
 

 

      Abstract— The RISC-V processor's open-source 

architecture provides designers with flexibility in 

implementing the architecture for a variety of applications. 

The same advantage, however, makes the verification process 

difficult because all variations must be verified. The proposed 

project will create a verification environment for the extended 

RISC V architecture. RISC-V supports both the "M" standard 

extension for integer multiplication and division and the 

"Zicsr" standard extension for control and status register 

instructions. The above-mentioned ISA classes will be tested 

using the RV32I ISA-based DUT with a UVM environment 

around the DUT to verify the M and Zicsr functionalities. The 

M and Zicsr type ISA were verified with a 95% functional 

coverage. The UVM framework created can be re-used to 

verify other Instruction Set Architecture. 

 

 Index Terms – RISC-V processor, Universal  

 Verification  Methodology, RV32I based DUT, M and   

 Zicsr type ISA, Instruction Set Architecture 

 

 

I. INTRODUCTION 

The RISC-V, an open standard instruction set 

architecture developed on the principles of the Reduced 

Instruction Set Computer (RISC), is an open-source 

architecture. As being freely accessible to the industry and 

academia, it provides developers with the flexibility of 

developing various variations of the standard design. The 

RISC-V ISA was developed at University of California, 

Berkeley. 

 The Instruction Set Architecture is the zone where 

“hardware meets software”. In the hierarchy of developing 

and programming a system, ISA is at a proximity to the 

compiler. It is accessible to programmer as well as the writer 

of the compiler. 

 

 

 

 

 

 
Manuscript received March 30, 2022; revised May 10, 2022. The Authors   

are with San Jose State University, Department of Electrical Engineering, 

San Jose, CA, USA (corresponding author to provide phone: 408-924-

4073; fax: 408-924-3925; e-mail: lili.he@ sjsu.edu).  

 

 

The RISC-V ISA is the base Integer ISA. Additional 

extensions to this base ISA are present. As abundant 

variations of RISC-V ISA along with its extensions are 

possible, it is a requirement that a flexible verification 

environment be developed which can be easily reused for 

multiple variations of the above-mentioned  architecture. 

Universal Verification Methodology is a standard and 

reusable methodology which can be effectively used for 

the above purpose. This framework has been built with the 

help of System Verilog classes and the concepts of 

Object-Oriented programming.  

 

 

II. METHODOLGY 

The Universal Verification Methodology (UVM), 

basically derived from Open Verification Methodology 

(OVM) is an open-source methodology which is 

compatible with many commercial simulation tools such as 

the tools provided by Cadence, Aldec, Synopsys and 

Mentor Graphics. UVM provides an efficient standardized 

methodology to design verification environments to verify 

various IC designs. As UVM is primarily based on Object 

Oriented Programming, UVM has the advantages of such 

verification environments being reusable. Hence, the re-

use methodology decreases the delay for redesigning the 

whole environment again for every design. Also, the 

methodology helps in development of self-generating 

stimuli and self-testing testbenches which not only increase 

the verification efficiency of the environment, but also 

help in speeding up the overall verification process of the 

design. 

A. UVM Class Hierarchy 

As discussed above, UVM is primarily based on Object 

Oriented Programming (OOP). The OOPs nature of UVM 

leads to an increase in reusability of various verification 

components, which can be very useful. A UVM library 

consists of a set of base classes, from which various 

components can be derived. The UVM base classes consist 

of common methods which are used on data. Thus, thanks 

to OOP, various kinds of components can be derived from 

the UVM base classes and the methods in the UVM base 

classes can be further customized as per the requirement. 

The uvm_object class is the base class (parent class) from 

which the other classes are derived. The uvm_transaction  

Verification of RISC-V Processor beyond 

RV32I ISA 

 
Yamini Santosh Awasthi, Aishwarya Mahesh, and Lili He, Member, IAENG 

Proceedings of the World Congress on Engineering 2022 
WCE 2022, July 6 - 8, 2022, London, U.K.

ISBN: 978-988-14049-3-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2022



 

 

                     Figure 1. UVM hierarchy 

and uvm_component classes built from uvm_object 

class. Figure1 briefly     explains the UVM hierarchy [5]. 

 

B. UVM Object 

All the UVM data that flows through the design extend 

from the UVM object base class. For common operations 

that are executed over data, the UVM object consists of a 

set of methods for the same purpose. The methods include 

– compare, create, copy and print. From uvm_object 

mainly two types of child classes are created.  

The uvm_transaction object does not have any UVM 

phases. The classes derived from uvm_transaction class 

will not be active until the end of the simulation. The 

UVM objects are created when needed and destroyed after 

use. The uvm_sequence_item and uvm_sequence classes 

derived from the UVM object class. The classes under the 

uvm_transaction class forms the stimulus branch. 

The inputs to be driven into the DUT and the outputs 

driven out of the DUT is the sequence items. The 

uvm_sequence_item class is generally used to declare the 

inputs and outputs to the DUT. The sequence packets 

driven to the DUT are of sequence item class. 

The stimuli driven to the DUT is contained in the 

sequence class and stimuli is called as sequences. The 

uvm_sequence class is used to write all possible stimuli 

which needs to be driven into the DUT to verify the 

functionality.  

C. UVM Component 

The uvm_component class is derived from uvm_object         

class. The uvm_component class has UVM phase 

mechanism, and it will be active till the end of the 

simulation. The uvm_component has a reporting 

mechanism and phase mechanism to synchronize between 

different verification components. The classes derived 

from the uvm_component class forms the testbench 

branch. 

Test is the topmost UVM component in the UVM 

hierarchy. The test classes are derived from the uvm_test 

base class. The test component can contain environment 

components, agents, and other components below in the 

hierarchy. The sequence is started by connecting to the 

sequencer in the test component. The test component also 

has phase objections which is raised during the start of the 

simulation and dropped after the simulation is completed.  

Environment is a user defined component derived from 

uvm_env. Environment is higher than the agent in the 

hierarchy of the UVM Testbench. UVM environment is a 

container of the agents, the   scoreboards, and the monitors. 

In the connect phase of the uvm_env component the 

connections between the different components are 

established.  

An agent is usually protocol specific. The agent is a 

container which holds the required components for a 

particular protocol. A driver, monitor and a sequencer 

might be contained in a typical UVM agent. Agent can be 

active or passive in nature.  

The scoreboard is a user defined uvm_component. The 

scoreboard is extended from the uvm_scoreboard. In 

general, a scoreboard takes in the transactions from the 

monitors, and checks for the correctness of the DUT.  

The purpose of the monitor is to convert the pin level 

activity on the interface of the design to transaction level. 

The monitor component captures the data on the interface 

of the design and send the data as packets to the 

scoreboards and other components using Transaction 

Level Modelling (TLM) protocols. 

The driver receives the transactions from the sequencer 

and drives the transactions into the DUT. The data 

packages are driven to the DUT through the interface by 

the uvm_driver component. The driver methods can also 

send a response to the sequence to trigger the next 

sequence. 

A transaction to the driver is passed by the sequencer. A 

transaction or a protocol is a packet of data known as 

sequences. The flow of the sequences is controlled by the 

sequencer. Sequencer holds the sequences in pipeline and 

co-ordinates the protocol between the driver and the 

sequence   classes. 

The subscriber class is present in the UVM environment 

derived from the uvm_component class. The subscriber 

class calculates the functional coverage in the UVM 

testbench and the cover groups.  

 

III. DESIGN UNDER TEST (DUT) 

A design under test (DUT) is required to test the 

verification environment built. In the project, RV32I with 

M and Zicsr extension is used as the DUT. The core is a 

RISC V 32-bit pipelined processor with 5 stages and each 

stage is separated by pipelined registers. Figure 2 gives an 

overview of the RISC-V processor. The design has a top-

level module which acts a wrapper for the core, data 

memory and instruction memory. The instructions are 

initially loaded into the instruction memory and the core 

starts executing the instructions from the instruction 

pointed by the program counter (PC).  

IV. VERIFICATION PLAN 

The main objective of the project is to verify the M-type 

Instruction Set Architecture and the Z- type Instruction Set 

Proceedings of the World Congress on Engineering 2022 
WCE 2022, July 6 - 8, 2022, London, U.K.

ISBN: 978-988-14049-3-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2022



 

Architecture. A good verification strategy is to cover the 

corner  cases   using the   constraint  random     

verification  

 

         Figure 2. Overview of a RISC-V processor 

 

methodology. The test cases include some scenarios to                                                  

verify the basic functionality and some scenarios to verify   

the corner cases. The complete verification is  carried out 

in UVM environment. The following subsections discuss 

the verification approach in detail. 

A. M-Type – Multiplication 

The M-type ISA for multiplication has 4 different 

variations. The detailed explanation of the different 

multiplication variations is given in the RISCV chapter. 

To verify the M-type ISA the instructions were given 

through the uvm_sequence. The component riscv_seq 

generated 40 different sequences to cover all the scenarios 

across the 4 variations. The scenarios covered while 

verifying the M-type ISA are as follows: 

 The basic multiplication functionality across all 

the 4 variations. 

     Signed numbers multiplication in MUL and 

MULHU variations. (Here the signed number gets 

converted to a positive number and then 

multiplication is performed). 

  B. M-type – Division 

The M-type ISA has 4 different variations across division 

and remainder functionality. The detailed explanation of 

the different division variations is given in the RISCV 

chapter. To verify the M-type (division and remainder 

functionality) ISA, the instructions were given through the 

uvm_sequence component. The component riscv_seq 

generated 40 different sequences to cover all the scenarios 

across the 4 variations. The scenarios covered while 

verifying the M-type ISA are as follows: 

 The basic division and the remainder 

functionality. 

 Singed division and signed remainder 

functionality with all possible combinations of 

signed and unsigned dividend and divisors. 

 Signed dividend and signed divisors for unsigned 

division and remainder functionality. 

 Division and remainder functionality when 

divided by 0. 

 Overflow condition by dividing the most negative 

integer by -1. 

 

 

 

          C. Z – type 

          The Zicsr-type ISA focusing on the control and status 

registers (CSR) has 6 different variations in user mode.  

 

 

           To verify the Zicsr-type ISA the instructions were given 

through the uvm_sequence component. The component 

riscv_seq generated 15 different sequences to cover all the 

scenarios across the 4 variations. The scenarios covered 

while verifying the Zicsr-type ISA are as follows: 

• The basic atomic read and write, set and clear CSR 

functionality. 

           Trying to write to a read-only control and status register. 

 Zicsr CSRRW instructions with destination 

register as 0. (Here CSR read functionality will 

not happen). 

 Zicsr CSRRS and CSRRC instructions with 

source register as 0. (Here CSR write 

functionality will not happen). 

 

V. RESULTS 

A RISC-V processor along with ‘M’ extension and ‘Zicsr’ 

extension is developed using a base RV32I ISA. In order 

to verify the M and Zicsr ISA, a reusable verification 

environment has been build using UVM methodology. 

Using UVM framework, the DUT has been successfully 

verified against the RISC-V ISA specification. The 

following subsections gives the details of the result 

snapshots. 

A. DUT Waveform 

The DUT is a RISC-V processor which has been designed 

using the RV32I specification. The design implements the 

R/I/S/U instruction formats along with the instructions 

present in the ‘M’ extension and the ‘Zicsr’ extension. The 

instruction types of formats conform to the 4 bytes 

memory size boundary. Register size of width 32 bits has 

been defined for RV32I. Figure 3 showcases the 

waveform with the inputs to the DUT and the 

corresponding outputs to the specified instructions can be 

seen.  

Proceedings of the World Congress on Engineering 2022 
WCE 2022, July 6 - 8, 2022, London, U.K.

ISBN: 978-988-14049-3-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2022



 

 

                     Figure 3. DUT Waveform 

 

Figure 4. M type Multiplication results  

           Figure 5. M type Division results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proceedings of the World Congress on Engineering 2022 
WCE 2022, July 6 - 8, 2022, London, U.K.

ISBN: 978-988-14049-3-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2022



 

 

                    Figure 6. Zicsr Results 

 

                            Figure 7. UVM Report Summary 

B. M-Type Results 

The UVM log in the following Figure 4 and Figure 5 gives 

a detailed view into the ‘M’ extension instructions. It 

specifically lists out the instruction opcode, whether the 

Read Write, CSR set or CSR clear instruction, the expected 

value as calculated by the riscv_ref_sb.sv and the actual 

DUT outcome. The comparison takes place in riscv_sb.sv 

module which then, gives out the result of whether the test 

instruction is a multiplication or a division, the expected 

value as calculated by the riscv_ref_sb.sv and the actual 

DUT output. The comparison takes place in riscv_sb.sv 

module which then, gives out the result of whether the test 

has passed or failed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. ZICSR RESULTS 

The UVM log in the following Figure 6 gives a detailed 

view into the ‘Zicsr’ extension instructions. It specifically 

lists out the instruction opcode, the instruction type – CSR 

Read Write, CSR set or CSR clear instruction, the expected 

value as calculated by the riscv_ref_sb.sv and the actual 

DUT outcome. The comparison takes place in riscv_sb.sv 

module which then, gives out the result of whether the test 

has passed or failed. 

 

 

 

 

Proceedings of the World Congress on Engineering 2022 
WCE 2022, July 6 - 8, 2022, London, U.K.

ISBN: 978-988-14049-3-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2022



 

VI. CONCLUSION 

The primary objective of this project was the development 

of a 32-bit RISC-V processor along with the development of 

UVM based Verification environment to efficiently test the 

ISA specification of RISC-V processors. ‘M’ extension and 

‘Zicsr’ extension was   verified. The verification environment 

was created on the principles of Object-Oriented 

Programming to make the environment efficiently scalable 

and reusable that can be easily accommodated for various 

variations of RISC-V. 

                                      REFERENCES 

[1] Harry Foster (2020, November 18), “Part 3: The 2020 Wilson Research  

       Group Functional Verification Study”, 

       https://blogs.sw.siemens.com/verificationhorizons/2020/18  

[2] Andrew Waterman, Krste Asanović, “The RISC-V Instruction Set  

       Manual, Volume I: Unprivileged ISA”, Version 20191213. EECS  

       Department, University of California, Berkeley.  

[3] Krste Asanovic, Randy Katz, (2017), “Great Ideas in Computer  

      Architecture”, https://slidetodoc.com/cs-61-c-great- ideas-in- computer-  

      architecture-34  

[4] Andrew Pizali, “Functional Verification” in Functional Verification  

      Coverage Measurement and Analysis, 1st ed. Boston, MA, Springer,  

      pp. 15-30. 

[5] Roberto Molina-Robles, Edgar Solera-Bolanos, Ronny García-Ramírez,   

      “A compact functional verification flow for a RISC-V 32I based core”, 

      2020 IEEE 3rd Conference on PhD Research in Microelectronics and 

      Electronics in Latin America (PRIME-LA), San Jose, Costa Rica, 25-   

      8, Feb, 2020. DOI: 10.1109/PRIME- LA47693.2020.9062717. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 [6] ASICtronix (2020), “Introduction: What is UVM”,  

       https://www.asictronix.  com/uvm-introduction  

[7]  Pedro Araújo (2014), “UVM Guide for Beginners”,   

       https://colorlesscube.com/uvm- guide-for-beginners 

[8] Jiayi Wang, Nianxiong Tan, Yangfan Zhou, et al, “A   UVM  

       Verification Platform for RISC-V SoC from Module to System Level”,  

       2020 IEEE 5th International Conference on Integrated Circuits     and 

       Microsystems     (ICICM),  Nanjing,     China,  23-25,  Oct, 2020 

[9] Manish Singal  “UVM Driver and Sequencer Communication”.  

        https://learnuvmverification.com/index.php/2015/07/07/uvm-driver-   

        and-sequencer- communication/.  

[10] Manish Singal “UVM Sequences and Transactions Application”.  

        https://learnuvmverification.com/index.php/2015/07/29/uvm  

        sequences-and-transactions- application/.  

[11] Ultraembedded (2021, September), “RISC-V CPU Core (RV32IM)”  

        .https://github.com/ultraembedded/riscv/ 

[12] Chevella Anilkumar, K Venkateswarlu, “Verification  of RISC-V  

         processor using UVM testbench”, 12 th International Conference on 

         Recent Trends in Engineering, Science and Management, November – 

         2017. ISBN – 978-93-86171-79-5. 

[13] Simon Davidmann, Lee Moore, Richard Ho, et al, “Rolling the dice  

         with Random Instructions is the Safe  Bet on RISC-V Verification”,  

         Design and Verification Conference and Exhibition, San Jose,  

         California. March 2-5, 2020. 

 

Proceedings of the World Congress on Engineering 2022 
WCE 2022, July 6 - 8, 2022, London, U.K.

ISBN: 978-988-14049-3-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2022

https://slidetodoc.com/cs-61-c-
https://learnuvmverification.com/index.php/2015/07/07/uvm-driver-
https://learnuvmverification.com/index.php/2015/07/29/uvm
https://github.com/



