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Abstract—Successfully predicting rarely occurring events in
large systems can be extremely valuable in various scenarios,
such as fraud detection, quality control, sales prediction, etc.
In tourism, predicting connections between hotels via their
similarity scores can form the basis of a hotel recommendation
engine. In this work, we propose a link prediction frame-
work for such an application. This framework first extracts
a hotel-to-hotel network from hotel-customer raw data sets.
Then, it applies various link prediction approaches. Besides
employing well-known node similarity metrics such as Adamic
Adar, Jaccard Coefficient, and Preferential Attachment, we
also contribute to developing their weighted versions. These
six metrics are executed in the basic supervised task of link
prediction. The results are evaluated by precision and AUC. In
our experiments, we used two novel data sets from the tourism
sector: SeturTech and Otelpuan. The results demonstrate that
the proposed weighted Adamic Adar returns the most accurate
link predictions.

Index Terms—Link Prediction, Smart Tourism, Node Simi-
larity, Precision.

I. INTRODUCTION

Recommendation systems are intelligent mechanisms that
explain unseen relations between users and items. Right
now, we come across several different approaches from
different domains [1]. An interesting and useful application
of recommendation systems can be a smart tourism approach
that suggests new hotels for travelers when they plan their
journeys. In this work, we investigated methods for develop-
ing an accurate recommendation engine for smart tourism.

Technically, there are two types of recommendation sys-
tems, independent of sector or application type: customized
and non-customized.The non-customized system gives the
same item recommendation to all system users without
considering users’ individual interests. In contrast, the cus-
tomized one considers the preferences or interests of each
user, thus recommending certain items to the user more ef-
fectively. Indeed, customized approaches are more interesting
because of the personalisation of system users.

Most of the traditional approaches use learning methods
such as clustering, classification, and regression techniques
[2], [3]. They all rely on tabular data, i.e., the attribute-based
description of individual objects. These approaches can skip
the collaborative aspects that can occur in the systems be-
cause of the interactions between the users. We come across
efficient methods using complex networks instead of tabular
data, thereby allowing one to leverage relational information,
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i.e., connections between objects. These methods can be
counted as collaborative filtering contributions.

Complex networks are advanced graph-based modeling
tools for systems, including interacting objects[4], [5]. In
this model, the objects are represented by nodes, and their
interactions correspond to links between nodes. In the hotel
recommendation case, the system corresponds to the e-
commerce data sets, including hotel preferences of cus-
tomers, with the features of hotels and customers. The use
of complex networks allows us to consider both the system
effects and local effects all at once in the analysis. That is
why in this project, our ultimate aim is to generate a new
hotel recommendation system for smart tourism through link
prediction on this complex network model.

Usually, the recommendation problem is reduced to a
link prediction problem. Thus, specifically, we focus on link
prediction task for smart tourism. For example, Li et al.
[6] consider the recommendation to be a link prediction
problem in user—item interaction bi-partite networks. They
define a network kernel for the user—item pair’s context and
use the network topology to infer whether a user may have
a link with an item. Another work that uses a link prediction
method for bi-partite networks with homogeneous node simi-
larity is described in [7]. The aim was to propose new music
to users. Recommendations are mainly based on user-user
similarities. In our work, we use bi-partite networks as it was
done in the previous works. Network-based recommendation
can efficiently use heterogeneous information in networks by
expanding neighborhoods and calculating proximity between
users and item types [8]. Several link prediction measures are
summarized in [9] for various networks.

Our main contributions can be folded into four parts: first,
we propose a framework for the link prediction process,
tackling to connect the similar hotels in terms of the travelers’
preferences. Second, we applied well-known baseline link
prediction metrics such as the Jaccard Index, Adamic Adar,
or Preferential Attachment [9]. Third, we proposed modifi-
cations to the mentioned measures in a way to account for
the power of the links. Fourth, we tested our framework on
two novel data sets, SeturTech and Otelpuan. Among them,
SeturTech is a network from one of the biggest companies in
tourism agencies, while Otelpuan is a web site for searching
for hotels in Turkey. The rest of the document is organized as
follows; in section II we describe the problem we tackle in,
explain link prediction methods and also proposed weighted
link prediction metrics. Then, in section III, we explain the
experiments and related results by interpreting them. Finally,
we summarize the work by giving future perspectives in
section IV.
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II. METHOD

We propose a framework having several tasks for achiev-
ing a proper link prediction for hotel recommendations. In
the next parts, we will describe the details of this framework,
the link prediction methods that we use, as well as the
performance evaluation metrics for the link prediction.

A. Link Prediction Framework

All of the travelers’ connections and their hotel choices
constitute a complex system. In this system, the hotel prefer-
ence of a traveler may affect another traveler’s choice, even if
they do not meet or do not have any connection, because they
belong to the same system. The entire system works as one
monolithic structure, including small particles, which all have
their own local effects as well as system-dependent global
effects. Complex networks are one of the most appropriate
models for such systems. That is why we focus on complex
network modeling for hotel and traveler systems, taking non-
linearity, feedback, and other hidden effects into account.

We propose a framework that models the hotel-traveler
data set in the form of an appropriate complex network
and finds the proper hotel suggestions. The flowchart of this
framework is shown in Fig. 1. The first task of our framework
is building a proper network. There are several different types
of complex networks, such as simple, attributed, directed,
dynamic, or bi-partite. They all have different functionality
for different network modeling.

In our case, S is a complex system that includes the
travelers’ U and the hotels” H. In this system, the travelers’
are connected with the hotels that they choose. In its simplest
form, S is a user-item system. One of the most appropriate
network models for these systems is bi-partite networks. Let
us define the bi-partite network as Gy = (Vy,Vy,L). Vi is the
hotel node set whose members are the node representations
of the hotels from H. Vy is the customer node set whose
members are the node representations of the travelers from U.
L is the link set, whose members are the node pairs between
Vi and Vy. If a traveler visits or prefers a hotel, there is a
link between their represented nodes.

Using bi-partite networks requires a link prediction mech-
anism for a hotel recommendation problem. This task can
be completed directly from the bi-partite network model by
identifying appropriate missing links between a hotel type
node in Vg and a traveler type node in Vy;. However, link
prediction techniques for bi-partite networks are case-specific
and limited to [10]. That is why we do not directly use bi-
partite networks but transform them into uni-partite ones.
We come across several link prediction methods based on the
idea of forming complete triangles or other local information
[11].

We define an auxiliary projected network Gyey = (V,L)
of Gy as the pair of the V node set and the L link set,
with nodes from V representing hotels and links from L
representing connections if any two hotels are linked to at
least one common user in Gy. Furthermore, from Gy, a
weighted version of Gy, can be formed, with the weight
of each link corresponding to the number of common users
shared by two hotels in Gy. In this case, the weight of a link
shows its strength, i.e. a type of similarity in this specific
hotel case. G5y has a homogeneous node structure. Standard
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complex network analysis and link prediction techniques can
be easily applied to Gy.s. The second task of our framework
is extracting Gyeg from Gy.

In our framework, once G is extracted, the hotel rec-
ommendation is inferred by finding missing links between
hotels. We recommend to users hotels that they did not visit
yet and that have been linked by prediction process to hotels
they have previously visited. Thus, the third and main task
of our framework is link prediction. We handle this task as a
supervised learning task. Gy, Was created by removing N
randomly selected links from Gy,g. On the Gy, network, we
used the link prediction methods described in the following
section. The predicted links were evaluated as true or false
predictions by determining whether or not Gy.s contained the
predicted links. Then the performance of the link prediction
methods is calculated for each method. In the next part, we
will explain the baseline link prediction methods and our
modifications to them, as well as the performance evaluation
metric that we use in detail.

B. Link Prediction Methods

Link prediction methods for uni-partite networks are based
on two ideas: constituting clusters or constituting trian-
gles. Finding the missing links for the cluster constitution
uses network global topological information, whereas the
other one uses local information mostly related to node-to-
node topological similarity. In this work, we applied both
approaches, but in our specific hotel network cases, the
clustering was not efficient. The networks that we have
built do not have a modular structure. That is why we do
not concentrate on clustering-based link prediction here but
rather detail triangle-forming methods in detail. The baseline
link prediction approaches of this work use pre-defined
node-to-node similarity metrics in the supervised learning
task. In the following parts, we will explain in detail three
well-known metrics: Adamic Adar, Jaccard Similarity, and
Preferential Attachment. Our contributions to link prediction
are defining case-specific weighted versions of these three
similarity metrics. The readers will also find the analytic
explanation of the weighted versions in the following part.

Adamic Adar (AA) computes the similarity of nodes based
on their shared adjacent nodes. In the equation 1, X and
Y are two distinct nodes from V. N(.) is the first-level
neighborhood, i.e. the nodes that are directly linked to a node.
Thus, AA is the sum of the inverses of the logarithms of the
neighbor numbers of each of the common neighbors of two
nodes. If X and Y have considerable numbers of common
neighbors and those nodes have few connections, then AA
score becomes high, i.e. X and Y are similar.

1

AA(X,Y) = —_— 1

= X TN @

We defined Weighted Adamic Adar (WAA) for measuring
the similarity of nodes based on the weights of the links
of their common neighbors. The definition is given in the
equation 2.As a result, instead of the number of neighbors,
N(.)|, we use the total amount of weight, W(.), that is
associated with a node. The WAA differs from AA in a way
that if a common neighbor of X and Y has few but powerful
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Figure 1. Flowchart of the link prediction framework

connections, which means the weight of its connections is
high, the WAA becomes less.

1

WAA(X,Y) = L
i 105V )

2

Another baseline, the Jaccard coefficient (J), computes the
similarity of two nodes by dividing the number of common
neighbors of nodes by the number of all neighbors that node
pairs have, see equation 3. The more the common neighbor
number, the higher the Jaccard similarity.

INX)ON(Y)|

M= ol

3)

We defined the weighted version of the Jaccard coefficient
(WJ) in equation 4. It is the division of the sum of weights of
common neighbors of X and Y by the total sum of weights
of all neighbors that node pairs have. The main difference
between J and WJ is that J is more sensitive to the number
of common neighbors, while W] is more sensitive to the
connection strengths that arelinked to the common neighbors.

Y ueNx)N(Y) W (u)

WJ(X,Y)=
( ) ZueN(X)UN(Y)W(u)

“4)

The last baseline that we use is Preferential Attachment
(PA). Differently from previously explained similarities, PA
does not quantify information about common neighbors but
directly measures the number of links directly connected
to studied nodes (see equation 5). It is computed with the
multiplication of the numbers of neighbors of node pairs. It
assumes that if a node is more connected, then that node is
more likely to have new links.

PACX,Y) = N(X)[*|N(Y)] )

Its weighted version (WPA) is given in the equation 6. We
use the weight of the links, W(.), rather than the number of
directly connected links. We multiply the sum of the weights
of the links with the direct neighbors of node pairs.

WPAX,Y)= Y W)* Y W(u) (6)

ueN(X) ueN()
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Higher values for all three baselines and also for their
weighted versions indicate a higher probability of connec-
tivity between pairs of nodes. Since all these metrics are
not scale-invariant and the associated null model is not
generally defined, they do not have any lower bounds, which
is the limit of being similar. For precisely this reason, after
calculating the similarity of all possible pairs of nodes, we
cannot have the possibility of predicting the links by using a
threshold or limit value. Due to the analytic nature of these
similarities, we will rank the similarities of the node pairs
from largest to smallest and suggest links between the most
similar ones. It is possible to define a null-model with the
system parameters and find statistically significant limits for
those metrics, but it is outside the scope of this current work.

C. Performance Evaluation

In our link prediction case, the number of links to be
predicted is too small when compared to the total number
of possible links in the network. That is why our prediction
problem can be seen as similar to the well-known anomaly
detection problems. We will find out about rarely occurring
events. One of the most suitable performance metrics for
these cases is the precision score and AUC [12].

Precision score is being used in information retrieval and
classification tasks when the ratio of true positive predictions
among positive predictions is important in evaluating the per-
formance. To calculate precision, the number of true positive
and false positive predictions has to be calculated. Then,
precision score can be calculated by dividing the number
of true positive predictions by all positive predictions. The
generic definition is given in the equation 7.

.. TP
Precision = ——— 7
TP+FP

In the training phase of the experiments, we first remove
the randomly selected N links from Gy, and so, formed
Gyrain- Let A be the set of removed N links. N links with the
highest similarity scores are accepted as true predicted links.
We call the set of predicted links according to the similarity
metrics A. The size of the intersection of A and A sets gives
us the true positives of the experiment. Furthermore, the size
of the set of the elements from A but not from A is the
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Table I
BI-PARTITE NETWORK PROPERTIES

SeturTech | Otelpuan
Customer Node Number 45332 170517
Hotel Node Number 1552 959
Link Number 57262 179996
Avg. Deg. 2.44 2.10

false positives of the experiment. Thus, the precision formula
becomes the equation 8.

IANA|
IANA|+|A\ A

Another commonly used metric for link prediction is the
area under the receiver operating characteristic curve, a.k.a.
AUC. Originally, AUC is developed for machine learning
problems, but its traditional definition is adapted to com-
plex network domain for link prediction. It assesses link
prediction performance across the entire list of candidate
predictions, in other words, node-to-node similarity of all
non-existing links in our case, whereas the precision just
considers the first candidate links with the highest ranks or
scores. In equation 9, AUC formula is given.

®)

Precision =

li 0'5 "
AUC = ”*% ©)

Here, n is the number of all comparisons between the true
missing links and all predicted links except missing ones, n
is the number of cases where the true missing links have a
higher similarity scores, and n" is the number of cases where
the true missing links have an equal similarity score.

III. EXPERIMENTS AND RESULTS
A. Data Sets

We have used two distinct data sets in this study. The
first data set contains historical hotel sales in Setur between
2013 and 2019. Setur Servis Turistik AS provides travel
bookings for air, land, and sea travel for both individuals
and businesses. Setur also provides services for duty-free
goods, and Setur is one of the leading tourism agencies
in Turkey. The data set was provided by SeturTech R&D
department and has columns for customer and hotel id’s,
dates of purchase and entry into the hotel, hotel features
such as location, services, and customer features such as age,
gender, etc.

Second data set was collected by SeturTech R&D depart-
ment from Otelpuan.com website by using web scraping
methods. The data set contains the customer ratings in
the 1-10 range for hotels on the Otelpuan.com website.
Otelpuan was founded in 2008 to inform travelers about
tourism services by collecting ratings and comments on their
website. We first extract bi-partite networks from these two
raw datasets. The statistics related to bi-partite networks are
listed in table I.

Here, we listed the numbers of all nodes, although there
are a large portion of not linked hotel nodes in SeturTech.
There are more customers with fewer hotels in Otelpuan. Its
total link count is considerably higher than the SeturTech
network. We compute the average degree as the average
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Table 11
SETURTECH PROJECTED NETWORK PROPERTIES

Network | Largest Component
Node Number 1552 1351
Link Number 14378 14359
Average Path Length 2.78 2.78
Transitivity 0.22 0.22
Average Degree 20.97 21.25
Diameter 7 7
Density 0.0153 0.0157
Degree Centralization 0.23 0.24
Betweenness Centralization | 0.0747 0.0769
Closeness Centralization 0 0.36
Eigenvector Centralization 0.91 0.91

number of links connected to hotel-type nodes. Two networks
have similar average degrees.

B. Network Topological Properties

Projected networks are extracted from bi-partite ones as
it is explained in section II. We examine the topology of
extracted projected networks. The values of the well-known
topological features for SeturTech are listed in table II.
Although the network has more than 10000 hotel nodes,
most of them have no connection, neither in bi-partite nor in
the projected network. There are a small number of small
components. Except for those small components, the rest
of the network is one connected structure. That is why
interpreting the largest component’s topology instead of the
entire network’s one is more meaningful for SeturTech.

Accordingly, both the diameter and transitivity of Se-
turTech’s projected network are compatible with well-known
complex networks [4]. But its density is too high which
might make to distinguish meaningful substructures difficult
in the network. A similar topological analysis is applied to
the Otelpuan projected network. The values of its topological
features can be found in table III. It seems Otepuan is even
denser than SeturTech network.

We also examined if there might be any community
structure in both networks because the existence of the
communities affects the link prediction. We applied well-
known partitioning community detection methods: Leading
Eigenvector, Walktrap, FastGreedy, Louvain, Infomap and
Label Propagation. The details of those algorithms can be
found in [13]. The algorithms’ performances differ from each
other since they find a different number of communities at
different sizes. Furthermore, their modularity scores are also
different. Since no algorithm finds highly modular commu-
nity structures, the networks have no significant clusters. That
is why we do not do cluster-based link prediction results.

Considering these two networks together, we infer that
in Turkey, the hotels are not segmented according to the
travelers’ preferences. The SeturTech system seems to have
highly preferred hotels. Its network’s eigenvector centraliza-
tion was high. The hotels with the highest centrality can be
the most popular hotels in this system. Otelpuan does not
seem to have such central nodes. Because the hotel systems
are not clustered, it can be more meaningful to concentrate
on local topological information and hotel-related features.
We do not consider hotel features yet, but in the next part,
we will explain in detail the results of node similarity-based
link prediction.
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Table III
OTELPUAN PROJECTED NETWORK PROPERTIES

Network | Largest Component

Node Number 959 805
Link Number 14008 14005
Average Path Length 2.61 2.61
Transitivity 0.67 0.67
Average Degree 29.21 34.79
Diameter 6 6
Density 0.03 0.04
Degree Centralization 0.22 0.26
Betweenness Centralization | 0.03 0.04
Closeness Centralization 0 0.35
Eigenvector Centralization 0.84 0.81

C. Link Prediction Performances

We have observed the link prediction results as preci-
sion and AUC values for different experiment scenarios.
As common steps for each experiment scenario, we have
applied different steps of our framework, which are explained
in section II. To begin, we have designated the main bi-
partite network as Gp. Secondly, we have formed Gy,
the projected network of the hotels. In the third step, we
removed N randomly selected links from Gy, and formed
Girain respectively. The values of N were selected from the
set of {1,10,20,50,70,100,200,500,1000,5000, 10000 and
10% of the number of links for SeturTech and Otelpuan Gy,
networks} consecutively. In the experiments, we not only
aimed to compare different similarity scores’ performances
in different data sets but also aimed to observe their sensi-
tiveness to the number of removal links. All link prediction
methods described in the subsection II-B were applied to
the Gy,4in for each N. Statistical significance was ensured by
repeating all experiments five times. The average precision
scores of five iterations when N <= 100 as well as when N
is the 10% of the number of links are shown in the Table IV
and Table VI for SeturTech and Otelpuan respectively.

Table IV
SETURTECH LINK PREDICTION PRECISION SCORES
1 5 10 20 70 100 1437
AA 0.0 | 0.04 | 0.02 | 0.04 | 0.062 | 0.07 0.216
J 0.0 | 0.00 | 0.00 | 0.02 | 0.017 | 0.03 0.152
PA 0.0 | 0.04 | 0.06 | 0.05 | 0.034 | 0.066 | 0.163
WAA | 0.0 | 0.04 | 0.04 | 0.05 | 0.082 | 0.06 0.223
wJ 0.2 | 0.04 | 0.06 | 0.02 | 0.065 | 0.066 | 0.205
WPA | 0.0 | 0.04 | 0.02 | 0.02 | 0.034 | 0.05 0.169

In the table, we show the results for the limited N values
for the sake of readability. However, in figure 2, the precision
scores for SeturTech networks as a function of all N are
shown. Accordingly, For all N <= 50, average precision
scores are low. For N > 50, precision values have increased
until we increased N to 5000. Highest precision score is
0.223 and it was obtained with using the WAA we have
proposed in subsection II-B for the N value of 1437 (%10
of the total links).

A remarkable fact about the SeturTech results is that the
rate of finding true links is too low when we look for
a small number of links. Indeed, this can be an expected
fact. Complex networks have a sparse structure because of
the large number of unseen links. It causes there to be
too many possible links to add, in other words there is
a too low probability of finding the correct links. Thus,
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Figure 2. SeturTech Networks’ precision scores for different numbers of
removed links

the higher the number of links to predict, the higher the
precision, independently of the studied similarity metric.
However, we observe the opposite behavior at the J and WJ
when N > 5000. Their precision has decreased while the rest
of the similarity metrics have increased their performance.
This can be due to the fact that SeturTech seems to have
a centralized structure (high eigenvector centrality) rather
than a local structure (low transitivity). Removing many links
causes several connected components to break out. Because
there are not many triangle connections, nodes lose their
common neighbors. This results in a decrease in Jaccard-
based similarities.

Table V
SETURTECH LINK PREDICTION AUC SCORES
1 5 10 20 70 100 1437
AA 0.918 | 0.992 | 0.880 | 0.872 | 0.967 | 0.926 | 0.933
J 0.931 0.994 | 0.875 | 0.849 | 0.951 0.905 | 0.908
PA 0916 | 0.925 | 0.904 | 0.902 | 0.881 0.925 | 0916
WAA | 0913 | 0993 | 0.880 | 0.873 | 0.968 | 0.927 | 0.933
wJ 0.981 | 0992 | 0.867 | 0.858 | 0.954 | 0.907 | 0912
WPA | 0919 | 0924 | 0.898 | 0910 | 0.878 | 0.925 | 0.916

AUC results (see table V), also supports the same facts
that we obtained with precision results. The highest score
for all experiments is obtained for J when the number of
removed links is 5. Differently from precision, removing
higher numbers of links seems to not affect too much the
performance of different metrics. Comparing the scores for
the case of removing %10 of the links, AA and WAA out-
perform other similarity metrics. Regarding the experiments
done with Otelpuan data, for all link prediction methods
except WJ, after the small fluctuations on initial N values,
precision scores have increased for all the N values. The
precision performances are much more higher than the one
of SeturTech. WA performance have been decreased for the
N >5000. Highest precision score of 0.68 was achieved with
both AA and WAA methods we have for the N value of 5.

As with the SeturTech case, the response of the various
similarity metrics to an increase in N is not identical to that of
Otelpuan. Except J and WJ, the precision scores increase up
to a limit, then they stay straight. But for these two metrics,
although it is not as significant as in the case of SeturTech,
they still exhibit a decrease when removing more than 5000
links. According to its topological structure, Otelpuan has
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Table VI
OTELPUAN LINK PREDICTION PRECISION SCORES

1 5 10 20 70 100 1400
AA 0.6 | 0.68 | 0.6 0.67 | 0.625 | 0.584 | 0.627
J 0 0 0 0.2 0.587 | 0.594 | 0.618
PA 02 | 0.16 | 0.26 | 0.39 | 0.482 | 0.52 0.619
WAA | 04 | 0.68 | 046 | 0.59 | 0.588 | 0.618 | 0.627
wJ 0 0 0 0.21 | 0.545 | 0.636 | 0.616
WPA | 02 | 036 | 028 | 0.33 | 0.451 | 0.498 | 0.627
0.68
0.66
£ 0.64 -
2
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Figure 3. Otelpuan Networks’ precision scores for different numbers of

removed links

high transitivity. Thus, it seems to have more local structures
than SeturTech. This can result in a decrease in Jaccard-
based similarities. We show the AUC scores for Otelpuan
in table VII. This result supports our previous comments as
well. When the number of removed links is small, we obtain
even higher scores. For instance, WPA gives the highest
results when we remove %10 of the links. The weighted
versions of the similarity metrics outperform their traditional
forms for both metrics and both networks.

Table VII
OTELPUAN LINK PREDICTION AUC SCORES

1 5 10 20 70 100 1400
AA 1.0 | 0.998 | 0.970 | 0.986 | 0.963 | 0.919 | 0.940
J 1.0 | 0.998 | 0.956 | 0.985 | 0.953 | 0.908 | 0.933
PA 1.0 | 0.997 | 0.954 | 0965 | 0.956 | 0.927 | 0.955
WAA | 1.0 | 0.998 | 0.970 | 0.986 | 0.963 | 0.919 | 0.940
wJ 1.0 | 0.998 | 0.956 | 0.985 | 0.953 | 0.908 | 0.934
WPA | 1.0 | 0.997 | 0.954 | 0.965 | 0.956 | 0.927 | 0.956

Overall, experiments for each data set show that the higher
the number of removed links, the more performing the
link prediction in general. Moreover, our proposed weighted
metrics outperform their unweighted versions in almost all
cases. Among the similarity metrics, J and WJ seem to be the
most sensitive ones to the network structure. Among different
systems, we obtained higher scores for Otelpuan which is
denser and has higher transitivity. In this work, we used the
local node-to-node similarity metrics. Thus, we infer that
predicting the links of a network that has local structures via
these measures is easier. Among all metrics, the performance
of AA and WAA is one step ahead of the rest. Their scores
did not decrease even when we removed the majority of the
links. These results give us an insight into the strength of the
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metrics.

IV. CONCLUSION

In this work, we concentrate on complex network mod-
eling for smart tourism. More specifically, we address the
link prediction problem on hotel-to-hotel networks. We pro-
posed a framework for extracting hotel-to-hotel networks
from hotel-customer raw data sets and evaluated different
link prediction methods. We used both well-known local
approaches and proposed weighted versions for two real-
world systems, SeturTech and Otelpuan. The topological
features of the extracted network showed that both systems
have realistic properties. The link prediction performances
highlight that our proposed weighted Adamic Adar is the
most suitable metric for an accurate link prediction on those
systems.

Different perspectives on this work can be first, taking
into account hotel attributes and different network-based
similarity metrics, and second, using machine learning ap-
proaches for link prediction instead of basic ranking. In
this work, as the first step of building a recommendation
engine, we mainly concentrate on the link prediction task.
We did not produce business-type hotel recommendations.
A supplementary step of transforming analytic results into
business cases can also be an interesting perspective.
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