


Abstract—NAND structure-based Flash memory-made SSDs

are turning more popular than HDDs in several applications
notably in consumer microelectronics devices and enterprise
memory storage devices. The NAND controller is the heart of
this system. It acts as a bridge for communication between the
host system (usually the Personal Computer system) and the
NAND Flash memory storage device. Unarguably, it can be
said that it is an essential part of the NAND flash-based
memory device and it helps to manage the directory containing
file systems. The controller is also accountable for managing
system features like wear levelling, error code correction
(through ECC), and garbage data collection. With Flash
memory devices growing larger in storage space and smaller in
area or form-factor, the NAND controller design is converting
to a smarter one and complex one, too. Notably, this outline is
developed to determine a way to check the features and
functionalities that the controller residing into the NAND Flash
memory controller provides. To do so, the structured
verification approach is used which is based on SV/System
Verilog.

Index Terms— Flash Controller, NAND Flash Memory,
System Verilog, Verification

I. INTRODUCTION

MONG all available memory standards, flash memory
has the lowest price per bit in today’s world. The non-

volatile property of flash memory helps retain the contents
even when power is turned off. EEPROMs are a class of
memories where the contents can be electrically
programmed and erased. Flash memory is one such element
in the family, where entire blocks of memories can be
erased. Flash memories are more dense and can pack more
memory in a given silicon area, faster in terms of read time,
but has a shorter lifecycle (the number of times read-write
operations can take place) [1]. This is why flash memory is
used as program memory, whereas other EEPROMs are
used as data memory. NAND flash memory has lower
power for read/write operations compared to NOR flash
memory and shows superior response times enabling faster
programming. Hence, it is the preferred type of flash
memory.
To interface a NAND flash device, the host machine
requires an interface, called the NAND flash memory
controller. It needs to be user configurable, so that the users
can decide how the application uses the flash memory. The
data read from the flash memory, or the data destined to be
written in the flash is stored in a bidirectional dual-port
buffer. An address translator creates a mapping between the

Manuscript received March 30, 2022; revised May 25, 2022. The

Authors are with San Jose State University, Department of Electrical
Engineering, San Jose, CA, USA (corresponding author to provide phone:
408-924-4073; fax: 408-924-3925; e-mail: lili.he@ sjsu.edu).

physical address of the flash memory and a virtual address

which the host device sees. This facilitates read/write/erase
operations in the flash memory, without the host knowing
the exact physical address. In the process of data transfer
between the host and the flash memory, data can get
corrupted due to issues with the transmission channel, clock
jitter and other coupling issues. An error correction
algorithm in the controller monitors any errors in
transmission and reports it to the host for further analysis.

II. THE PROPOSED NAND FLASH CONTROLLER

DESIGN AND VERIFICATION

A. Flash Controller Block Design

The DUT is a controller that communicates with the
NAND Flash memory and the user defined host device. The
flash memory is accessed by the controller in order to
perform different operations like erasing a block at a time or
reading the ID of the flash device or resetting the flash
device, etc. The host device uses a virtual address to refer to
the data present in it and provides a command to the
controller (cmd) to indicate either a reset or read ID or block
erase or a page read operation. The host device acts as a
master to the controller (DUT)[2]. The controller executes
the command sent by the host, either reads the data or clears
a block of data from the flash memory or resets the flash
memory. The NAND flash memory receives the command
data and address through an 8-bit I/O port. The NAND flash
memory acts as a responder to the read operation command
and writes back into the controller dual-port buffer for write
operation command.

The NAND flash interface mainly contains 7 pins some

are input pins and some output pins. All the data is sent and
received over the DIO [7:0] pin. The command and address
are also sent through the DIO [7:0] pin which is a bi-
directional pin. When WE_n is low, there is data on DIO
[7:0] pin and CE is also low, the data gets written to the
Flash device, similarly when RE_n and CE are low, read
operation will take place. The address is obtained by the
device when ALE goes high indicating that address is ready
to be fetched but CLE has to be low in this case. Similarly
when the CLE signal is high and the ALE signal is low, the
command gets latched and the flash device receives the
command to the operation that is expected to be performed.

Figure 1 represents the detailed block diagram of the
controller that represents different modules that ensure the
data moves perfectly from the user defined host device to
the receiver which is the flash memory.

The controller contains various modules, where each

Verification of NAND Flash Controller

Prajwala M J, Kush Desai, and Lili He, Member, IAENG

A

Proceedings of the World Congress on Engineering 2022
WCE 2022, July 6 - 8, 2022, London, U.K.

ISBN: 978-988-14049-3-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2022

module carries out a specific operation.
• Main FSM: The main FSM is one of the most

important modules in the design, as it interprets the
commands sent from the user defined host and outputs the
accurate control signals to timing FSM [4].

• Timing FSM: The timing FSM is the module that

controls the operation of the flash device, as it supervises
that the flash device performs all the operations while
following all the timing requirements.

• Data Buffer module: The data that is read from the

flash memory device and the data to be written to the flash
device has to be stored in a RAM. Hence, the buffer module
within the controller is a dual port RAM that stores all the
data, to and from the flash device.

• Address Counter module: In order to write or read the

data the flash device needs a parameter called address,
hence there is a module that is used to generate address
signal, these addresses would be sent to the data buffer
module and the data present in that specific address in the
buffer is written to the flash device and vice versa. The
module that enables to do all this is the address counter.

• ECC generator and detector: The special feature of the

NFC (NAND Flash Controller) is its ECC generator
module, which produces ECC when there is any operation
performed by the flash device. This ECC code that is
generated is used towards the end of different operations
like host read, host write or block erase, to catch the errors
in the operation and ensures to re do the task in case the
operation fails.

The NFC supports various operations like reset, Read ID,

block erase, program page (writing to the Flash) and Read
page (the flash memory reads from the internal buffer).
Each of these operations have their own flow and are stored
in the main FSM module. Every time there is a command
(nfc_cmd from the host), a specific FSM flow is triggered in
the Main FSM module and the operation starts.

Figure 1: NAND Flash controller Block diagram

B. System Verilog Verification Flow

The verification process is used to test the functionality of
the design called DUT which is the Design Under Test. The
verification is carried out by generating different set of
inputs, driving them through the design, capturing the
obtained output and finally comparing the obtained results
with the estimated output. The verification architecture has
different classes to perform each operation, like initiating
stimulus, driving these test inputs in the design, monitoring
the working of design, etc. and all these classes will be
labelled based on operation.

Figure 2: Basic flow of SV verification

 In case of small and simple design architectures, the

traditional method of verification with a fixed set of inputs
to test the design often neglect the corner cases of
verification. Hence showcase a limited capability to find
faults in the design. On the contrary with the use of
constrained random inputs to test the design, using score-
boarding technique, also checking for functional coverage
not only helps verify a small design but also carry out
verification of complex and huge designs successfully [3].
The verification flow consists of a number of elements from
transaction, generator, monitors, agents, scoreboards,
environment and test to a top module. The Figure 2 shows a
basic flow of System Verilog verification.

• SV Verification Hierarchy: The SV verification

hierarchy has different classes as shown in Figure 3, each of
which are used on a specific operation. The different classes
do specific tasks and are connected to each other to transfer
data to each other forming a good verification flow. The test
class and the environment class start the hierarchy. Number
of agents are defined in the environment class. A number of
agent classes contain the definition of generator, driver and
monitor classes .The scoreboard class is an important
component of the hierarchy that verifies the functionality of
the design and displays error messages in case the design
fails to function as expected.

Figure 3: SV class hierarchy

Proceedings of the World Congress on Engineering 2022
WCE 2022, July 6 - 8, 2022, London, U.K.

ISBN: 978-988-14049-3-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2022

• SV Transaction class: The transaction class defines the
activity generated by its particular agent, in order to drive to
the DUT by using the driver class. In addition, the
transaction class also acts as a placeholder for activities on
the DUT signals which are represented in the monitor class.

• SV Generator class: The generator class creates the

stimulus and randomizes the constraints in the transaction
class. The stimulus that is created covers all the corner cases
which is sent to the DUT through the driver. The generated
stimulus is random and large in number so it is helps in
verification of the most complex designs. Figure 4 shows
the flow of transaction packets from one component to
another.

• SV Driver Class: The driver class is a class that acts as

a bridge between the generator and the DUT. The driver
class receives the stimulus and drives packets of data to the
DUT. The virtual interface object is initialized in the test top
module. The virtual interface object helps the driver
establish connection with the DUT in order to send and
receive the data packets. The interface class acts as a bridge
between the driver class and the DUT.

• SV Monitor class: The monitor class keeps track of the

output of the DUT and further passes it onto the scoreboard.
The monitor essentially keeps track of the activities of the
signals defined in the interface class and converts it to
packet level information that is forwarded to the scoreboard.
The monitor is responsible for displaying the output of the
DUT continuously and forwarding the information to the
further blocks. In any given SV verification environment,
there can be multiple monitors each to save the input and the
output data. Hence named as input monitors or output
monitors.

Figure 4: Data flow through verification environment

• SV Agent class: The agent class is referred to as a

container class, as it is a collection of other components like
monitors, drivers and generator that is specific to a protocol.
It could be passive agents which do not include any active
components like driver or sequencer which are involved in
driving the data packets from the generator to the interface
and vice versa. Monitors are hence categorized into the
group of passive components and grouped in passive agents
as they only monitor the signals on the interface. The
drivers and sequencers on the other hand are grouped into
the active agents. The Figure 5 shows the flow of data
between the agent and DUT.

Figure 5: Data flow between Agent and DUT

• SV Scoreboard: The scoreboards are most important

components in the verification environment as it is used to
ensure the functionality of the design, which is achieved by
comparing the data that is sent into the scoreboard class by
two monitors (input monitor values and output monitor
values) or comparing the obtained output data from the
DUT to the golden reference values or expected values.

• SV Environment: The environment class is present at

the top level of the verification hierarchy as it contains all
the agents and different scoreboards. All the agents that
belong to different protocols and all the scoreboards are
defined in the environment class.

• SV Test: The test class contains the environment class

in it and holds the responsibility of not only configuring the
test bench but initiating the construction process of various
test bench components like environment component that
contains the agents and the agents that contain the drivers
and generators. The test class also plays a crucial role in
initiating the verification process by initiating the stimulus
for the given design.

• SV Top Module: The top module is the root of the

verification hierarchy. The components from generator to
environment all lie within the top module. The module also
has the clock initialized in it as well as the interface handle
and the waveform dump tasks.

C. Operation Details

• Reset Operation: The RESET operation starts when the
host sends a command 011 to the NFC through the nfc_cmd
input pin. The nfc_start pin should also go high to trigger
the operation. This nfc_cmd is interpreted by the main FSM
module which starts the FSM flow that is specific to the
reset operation.Hence the initial state of the FSM is
triggered when it receives the nfc_cmd to be 011. Once the
main FSM decodes that the operation is a reset operation,
specific control signals are sent to the timing FSM. The
timing FSM further writes a command FFh over the DIO
[7:0] triggering a reset operation of the flash device. Once
the command is written the main FSM switches back to
initial state and indicates the same to the host by ensuring
nfc_done goes high, and is set for the next task.

Figure 6: Reset Operation Flow Chart

Proceedings of the World Congress on Engineering 2022
WCE 2022, July 6 - 8, 2022, London, U.K.

ISBN: 978-988-14049-3-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2022

• Read ID Operation: The Read ID operation starts when
the host sends a command 101 to the NFC through the
nfc_cmd input pin. The nfc_start pin should also go high to
trigger the operation. This nfc_cmd is interpreted by the
main FSM module which starts the FSM flow that is
specific to the Read ID operation. Hence the initial state of
the FSM is triggered when it receives the nfc_cmd to be
101. Once the main FSM decodes that the operation is a
Read ID operation, specific control signals are sent to the
timing FSM. The timing FSM further writes a command
90h on the DIO pin, followed by an address 00h on the DIO
pin. Once both the command and address are written to the
flash, the readID is sent from the flash through the DIO pin
in 4 consecutive clock cycles. Once the operation is done
the main FSM switches back to initial state and indicates the
same to the host by ensuring nfc_done goes high, and is set
for the next task.

Figure 7: Read ID Operation Flow Chart

• Block Erase Operation: The block erase operation starts
when the host sends a command 100 to the NFC through the
nfc_cmd input pin. The nfc_start pin should also go high to
trigger the operation. This nfc_cmd is interpreted by the
main FSM module which starts the FSM flow that is
specific to the block erase operation. Hence the initial state
of the FSM is triggered when it receives the nfc_cmd to be
100. Once the main FSM decodes that the operation is a
block erase operation, specific control signals are sent to the
timing FSM. The timing FSM further writes a command
60h on the DIO pin, followed by an address code on the
DIO pin (the address code is pre-set in the host). Once the
address is written to the flash another command d0h is sent
to the flash and waits for a fixed amount of time tWB.
Towards the end of time tWB the FSM checks on the R_nB
pin on the flash device, once the R_nB goes high, a
command 70h is sent to the flash to test if the operation is
successful. If a 1 is sent on the DIO by the flash device in
return to the previous 70h command, the main FSM
switches back to initial state and indicates the same to the
host by ensuring nfc_done goes high, and is set for the next
task else if DIO goes to 0, the EErr signal at the host goes
high indicating the block erase error, hence the task has to
be performed again.

Figure 8: Block Erase Flow Chart

• Page Program Operation: The page program operation
starts when the host sends a command 001 to the NFC
through the nfc_cmd input pin. The nfc_start pin should
also go high to trigger the operation. This nfc_cmd is
interpreted by the main FSM module which starts the FSM
flow that is specific to the page program operation. Hence
the initial state of the FSM is triggered when it receives the
nfc_cmd to be 001. Once the main FSM decodes that the
operation is a page program operation, specific control
signals are sent to the timing FSM. The timing FSM further
writes a command 80h on the DIO pin, followed by an
address code on the DIO pin (the address code is pre-set in
the host). The FSM transmits the data in the dual port buffer
to flash through the DIO pin.The data written to the flash is
2048 bytes. Command 85h is sent through DIO pin and 12
ECC bytes are written to the flash device. Once all the
above commands and data is written to the flash, another
command 10h is sent to the flash and waits for a fixed
amount of time tWB. Towards the end of time tWB the
FSM checks on the R_nB pin on the flash device, once the
R_nB goes high, a command 70h is sent to the flash to test
if the operation is successful. If a 1 is sent on the DIO by the
flash device in return to the previous 70h command, the
main FSM switches back to initial state and indicates the
same to the host by ensuring nfc_done goes high, and is set
for the next task else if DIO goes to 0, the PErr signal at the
host goes high indicating a page program error, hence the
task has to be performed again.

• Page Read operation: The Page Read operation is a read
operation,where data is read from the flash device, where
the data read from the flash is stored in the dual port buffer.
The following steps and Figure 10 represents the flow of
Page read operation. The page read operation starts when
the host sends a command 010 to the NFC through the
nfc_cmd input pin. The nfc_start pin should also go high to
trigger the operation. This nfc_cmd is interpreted by the
main FSM module which starts the FSM flow that is
specific to the page read operation. Hence the initial state of
the FSM is triggered when it receives the nfc_cmd to be
010. Once the main FSM decodes that the operation is a
page read operation, specific control signals are sent to the
timing FSM. The timing FSM further writes a command

Proceedings of the World Congress on Engineering 2022
WCE 2022, July 6 - 8, 2022, London, U.K.

ISBN: 978-988-14049-3-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2022

00h on the DIO pin, followed by an address code on the
DIO pin that has the address to the data that would be read.
The FSM transmits a command 30h and waits for time
twB,once R_nB goes high the data can be read from the
flash. 2048 bytes are read and saved in the buffer, followed
by sending a command E0h on DIO pin to the flash and
reading the 12 ECC bytes from the flash device to check if

the Page Read operation was successful. After all the above
flow the main FSM switches back to initial state and
indicates the same to the host by ensuring nfc_done goes
high, and is set for the next task else if DIO goes to 0, the
RErr signal at the host goes high indicating a page read
error, hence the task has to be performed again.

Figure 9: Page Program Flow Chart

Figure 10: Page Read Flow Chart

Proceedings of the World Congress on Engineering 2022
WCE 2022, July 6 - 8, 2022, London, U.K.

ISBN: 978-988-14049-3-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2022

A. SV Verification for NFC Design

• NFC Top Module: The NFC top module contains the
instantiation of the nfc_topmodule, the nfc_interface and
nfc_testcase modules. The clock definition is also in the
module and it also contains the dumpvars initialized to
dump the waveforms of the NFC verification [6].

• NFC Test Case Module: The nfc_testcase module is

below the nfc_toplevel module in the verification hierarchy.
The testcase instantiates the nfc_environment module which
is next in the hierarchy. The entire run of the verification
starts with the run() command in the nfc_testbench module.
The run() command triggers the verification process. The
module also defines all the user defined host signals like
BF_sel, BF_ad, BF_din, BF_we etc.

• NFC Environment Module: The nfc_environment

module is present below the nfc_testcase module in the
verification hierarchy. The nfc_environment module has
scoreboard,driver and receiver are built in it and ran in the
run_phase. The environment is responsible in connecting
different agents,scoreboards and receivers.

• NFC Packet Module: The nfc_packet module is a

module that creates data packets and constrains the data
which are further used as inputs to verify the design. The
data packets are sent to the driver which is further sent to
the DUT. The data or stimulus is randomly constrained to
ensure all the corner cases are covered. In the nfc_packet
module the nfc_cmd is constrained to ensure that all the 5
different operations like read id, reset, block erase, page
read and page write are covered. The ecc codes are also
generated which are given as inputs to check for the success
of operations like block erase, page read and write.

• NFC Driver Module: The nfc_driver module is the

module that channels the stimulus generated from
nfc_packet module to the DUT (NFC).The driver has tasks
defined for each operation, hence the driver triggers the
different operations based on the commands sent by the
nfc_packet module.

• NFC Receiver Module: The nfc_receiver is a module

that duplicates the operation of the Nand Flash device.The
nfc_receiver module checks on the command received and
performs the particular operation. For instance in case of a
block erase operation it receives a command 100, followed
by which the receiver module keeps track of the address and
erases the block indicated by the particular address sent
from the host device. Further waits for a time twb and sends
a 0 on DIO pin to assure that the block has been erased and
the receiver is ready to carry out the next operation. Hence
the nfc_receiver module contains task for each operation,
tracks addresses, reads and writes data depending on the
operation.

• NFC Scoreboard Module: The nfc_scoreboard is the

most important module as it verifies if the design works as
expected by keeping track of the output of each operation

and comparing it with the expected result. The module
keeps track of data, command and addresses sent from the
nfc_driver module and the operations carried out by the
receiver for the respective commands sent from the driver.
By comparing each output obtained from the nfc_receiver to
the golden reference or expected output the scoreboard
displays if the DUT functionality is a success or a failure.
The scoreboard contains various display commands to show
the success and failure of each operation carried out by the
DUT.

• NFC Interface Module: The nfc_interface modules is a

container of all the signals of the nfc_driver and
nfc_receiver module. The module contains the mod port that
has the directions of each signal of both the sides which is
the driver and receiver module.

• NFC Coverage Module: The nfc_coverage module is a

module that does the functional coverage of the NFC
design(DUT). The module contains the coverpoints and a
task that checks for the functionality of the design by
checking if all the expected and the corner cases. All the
output data is collected and analyzed to check for the
functionality of the DUT and provides a file thst reflects the
percentage of coverage of the design,with a coverage of
90% and above shows that a test verification is a good
verification environment and covers almost all corner cases
of the DUT.

B. Simulation and Waveforms

The output of the verification of NFC is obtained in form
of waveforms and simulations which ensures the
functionality of the design and gives a visual clarity to
analyze, debug and understand the NFC design better. The
following waveforms and simulations represent all the 5
operations from reset to page write operation done by the
NFC and the functional coverage results show that the
verification environment is successful in covering almost all
the corner cases of the design making it a productive and
reliable test environment.

• Reset operation waveform and simulation:

Figure 11: Reset operation waveform

• Read ID operation waveform and simulation:

Figure 12: Read ID operation waveform

Proceedings of the World Congress on Engineering 2022
WCE 2022, July 6 - 8, 2022, London, U.K.

ISBN: 978-988-14049-3-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2022

 • Block Erase operation waveform and simulation:

Figure 13: Block Erase operation waveform

• Page Program operation waveform and simulation:

Figure 14: Page Program operation waveform

• Page Read operation waveform and simulation:

Figure 15: Page Read Operation waveform

III. CONCLUSION

Writing structured test benches takes considerable human
effort upfront. However, once it is developed, it becomes
easy to re-use it across the project or platform. Also, when a
large team of people is working on the same project of
Design Verification, the modularity that this kind of test
benches provides becomes very vital. Once the initial
development phase is passed, the work becomes very easy
for the engineers working on the verification part. As this
kind of test benches allows the engineers save time and just
focus on the stimulus generation part. So far, we could
successfully create the components required for a typical SV
based test bench to complete the verification environment
for NAND architecture based Flash Controller and observe
the features and functionalities it provides using the
Waveforms. And to achieve this, we entirely used the black-
box verification approach.

REFERENCES
[1] A. Seiichi, “NAND Flash Memory Revolution”, Proceedings of 8th

International Memory Workshop (IMW), IEEE, 2016
[2] K. Yu-Hsiang, H. Juinn-Dar, “High-performance NAND flash

controller exploiting parallel out of order command execution”,
Proceedings of 2010 International Symposium on VLSI Design,
Automation and Test, IEEE, 2010.

[3] M. Purvi, “SoC Level Verification Using System Verilog”,
Proceedings of 2009 Second International Conference on Emerging
Trends in Engineering and Technology, IEEE, 2009

[4] X. Gong et.al, “Design and implementation of a NAND Flash
controller in SoC”, Proceedings of IEEE Conference on Electron
Devices and Solid-State Circuits, IEEE, 2011

[5] A. Koushel et.al, “Verification and Simulation of New Designed
NAND Flash Memory Controller”, Proceedings of IEE International
Conference on Communication Systems and Network Technologies,
IEEE, 2013

Proceedings of the World Congress on Engineering 2022
WCE 2022, July 6 - 8, 2022, London, U.K.

ISBN: 978-988-14049-3-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2022

