Proceedings of the World Congress on Engineering 2022
WCE 2022, July 6 - 8, 2022, London, U.K.

Verification of RISC-V Processor beyond
RV32l ISA

Yamini Santosh Awasthi, Aishwarya Mahesh, and Lili He, Member, IAENG

Abstract— The RISC-V processor's open-source
architecture provides designers with flexibility in
implementing the architecture for a variety of applications.
The same advantage, however, makes the verification process
difficult because all variations must be verified. The proposed
project willcreate a verification environment for the extended
RISC V architecture. RISC-V supports both the'*M" standard
extension for integer multiplication and division and the
"Zicsr" standard extension for control and status register
instructions. The above-mentioned ISA classes will be tested
using the RV32l ISA-based DUT with a UVM environment
around the DUT to verify the M and Zicsr functionalities. The
M and Zicsr type ISA were verified with a 95% functional
coverage. The UVM framework created can be re-used to
verify other Instruction Set Architecture.

Index Terms — RISC-V processor, Universal
Verification Methodology, RV32l based DUT, M and
Zicsr type ISA, Instruction Set Architecture

I. INTRODUCTION

The RISC-V, an open standard instruction set

architecture developed on the principles of the Reduced
Instruction Set Computer (RISC), is an open-source
architecture. As being freelyaccessible to the industry and
academia, it provides developers with the flexibility of
developing various variations of the standard design. The
RISC-V ISA was developed at University of California,
Berkeley.

The Instruction Set Architecture is the zone where
“hardware meets software”. In the hierarchy of developing
and programming a system, ISA is at a proximity to the
compiler. It is accessible toprogrammer as well as the writer
of the compiler.

Manuscript received March 30, 2022; revised May 10, 2022. The Authors
are with San Jose State University, Department of Electrical Engineering,
San Jose, CA, USA (corresponding author to provide phone: 408-924-
4073; fax: 408-924-3925; e-mail: lili.he@ sjsu.edu).

ISBN: 978-988-14049-3-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

The RISC-V ISA is the base Integer ISA. Additional
extensions to this base ISA are present. As abundant
variations of RISC-V ISA along with its extensions are
possible, it is a requirement that a flexible verification
environment be developed which can be easily reused for
multiple variationsof the above-mentioned architecture.
Universal Verification Methodology is a standard and
reusable methodology which can be effectively used for
the above purpose. This framework has been built with the
help of System Verilog classes and the concepts of
Object-Oriented programming.

Il. METHODOLGY

The Universal Verification Methodology (UVM),
basically derived from Open Verification Methodology
(OVM) is an open-source methodology which is
compatible with many commercialsimulation tools such as
the tools provided by Cadence, Aldec, Synopsys and
Mentor Graphics. UVM provides an efficient standardized
methodology to design verification environments to verify
various IC designs. As UVM is primarily based on Object
Oriented Programming, UVM has the advantages of such
verification environments being reusable. Hence, the re-
use methodology decreases the delay for redesigning the
whole environment again for every design. Also, the
methodology helps in development of self-generating
stimuli and self-testing testbencheswhich not only increase
the verification efficiency of the environment, but also
help in speeding up the overall verification process of the
design.

A. UVM Class Hierarchy

As discussed above, UVM is primarily based on Object
Oriented Programming (OOP). The OOPsnature of UVM
leads to an increase in reusability of various verification
components, which can be very useful. A UVM library
consists of a set of base classes, from which various
components can be derived. The UVM base classes consist
of common methods which are used on data. Thus,thanks
to OOP, various kinds of components can be derived from
the UVM base classes and the methods in the UVM base
classes can be further customized as per the requirement.
Theuvm_obiject class is the base class (parent class) from
which the other classes are derived. The uvm_transaction

WCE 2022

Proceedings of the World Congress on Engineering 2022
WCE 2022, July 6 - 8, 2022, London, U.K.

‘Stimulus branch |
. (transient objects)

uvm_object «——— uvm_transaction

Testbench branch
(permanent objects)
\\

B3 - uvm_sequence_item
| uvm_report_handier ———>. uvm_report_object | N f i
5 uvm_sequence

uvm_subscriber > uvm_component «—— TLMPorts

i ,|—]J &mmm

uvm_test uvm_agent

uvm_env uvm_sequencer uvm_monitor

Figure 1. UVM hierarchy

and uvm_component classes built from uvm_object
class. Figurel briefly explains the UVM hierarchy [5].

B. UVM Object

All the UVM data that flows through the design extend
from the UVM object base class. For common operations
that are executed over data, the UVM object consists ofa
set of methods for the same purpose. The methods include
— compare, create, copy and print. From uvm_object
mainly two types of child classes are created.

The uvm_transaction object does not have any UVM
phases. The classes derived from uvm_transaction class
will not be active until the end of the simulation. The
UVM objects are created when needed and destroyed after
use. The uvm_sequence_item and uvm_sequence classes
derived from the UVM object class. The classes under the
uvm_transaction class forms the stimulus branch.

The inputs to be driven into the DUT and the outputs
driven out of the DUT is the sequence items. The
uvm_sequence_item class is generally used to declare the
inputs and outputs to the DUT. The sequence packets
driven to the DUT are of sequence item class.

The stimuli driven to the DUT is contained in the
sequence class and stimuli is called as sequences. The
uvm_sequence class is used to write all possible stimuli
which needs to be driven into the DUT to verify the
functionality.

C. UVM Component
The uvm_component class is derived from uvm_object

class. The uvm_component class has UVM phase
mechanism, and it will be active till the end of the
simulation. The uvm_component has a reporting
mechanism and phase mechanism to synchronize between
different verification components. The classes derived
from the uvm_component class forms the testbench
branch.

Test is the topmost UVM component in the UVM
hierarchy. The test classes are derived from the uvm_test
base class. The test component can contain environment
components, agents, and other components below in the
hierarchy. The sequence is started by connecting to the

ISBN: 978-988-14049-3-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

sequencer in the test component. The test component also
has phase objections which is raised during the start of the
simulation and dropped after the simulation is completed.

Environment is a user defined component derived from
uvm_env. Environment is higher than the agent in the
hierarchy of the UVM Testbench. UVM environment is a
container of the agents, the scoreboards, and the monitors.
In the connect phase of the uvm_env component the
connections between the different components are
established.

An agent is usually protocol specific. The agent is a
container which holds the required components for a
particular protocol. A driver, monitor and a sequencer
might be contained in a typical UVMagent. Agent can be
active or passive in nature.

The scoreboard is a user defined uvm_component. The
scoreboard is extended from the uvm_scoreboard. In
general, a scoreboard takes in the transactions from the
monitors, and checksfor the correctness of the DUT.

The purpose of the monitor is to convert the pin level
activity on the interface of the design to transaction level.
The monitor component captures the data on the interface
of the design and send the data as packets to the
scoreboards and other components using Transaction
Level Modelling (TLM) protocols.

The driver receives the transactions from the sequencer
and drives the transactions into the DUT. The data
packages are driven to the DUT through the interface by
the uvm_driver component. The driver methods can also
send a response to the sequence to trigger the next
sequence.

A transaction to the driver is passed by the sequencer. A
transaction or a protocol is a packet of data known as
sequences. The flow of the sequences is controlled by the
sequencer. Sequencer holds the sequences in pipeline and
co-ordinates the protocol between the driver and the
sequenceclasses.

The subscriber class is present in the UVM environment
derived from the uvm_component class. The subscriber
class calculates the functional coverage in the UVM
testbench and the cover groups.

I1l. DESIGN UNDER TEST (DUT)

A design under test (DUT) is required to test the
verification environment built. In the project, RV32l with
M and Zicsr extension is used as the DUT. The core is a
RISC V 32-bit pipelined processor with 5 stages and each
stage is separated by pipelined registers. Figure 2 gives an
overview of the RISC-V processor. The design has a top-
level module which acts a wrapper for the core, data
memory and instruction memory. The instructions are
initially loaded into the instruction memory and the core
starts executing the instructions from the instruction
pointed bythe program counter (PC).

IV. VERIFICATION PLAN

The main objective of the project is to verify the M-type
Instruction Set Architecture and the Z- type Instruction Set

WCE 2022

Proceedings of the World Congress on Engineering 2022
WCE 2022, July 6 - 8, 2022, London, U.K.

Architecture. A good verification strategy is to cover the

corner cases using the constraint ~ random
verification
F D EX . MEM WB

ALU/Branch

Figure 2. Overview of a RISC-V processor

methodology. The test cases include some scenarios to
verify the basic functionality and some scenarios to verify
the corner cases. The complete verification is carried out
in UVM environment. The following subsections discuss
the verification approach in detail.

A. M-Type — Multiplication

The M-type ISA for multiplication has 4 different
variations. The detailed explanation of the different
multiplication variations is given in the RISCV chapter.
To verify the M-type ISA the instructions were given
through the uvm_sequence. The component riscv_seq
generated 40different sequences to cover all the scenarios
across the 4 variations. The scenarios covered while
verifying the M-type ISA are as follows:

e The basic multiplication functionality across all
the 4 variations.

e Signed numbers multiplication in MUL and
MULHU variations. (Here the signed numbergets
converted to a positive number and then
multiplication is performed).

B. M-type — Division

The M-type ISA has 4 different variations across division
and remainder functionality. The detailed explanation of
the different division variations is given in the RISCV
chapter. To verify the M-type (division and remainder
The DUT is a RISC-V processor which has been designed
using the RV32I specification. The design implements the
R/1/S/U instruction formats along with the instructions
present in the ‘M’extension and the ‘Zicsr’ extension. The
instruction types of formats conform to the 4 bytes

ISBN: 978-988-14049-3-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

functionality) ISA, the instructions were given through the
uvm_sequence component. The component riscv_seq
generated 40 different sequences to cover all the scenarios
across the 4 variations. The scenarios covered while
verifying the M-type ISA areas follows:

e The basic division and the remainder
functionality.
e Singed division and signed remainder

functionality with all possible combinations of
signed and unsigned dividend and divisors.

e Signed dividend and signed divisors for unsigned
division and remainder functionality.

e Division and remainder functionality when
divided by 0.
e Overflow condition by dividing the most negative
integer by -1.
C.Z-type

The Zicsr-type ISA focusing on the control and status
registers (CSR) has 6 different variations in user mode.

To verify the Zicsr-type ISA the instructions were given
through the uvm_sequence component. The component
riscv_seq generated 15 different sequences to cover all the
scenarios across the 4 variations. The scenarios covered
while verifying the Zicsr-type ISA are as follows:

The basic atomic read and write, set and clear CSR
functionality.

Trying to write to a read-only control and status register.

e Zicsr CSRRW instructions with destination
register as 0. (Here CSR read functionality will
not happen).

e Zicsr CSRRS and CSRRC instructions with
source register as 0. (Here CSR write
functionality will not happen).

V. ResuLTs

A RISC-V processor along with ‘M’ extension and ‘Zicsr’
extension is developed using a base RV32l ISA. In order
to verify the M and Zicsr ISA, a reusable verification
environment has been build using UVM methodology.
Using UVM framework, the DUT has been successfully
verified against the RISC-V ISA specification. The
following subsections gives the details of the result
snapshots.

A. DUT Waveform

memory size boundary. Register size of width 32 bits has
been defined for RV32l. Figure 3 showcases the
waveform with the inputs to the DUT and the
corresponding outputs to the specified instructions can be
seen.

WCE 2022

Proceedings of the World Congress on Engineering 2022
WCE 2022, July 6 - 8, 2022, London, U.K.

GTKWave - riscv.ved

fdt Sewth Tme Mukers View |

Micker: 26010 ¢

non | Inst §130:0) «02838083
0]31:0] »06000018
0[31:0] =0000001¢
opcode ra 1dx 1(4:0) %7

1[31:0) =FFED2N0
R

“AD10032

4) feteh pe

" |

fa, optode ra operasd

opcode b Idx
ppcode rb operand 1(31:0)
x §[4:0) 200
0{1:0) »CI4I04S
1{31:0) =0000002¢

" opcode rd
writeback valee
ré valee

Figure 3. DUT Waveform

- Prace ® x)
014640470 coe-ee-cada7 riscy - o=
UVM_INFO 3 7400: uvm_test top.e sbl [Scoreboard] INSTRU(TIOH = ©3468ab3, INSTRUCTION TYPE = MUL, rd = 21
- e - - —eeme- - PA Actual Value: e53bf344 Expected lue: e53bf344
UVM_INFO riscv_sb.sv(48) @ 7800: uvm_test top.env.sbl [Scoreboard] !NSTRULT!O‘(= 02273b33, INSTRUCTION TYPE = MULHU, rd = 22
- - PA Actual Value: 2e Expected Value: 2e
UVM_INFO riscv sb,svldﬂ) @ 8200: uvm_test_top.env.sbl (S(QVPUOAYU‘ INsTRU(YIOI ©2332¢cb3, NSTRUCTION TYPE = MULHSU, rd = 25
- - - - - -PASS -- Actual Valu 14b265f Expected Value: 14b265f
UVM INFO riscv)h sv(48) @ 8600: uvm_test _top.env.sbl 'ﬁ(oif‘l)nurﬂ] X'JSTRU(VI N = 02a58db3, INSTRUCTION TYPE = MUL, rd = 27
- s e --PA - Actual Value: b5d46a24 Expected Value: bS5d46a24
UVM_ INFO riscv_sb.sv(48) @ 9000: uvm test top.env.sbl [Scoreboard] INSYRU[TKOH = ©283bdb3, INSTRUCTI TYPE = MULHU, rd =
PA Actual Value: 2562fce3 Expecte 2562fce3
UVM_INFO riscv_sb.sv(48) @ 9400: uvm_test top.env. [Scoreboard] INSTRUCTION = 0316833, INSTRUCTION TYPE = ¢ = 30
-- ST -t —e-m-- --- -PASS--------- Actual Value: 992bb78e Expected Value: 992bb78e
UVM_INFO riscv_sb.sv(48) @ 9800: uvm t top.env.sbl [Scoreboard] INSTRUCTION = ©3370fb3, INSTRUCTION TYPE = MUL, rd = 31
ettt - - S PASS - Actual Value: 2a5438cc Expected Value: 2a5438cc
UVM_ INFO riscv sb.sv(48) @ 10200: uvm test top.env.sbl [Scoreboard] IHbTRU(YIOH = ©2538cb3, INSTRUCTION TYPE = MUL, rd
Actual Value: 8dca@400 Expected Value: bd:QOJOO
UVM_INFO riscv_sb.sv(48) @ 10600: uvm_test top.env.sbl [Scoreboard) IMSTRU(TIDI ©3089bb3, INSTRUCTION TYPE MULH, rd
——————— e —.-- - Actual Value: le6cbdSb Expected Value lﬂﬁ(hhsh
UVM_INFO uvm_test _top.env.sbl [Scoreboard] IMSYRU(TI N = ©0303aab3, INSTRUCTION TYPE = MULHSU, rd = 21
PASS Seb6e072 Expected Value: Seb6ed72
UVM_INFO riscv_sb.sv(48) test_top.env.sbl lS(orvbonld] ’NSYRU(TIOd INSTRUCTION TYPE MULHSU, rd 22
--- - - - PA! Value: 3bd3b736 Expected Value 3Ldjh730
UVM_INFO riscv_sb.sv(48) @ INSYRurTloa = 02e71db3, INSTRUCTION TYPE = MULH =
Sep T PASS - Actual Value: fffff9 Expected Value f'1v19
UVM_INFO _sbl [Scoreboard] INSTRUCTION = 02f93cb3, INSTRUCTION TYPE = MULHU, rd = 25
PASS Actual Value: 9597ad4al Expected Value: 9:‘373431
UVM_INFO .env.sbl [Scoreboard) INSTRUCTION = ©2992fb3, INSTRUCTION TYPE = MULHSU, rd =
—eeeee- e ~--PASS------- Actual Value: e5b9da77 Expected Value: e
UVM_INFO .env.sbl [Scoreboard] ©2e73eb3, INSTRUCTION TYPE = MULHU, rd
S Actual Value: e106605d Expected Value: 01000050
UVM_INFO riscv_sb.sv(48) uvm_test _top.env.sbl [Scoreboard] INSTRUCTION = ©02413e33, INSTRUCTION TYPE = MULHU, rd 28
- Actual Value: 160 Expected Value: 10
UVM_INFO riscv_sb.sv(48) uvm_test_top.env. sbl [Scoreboard] INSYRU(TIOH = ©2428eb3, INSTRUCTION TYPE = MUL, rd = 29
—--s-- - --- - PA Actual Value: 22d275c0 Expected Value: 22d275c©
UVM_INFO riscv -b >./l18) 14200: uvm_test_top. (‘nv.')l)l lS(or-‘l)vuld] INSTRU(YIOI = 026a2b33, INSTRUCTION TYPE = MULHS r = 22
- - - --- - PA -- Actual Value: ff2lddld Expected Value: ff21lddld
UVM_ INFO riscv sb.sv(48) test_top.env.sbl |s<uv.nodra] INSTRUCTION 02b6333, NSTRUCTION TYPE = MULHU, rd = 30 l
- - - - —---- - - Actual Value: afeed413d Expected Value: afeed13d
& Bl 0145404 70@con s 2347 -,
- ® Mono T O
01464047000 coe-ce-cada7:riscy F—
UVM_INFO riscv sb.sv(4B) @ 2600: uvm te top.env.sbl [Scoreboard] xN,lunfllnN 03255ab3, INSTRUCTION TYPE = DIVU, rd = 2
& , 2 : - - PA Actual Value: 41 Expected Value: 41
UVM_INFO riscv _sb.sv(48) @ 3000: uvm test top.env.sbl [Scoreboard] INSTRU(IION 0333deb3, INSTRUCTION TYPE DIVU, rd 9
P - s e - PA Actual Value: 1361 Expected Value: 1361
UVM_ INFO riscv_sb.sv(48) @ 3400: uvm test top.env.sbl [Scoreboard] INSTRUCTION = 03125c33, INSTRUCTION TYPE = DIVU, rd = 24
AS Actual Value: 1936f Expected Value: 1936f
UVM_INFO riscv_sb.sv(48) @ 3800: uvm t_top.env.sbl [Scoreboard] INHVRH(IJUN = ©03236bb3, INSTRUCTION TYPE REM, rd
Actual Value: fff59144 Expected Value: fff59144
UVM_INFO riscv sb.sv(48) @ 4200: uvm test top.env.sbl [Scoreboard] leYRUlYlON = 02d26bb3, INSTRUCTION TYPE = REM, rd = 23
- - - - - - -PAS 10743c Expected Value: 10743c
UVM_INFO riscv sb.sv(48) @ 4600: uvm test top.env.sbl [Scoreboard] STRUCTION 02c15db3, INSTRUCTION TYPE DIVU, rd 27
- --- -- - - - -- -- - -- -PASS Actual Value: f944 Expected Valu foaa
UVM_INFO riscv sb.sv(48) @ 5000: uvm test top.env.sbl [Scoreboard] INSTRUCTION = 03116fb3,]N\lRU(TION TYPE = REM, rd = 31
PASS Actual Value xpected Value: 29el
UVM INFO riscv_sb.sv(48) @ 5400: uvm te top.env.sbl [Scoreboard] INSTRUCTION = 02e3db33, lelHHilIUN TYPE DIVU, rd = 22
PAS Actual Value: Expected Value: 1
UVM INFO riscv sb.sv(48) @ 5800: uvm test top.env.sbl [Scoreboard] lNSVRULILON = ©2elcc33 leIRU(TIDN TYPE =
- - Actual Value: fffffff9 Expected
UVM_INFO riscv sb.sv(48) @ 6200: uvm test top.env.sbl [Scoreboard] rNsTnucTIoN ©3117b33, INSTRUCTION TYPE
PA Actual Value: 29el Expected
UVM_INFO riscv_sb.sv(48) @ 6600: uvm test top.env.sbl [Scoreboard] INHTRH(IIUN = 0300fe33 1N~1Hu(vrow TYP
PASS Expected
UVM_INFO riscv sb.sv(48) @ 7000: uvm test top.env.sbl [Scoreboard] INSTRUCTION 03327eb3, lN‘IKU(lIUN TYPE =
- - - Seee-ea--- - - - —eee- - - PAS ---- Actual Value:
UVM_INFO riscv _sb.sv(48) @ 7400: uvm test top.env.sbl [Scoreboard] 1N,vnu&1rou 0342cab3, 3
--- smmmme—mao - e B e e PA ---- Actual Value: 1fb89 Expected Value:
UVM_INFO riscv sb.sv(48) @ 7800: uvm test top.env.sbl [Scoreboard] XNHVRH(YIUN 02b3db33, INSTRUCTION TYPE D
Actual Value: e0f39 Expected Value
UVM_INFO riscv_sb.sv(48) @ 8200: uvm test top.env.sbl [Scoreboard] INN(RU(IIUN = 02b0cf33, INSTRUCTION TYPE =
ASS Actual Value: 6778f Expected Valu
UVM_INFO riscv sb.sv(48) @ 8600: uvm test top.env.sbl [Scoreboard] INSTRUCTION = 02c3cdb3 INSTRUCTION vva
PASS Actual Value: ffffffc9 Exp
UVM_INFO riscv sb.sv(48) @ 9000: uvm test top.env.sbl [Scoreboard] INSTRUCTION 02d11db3, STRUCTION TYPE |
- - PASS Actual Value: 116172 Expected Valu
UVM_INFO riscv_sb.sv(48) @ 9400: uvm top.env.sbl [Scoreboard] INSTRUCTION 0332cf33 INSTRUCTION TYPE
PASS 7a6 Expected Valu
UVM_INFO riscv_sb.sv(48) @ 9800: uvm top.env.sbl [Scoreboard] INSTRUCTION 03334fb3, INSTRUCTION TYPE DIV, rd [
PASS Actual Value: fffff683 Expected Value: fffff683
| 0146404700 cadd T rivey . ' P R —

Figure 5. M type Division results

ISBN: 978-988-14049-3-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2022

Proceedings of the World Congress on Engineering 2022
WCE 2022, July 6 - 8, 2022, London, U.K.

© Appications Places Terminat

Fle Edt View Search

UVM_INFO riscv

Termins Help

sb.sv(58)

: uvm_test top.env.sbl [Scoreboard] INS
PASS-CSR-WRITE-DA

PASS-CSR-READ-DA
sb.sv(58) .sbl [Scoreboar: INS
PASS-CSR-WRITE-DA

[Scoreboard] INS
PASS - CSR-WRITE-DA
- -PASS-CSR-READ-DA
coreboard) INS
-PASS-CSR-WRITE-DA

[Scoreboard] INS

[Scoreboard] INS
PASS-CSR-WRITE-DA
- -PASS-CSR-READ-DA
INS

PASS - CSR-READ - DA
[Scoreboard]) INS

014640470 <oe-ee-CaddT riscy

PASS-CSR-READ - DAT,

PASS-CSR-WRITE-DATA
PASS - CSR-READ - DAT.

@ Tecizole & % O
TRUCTION = 34011cf3, INSTRUCTION TYPE = CSRRW, rd = 25
TA------- Actual Value: 54320032 Expected Value: 54320032
TA------- Actual Value: 54320032 Expected Value: 54320032
TRUCTION = 3054daf3, INSTRUCTION TYPE = CSRRWI, rd = 21
TA-----=- Actual Value: 9 Expected Value: 9
TA------- Actual Value: 9 Expected Value: 9
TRUCTION = 3056db73, INSTRUCTION TYPE = CSRRWI, rd = 22
TA------- Actual Value: 1 Expected Value: 1
TA---- Actual Value: 1 Expected Value: 1
TRUCTION = 34122e73, INSTRUCTION TYPE = CSRRS, rd = 28
TA- Actual Value: 17 Expected Value: 17
Ao Actual Value: 18 Expected Value: 18
TRUCTION = 3412af73, INSTRUCTION TYPE = CSRRS, rd = 30
~~~~~~~ Actual Value: 9 Expected Value: 9
rrrrrrr Actual Value: a Expected Value: a
TRUCTION = 34146b73, INSTRUCTION TYPE = CSRRSI, rd = 22
TA------- Actual Value: 9 Expected Value:
TA---- Actual Value: a Expected Value:
TRUC 34156c73, INSTRUCTION TYPE = = 24

: a
TI CSRRSI, rd
-ee b Expected Value: b

c Expected Value:

e
INSTRUCTION TYPE CSRRC, rd = 27

Actual Value:
Actual Value:
3422bdf3,

TA
TRUCTION

e
UVM_INFO /home/morris/uvm-1.2/src/base/uvm
- UVM Report Summary ---

report server.svh(847) @ 45800:

** Report counts by severity

UVM_INFO : 115

UVM_WARNING : 0

UVM_ERROR : 0

UVM_FATAL : 0

** Report counts by id

[RNTST) 1

[Scoreboard] 112

[TEST _DONE] 1

[UVM/RELNOTES] 1

$finish called from file "/home/morris/uvm-1.2/src/base/uvm_root.svh", line

$finish at simulation time

ves Simulation Report
Time: 458000 ps
CPU Time: 0.410 seconds; Data structure size: 0.2Mb
Wed Nov 3 13:08:33 2021

[014640470@coe-ee-cadd47 riscv]s$ ~

@ I 0146404 70@con-ee-cadd 7 iy (7 rincv. sb v (riscv-mastec/cormivine

PASS-CSR-WRITE-DATA------- Actual Value: fffffff7 Expected Value: fIfffff7
PASS -CSR-READ -DATA- - - - - - - Actual Value: 80000006 Expected Value: 80000006
{Scoreboard] INSTRUCTION = 34223df3, INSTRUCTION TYPE = CSRRC, rd = 27
PASS-CSR-WRITE-DATA------- Actual Value: ffffffe9 Expected Value: ffffffe9
- -PASS-CSR-READ-DATA------- Actual Value: 80000008 Expected Value: 80000008
coreboard] INSTRUCTT 34267df3, INSTRUCTION TYPE = CSRRCI, rd = 27
-PASS-CSR-WRITE-DATA------- Actual Value: fffffff2 Expected Value: fffffff2
PASS-CSR-READ -DATA- - - - - - - Actual Value: 8006006001 Expected Value: 86000001
[Scoreboard] INSTRUCTION = 342efdf3, INSTRUCTION TYPE = CSRRCI, rd = 27
PASS-CSR-WRITE-DATA------- Actual Value: ffffffe2 Expected Value: ffffffe2
PASS - CSR-READ-DATA- - - - - - - Actual Value: 80000001 Expected Value: 86000001
[Scoreboard] INSTRUCTION = f1409bf3, INSTRUCTION TYPE = CSRRW, rd = 23
Actual Value: 76420016 Expected Value: 76320016
PASS -CSR-READ-DATA- - - - - - - Actual Value: © Expected Value: ©
riscv_sb.sv(58) [Scoreboard] INSTRUCTION = 34009073, INSTRUCTION TYPE = CSRRW, rd = © 1
PASS CSD.WRYTE. DATA tua) Value: 76426016 € tod Value: 764a0016
Figure 6. Zicsr Results
© Appications  Places  Terminal @ Wedlite A WO
14640470 coe-ee-caddT riscy R
fle Edt View Seath Termindl Melp
UVM INFO riscv sb.sv(71) @ 44200: uvm test top.env.sbl [Scoreboard] INSTRUCTION = ©331ecb3, INSTRUCTION TYPE = REM, rd = 25
----------------------------------------------------------------------- PASS--------- Actual Value: 16 Expected Value: 16
168308
UVM_INFO riscv [Scoreboard] INSTRUCTION = ©2c26fb3, INSTRUCTION TYPE = REM, rd = 31
PASS-vvvvnns Actual Value: 1a714 Expected Value: 1a714
4071408111
UVM_INFO riscv_sb.sv(71) @ 45000: uvm _test top.env.sbl [Scoreboard] INSTRUCTION = 03414cb3, INSTRUCTION TYPE = DIV, rd = 25
----------------------------------------------------------------------- ASS--------- Actual Value: f2acclef Expected Value: facclef
4071408111
UVM_INFO riscv _sb.sv(71) @ 45400: uvm_test top.env.sbl [Scoreboard] INSTRUCTION = 02e36db3, INSTRUCTION TYPE = REM, rd = 27
----------------------------------------------------------------------- PASS--------- Actual Value: f2acclef Expected Value: f2acclef
4071408111
UVM INFO riscv sb.sv(71) @ 45800: uvm test top.env.sbl [Scoreboard] INSTRUCTION = 02e36db3, INSTRUCTION TYPE = REM, rd = 27
----------------------------------------------------------------------- PASS-----.--. Actual Value: f2acclef Expected Value: f2acclef
UVM_INFO /home/morris/uvm-1.2/src/base/uvm objection.svh(1270) @ 45800: reporter [TEST DONE] 'run’' phase is ready to proceed to the ‘extract' phas

reporter [UVM/REPORT/SERVER]

517.

Figure 7. UVM Report Summary

B. M-Type Results

The UVM log in the following Figure 4 and Figure 5 gives
a detailed view into the ‘M’ extension instructions. It
specifically lists out the instruction opcode, whether the
Read Write, CSR set or CSR clear instruction, the expected
value as calculated by the riscv_ref sh.sv and the actual
DUT outcome. The comparison takes place in riscv_sh.sv
module which then, gives out the result of whether the test
instruction is a multiplication or a division, the expected
value as calculated by the riscv_ref sh.sv and the actual
DUT output. The comparison takes place in riscv_sb.sv
module which then, gives out theresult of whether the test
has passed or failed.

ISBN: 978-988-14049-3-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

C. ZICSR RESULTS

The UVM log in the following Figure 6 gives a detailed
view into the ‘Zicsr’ extension instructions. It specifically
lists out the instruction opcode, the instruction type — CSR
Read Write, CSR set or CSR clear instruction, the expected
value as calculated by the riscv_ref sh.sv and the actual
DUT outcome. The comparison takes place in riscv_sh.sv
module which then, gives out the result of whether the test
has passed or failed.

WCE 2022



Proceedings of the World Congress on Engineering 2022
WCE 2022, July 6 - 8, 2022, London, U.K.

V1. CONCLUSION

The primary objective of this project was the development
of a 32-bit RISC-V processor along with the development of
UVM based Verification environment to efficiently test the
ISA specification of RISC-V processors. ‘M’ extension and
‘Zicsr’ extension was verified. The verification environment
was created on the principles of Object-Oriented
Programming to make the environment efficiently scalable
and reusable that can be easily accommodated for various
variations of RISC-V.

REFERENCES

[1] Harry Foster (2020, November 18), “Part 3: The 2020 Wilson Research
Group Functional Verification Study”,
https://blogs.sw.siemens.com/verificationhorizons/2020/18

[2] Andrew Waterman, Krste Asanovi¢, “The RISC-V Instruction Set
Manual, Volume I: Unprivileged ISA”, Version 20191213. EECS
Department, University of California, Berkeley.

[3] Krste Asanovic, Randy Katz, (2017), “Great Ideas in Computer
Architecture”, https://slidetodoc.com/cs-61-c-great- ideas-in- computer-
architecture-34

[4] Andrew Pizali, “Functional Verification” in Functional Verification
Coverage Measurement and Analysis, 1% ed. Boston, MA, Springer,
pp. 15-30.

[5] Roberto Molina-Robles, Edgar Solera-Bolanos, Ronny Garcia-Ramirez,
“A compact functional verification flow for a RISC-V 321 based core”,
2020 IEEE 3rd Conference on PhD Research in Microelectronics and
Electronics in Latin America (PRIME-LA), San Jose, Costa Rica, 25-
8, Feb, 2020. DOI: 10.1109/PRIME- LA47693.2020.9062717.

ISBN: 978-988-14049-3-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

[6] ASICtronix (2020), “Introduction: What is UVM”,
https://www.asictronix. com/uvm-introduction

[7] Pedro Aratgjo (2014), “UVM Guide for Beginners”,
https://colorlesscube.com/uvm- guide-for-beginners

[8] Jiayi Wang, Nianxiong Tan, Yangfan Zhou, et al, “A  UVM
Verification Platform for RISC-V SoC from Module to System Level”,
2020 IEEE 5th International Conference on Integrated Circuits  and
Microsystems  (ICICM), Nanjing, China, 23-25, Oct, 2020

[9] Manish Singal “UVM Driver and Sequencer Communication”.
https://learnuvmverification.com/index.php/2015/07/07/uvm-driver-
and-sequencer- communication/.

[10] Manish Singal “UVM Sequences and Transactions Application”.
https://learnuvmverification.com/index.php/2015/07/29/uvm
sequences-and-transactions- application/.

[11] Ultraembedded (2021, September), “RISC-VCPU Core (RV32IM)”
.https://github.com/ultraembedded/riscv/

[12] Chevella Anilkumar, K Venkateswarlu, “Verification of RISC-V
processor using UVM testbench”, 12" International Conference on
Recent Trends in Engineering, Science and Management, November —
2017. ISBN — 978-93-86171-79-5.

[13] Simon Davidmann, Lee Moore, Richard Ho, et al, “Rolling the dice
with Random Instructions is the Safe Bet on RISC-V Verification”,
Design and Verification Conference and Exhibition, San Jose,
California. March 2-5, 2020.

WCE 2022


https://slidetodoc.com/cs-61-c-
https://learnuvmverification.com/index.php/2015/07/07/uvm-driver-
https://learnuvmverification.com/index.php/2015/07/29/uvm
https://github.com/



