at)(l ~2V, (x, ),
V, =exp(-at)(I -2)V,) (x, Y),
V, = exp(-at)V (x,y),

where functions V (X, Y), Vyo (X, y), V.)(X,y) are to

be determined.
By (5), (6), (8), (9), (10) the system (1), (2), (3), (4)
becomes

are some given constants.

(10)

oP,
14 pv oX v
oP
M¢+gvf=i_JJ1 & 12)
14 pv oy v
AVz0 +g Vz0 -2 P (x,Y) _1 FZOI (13)
v pv
Ve V!
AcEAI (14).
ox oy
with the initial-boundary conditions
0 0 0
Vx p(xy) ~ Vy ‘(p(X,y):Vz o(xy) = 0, (15)
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V, (%, ¥,2,0) = (1 -2) V. (x,y),
Vy (X! y! Z!O) = (I _Z) Vyo (X, y)’

(16).
V,(xy,2,0) =V, (x,y),
The equation (7) takes the form
2 2 aFO 0
a_lzo_}_a_lzo =p (_y+@)
oo ey @

Our goal is to solve the following problem
PROBLEM 1. In the area D, find the functions

0 0 0 . . . .
V.V, ,V, having continuous second order derivatives

and satisfying the system (11), (12), (13), (14) with the
boundary condition (15) and the condition (17).

I1l. SOLUTION OF PROBLEM 1

By means of the condition (15) and Poisson’s formula the
system (11), (12), (13), (14) can be reduced to the system of
Fredholm integral equations [3], [15], [16], [25]

a
V) - G(x, v, %, y,) V.) dxdy,
v g,
(18)

1
:—2— IG(X, Y, Xy, yl)\Pl dx,dy,,
7 5,

VyO - G(X, Yy X yl) Vy0 dxldyl
2rv s
° (19)

1
= —2— J.G(X, Y, Xy, yl)\PZ dx,dy,,
7 o,

Vf—% G(x,y,x,y;) V2 dxdy,
> (20)

1
== jG(x, Y, X, Y;) W dxdy,,
7o,

where G is Green’s function for the Laplace equation in the
area D, ,

oP
q11=i70_é|:xoy
pv oX v
oP,
\yzzi_o_lpyol
pv oy Vv
\PBZ_iPO(Xiy)_leO'
pv 14

If we take the first order derivatives of equations (11), (12)
and use the formula (17) we obtain
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A{ﬁvxo +8VV0 }+ o LGVXO +5Vy0 ] 0 where f(x, Y, X, yl) is the conformal mapping of the

(21) it ci
x oy | v ax oy area D, at the unit circle.

For the polygonal areas with the n-angles the function

According to (14) equation (21) has only trivial solution. It f(x, Y X yl) Is the inverse function of the integral

a
means that —— is not the eigenvalue of the integral f ) ) )

2zv 7= Clj(t—al)“l‘ (t—a,)” " A (t—a,)" " dt+C,,
equations (18), (19), (20) and hence they have unique 0
solutions. Applying the Banach theorem we conclude [3]:

o where «;, i=0,A ,n; are the angles of the polygon,
If —— < —, where i— . ; ; ;
oy M a;, | 0,A ,n; are the points of the circle corresponding
to the vertices of the polygon and C,, C, are the definite
J|G(X, Y Xy yl] dx,dy; <M; (x,y) € Dy, constants [8], [9], [19], [23].
D, In the next chapter we study Problem 1 by means of the

then there exists the unique solutions of equations (18), ~conformal mapping method.
(19), (20) which are given by the formulas

0 _ s . 0 _n: . 0 _ ;s
Vi = l'j[l Vin' Vv - !EQ Vyﬂ Vy = l'j[! Van (22) IV. SOLUTION OF PROBLEM 1 BY MEANS OF THE
CONFORMAL MAPPING
where Let us consider a conformal mapping f,(W) of the
1 rectangle
V,, =_2_J'G(x,y,xl,yl)\pl dx,dy; (23) D{~a,/2<&<a,/2,0<n<b,}
7 By of W=¢& +1i7 plane on the area D, (Fig.1).
a
Vxn =Vx0 + % [5[0G(X’ Y, Xl’ yl)vx(n—l) Xmdyl, N a
1 1y
VyO = _2_ J.G(X, Yi Xy, yl) P, dxldyl’
7 D,
° (24)
a
Vyn =VyO + % B'.G(Xl Y, Xy yl)vy(n—l) dxldyl' T
1
V,p =—— | G(X, ¥, X, y,) ¥, dx,dy,, (25)
2r D R
a i 0 dy ¥
Vzn =Vzo + % 6[G(X’ Yy X, yl)vz(n—l) dxldyl' - Eﬂ E

If

is rather small, then the solutions of the system . .
4rly Y Fig.1. The rectangle D{— a, /12 < E< a, 12;0< n< bo}.

(18), (19), (20) will be given by (30), (31), (32) and hence
the solutions of the system (11), (12), (13), (14) will be By the mapping f, (W) the system (1), (2), (3) becomes
given by (10).

We define the profile of the velocity by the formula AV +g‘ f, (W)‘2 Ve
v
- oP, .
v @6 =[] =X e e e
pv oX 0& 14
—exp(—ot) (-2 (O (- 2P Ve P vF avp e | wf'v
v
The Green function G is given by the formula [23] - ‘ f '1(W 2 18|308y_f (W ‘2 1 o’ (29)
pv 0y 0n v’
G(X, y, Xy, Yo == In| T (X, y, %, vy )
N7 A (27)
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AV + 8w v
1%
' 2 a. ' 2 1 0
=2 = Py(&m-|f, ) SF, (30)
pv 1%
o aVv?

% +—L =0, (31)

ox oy
with the boundary conditions
on So Vyo So :VZO So 0 ! (32)

S, is the boundary of the area D .

Taking into the account (32) and Poisson’s formula we
reduce the system (28), (29), (30), (31) to the system of
integral equations [3], [15], [16],

Vv, _ZLJ.GO(&U’ Xps Y1) ‘f Il(W)‘z v, dx,dy,
A
1 N L.
:__J.Go(g’n’xl!yl) ‘fl (W)‘ ¥ dxldyl’ (33)
2r g,
Ve -2 [Gy(emx, y)|F () V¢ dx,dy,
Y 2avy Y
1 N T
=__J.G0(§a77’X1:y1)‘f1 (W)‘ ¥, dxldyI’ (34)
2r s

. 2
Vzo _%J‘Go(éﬂl X yl)‘ f, (W)‘ Vzo dx, dy,
D

1 A
B _Z_J.GO (é:inv X yl) ‘ fl (W)‘ \PS dxldyl’ (35)
Z D

where

-_ 1R 1o

' pvoE v "

. oP,

vy :i_o_leo,
pvon v

* a l

¥y =-—PREm-=F,

Go is Green’s function for the Laplace equation in the

rectangle D [23]

SNW—Snw,
G, (w;w,) = —In——-,

sn W—snw, (36)
SNW is the Jakobi sinus with the periods 2a,; 2ib, [8],
[9], [10], [19], [23].

. a . .
As we proved previously 2— is not the eigenvalue of the
A%

system of integral equations (33), (34), (35) and if this
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constant is rather small, then the solutions of this system are
given by the formula (22), where

1 NN,
Vx0=_2_ _[Go (51771 X1y yl)‘ 1E1 (W)‘ ¥y dxldyl’ (37)
o

Vxn:\/xO%IGO (gv 77! X11 yl)‘ f Il (W)‘zvx(n—l)dxldyl !
VA%

D

1 - 2 .
Vyo= =[G (&0, )| o (W) ¥y, (38)
2ry,

o ‘ 2
Vy":VVO% ~E[ Gold %, ¥y )‘ fi (W)‘ Vynnydxdys,

1 ' 2"
VZOZ_EJ-GO(g’n’ Xl’yl)‘fl (W)‘ Pydxdy,, (39)
D

. 2
Vzn=vzo_|2ij.60(§’ 1, Xq, Y1)‘ f1 (W)‘ Vz(n—l)dxldyl'
/A% D

Below as an example we consider the case when D, is the
hexagon (Fig.2)

T Yo
ay
] a
ag
)
0% %

Fig.2. The hexagon with the vertices
a,,a,,3,,3,,a;,38,,a =0;Rea, =0

Example. Suppose, that D, is the hexagon of z-
plane, Z = X+ 1y, with the vertices
a,,a,,3,,8,,a;,38,,a =0;Rea, =0

and with the axis of symmetry a,a,. In this case the
conformal mapping of the rectangle D on the area D, is

given by the formula [12], [14]
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z:fl(w):CZJQt‘“S(tz 2V (2 —p2 M dt,
0

ZO:sn(ﬂj;W:COT (-t )" -k2t? )t
C:O 0

where

|C|=—|a3_a2|-c -
Ko R
])- w3y 1/3('[ _p? )llsdt

sn is the Jakobi sinus with the modulus K [8], [9], [19],
[23], a=Lb=1/k.

By the mapping f (W) we have the following
correspondence of points

a,«0a, oa,/2a,<a,/2+iby, a, < ib,,
a; <> —a,/2+ib,, a, <> —a,/2;a,,b, >0.

If

> is rather small and taking into the account (37),

Aty
(38), (39), we obtain the approximate solutions of the
system (28), (29), (30)

1 o

Vie= 5= [Go(&m. %, )| f, (W) dx,dy;, (40)
7Z.D
1 o) 2w

Vie= [ Go(&om x| i (w3 dx,dy,, (41)
ﬂ-D

1 N

Vzo:_ Z_J‘GO (657 7, X1 yl) ‘ fl (W)‘ ‘1’3 Xmdyll (42)
ﬂ-D

where Go is given by the formula (36) and [12], [14]

2/3

, C
|f,'(w)|* =C? W—O | (43)

cn—dnﬂ
C0 CO

C,=k**C/C,;C,=a,/xz; sn,cn,dn are the
Jakobi functions [8], [9], [19], [23].

, by o
Ifq=e ,(x= 2 ), is sufficiently small , the
0
following formulas are valid [8], [9], [12], [14], [19], [23]
sn(w/C,) =sin 7(1+ 4q cos? 7)z siny,
cn(w/C,) = cos 7/(1— 4qsin? y)z cosy, (44)
dn(w/C,) = (1—8qsin2 }/)zL

where
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N 5
=——;b, =—a,;k, ~0.34;
Y a,C, 0= 3% %
siny=sin 7 cosh-Z7 4icos 7 sh- "1,
a‘OCO aOCO aOCO aOCO

3 3
7w 7w .
Let us assume that : are negligible
a,C, a,C,

and
a, =10%k ~ 0.02,k, ~0.34;]a, —a,| =L v =1;
then

sin—"o_ ~ T -sh- 1 T ;|C|~3-107%;
a,C, aC, a,C, a,C,

2 2
cosﬂ—gzl—1 ”—5 :cosh ddli 14—1 ddli
a,C, 2\a,C, a,C, 2\ a,C,

and by (44) the formulas (36), (43) becomes

G, (w;w,) =—%In%

) l"‘ 771 _*51
f,'(w)|” =12-10°°
+§1
where
AP /Y
" aC, T ac,”

We NOW suppose
=d;; I:yo d,, on =d;; R (X, y)=PRy;
dl; d,,d,; P, are the constants, then from (40), (41), (42)

we define the velocity components and the velocity modulus
'\7

V, ~107°d,

for the pipe with the hexagonal cross-section

2/3

1
|(§1_§o) (771+770 2| 1+ 7771_751

| d
IS[ n‘(fl_go)z"' (77 2 771+§1 a
l\/y0:10’5d2

1, 1., 2/3
[l el o™ 0% |y,
D ‘(651_50)2"'(771_770)2‘ 7712"'512
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V,, =10 (% P, +d,)

2/3

1
J'|n|(§1_§) (771+770 2| 1+ 7771_751
D ‘(ﬁl—fo)sz(?? 2‘

dédn
771"'51

=10"’exp(—at)

\/ Pt (1 - 2)2(d, )P+ %P0+d3 (45)

1 ) l , 2/3
ffeeo e T2 0% |y
D ‘(§1_§0)2+(771_770)2‘ 7712"'512

V. CONCLUSION
Hence, we conclude: If the pressure is represented by the

a
formula (8) and satisfies the equation (17) and 2— is not
v

the eigenvalue of the system of integral equations (33), (34),
(35) ,then there exists the unique solution of the Stokes
system (1),(2), (3), (4) for the velocity components of the
incompressible fluid flow in a pipe with the polygonal
cross-section and this solution is given in the explicit form
by the formulas (22), (23), (24), (25).

In this paper we obtained new type of solutions for the
Stokes system in a prismatic pipe with no axial symmetry.

In future, we plan to obtain a numerical approximation for
the formula (45).
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